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Abstract. Let X be a quasi-compact quasi-separated p-adic formal scheme that is smooth
either over a perfectoid Zp-algebra or over some ring of integers of a p-adic field. We construct
a fully faithful functor from perfect complexes on the Hodge–Tate stack of X up to isogeny to
perfect complexes on the v-site of the generic fibre of X. Moreover, we describe perfect complexes
on the Hodge–Tate stack in terms of certain derived categories of Higgs, resp. Higgs–Sen modules.
This leads to a derived p-adic Simpson functor.

1. Introduction

1.1. v-perfect complexes via the Hodge–Tate stack. Let p be a prime and let X be an adic
space over Qp. Let Xv be the v-site of X , consisting of perfectoid spaces over X endowed with the
v-topology. Let OXv be the structure sheaf of Xv. The starting point of this article is the following:

Question 1.1. How can one describe the category Perf(Xv) := Perf(Xv,OXv ) of perfect com-
plexes on Xv in terms of data that only involve the analytic or étale topology of X?

If X is perfectoid, then Perf(Xv) ∼= Perf(Xan) [6, Theorem 2.1]. In contrast, for rigid analytic
X , vector bundles on Xv are related to Higgs bundles: in this paper, we study the following cases.

(1) X = Xrig is the adic generic fiber of a quasi-compact, quasi-separated (qcqs) smooth formal
scheme over OCp . More generally, we consider p-adic formal schemes X that locally are
smooth over Spf(R0) for a perfectoid Zp-algebra R0. We call such X “smoothoid”.

(2) X = Xrig for some qcqs smooth p-adic formal scheme over a complete p-adic discrete
valuation ring OK with perfect residue field k.1 We call such X “arithmetic”.

Bhatt–Lurie and Drinfeld have associated to any p-adic formal scheme Z a p-adic formal stack
ZHT → Z called the “Hodge–Tate stack” ([10, Construction 3.7], [16]). The stack XHT will be the
key to our approach to Question 1.1. Using that for any perfectoid Z the natural map ZHT → Z
is an isomorphism, we construct in Section 2 a natural pullback morphism

α∗X : Perf(XHT)[ 1
p ]→ Perf(Xv)

from the category of perfect complexes on XHT up to isogeny. Our first key result is the following:

Theorem 1.2 (Section 5.2, Section 5.3). If X is smoothoid or arithmetic, then α∗X is fully faithful.

On the other hand, we explain that Perf(XHT)[ 1
p ] can be described in terms of Hodge-theoretic

data on Xan, like Higgs bundles or Sen modules. For instance, for smoothoid X over a perfectoid
base ring R0, we introduce a category of “Higgs perfect complexes” on X and show that any lift X̃
of X to A2(R0) := Ainf(R0)/ ker(θ)2 induces a fully faithful functor βX̃ from Perf(XHT)[ 1

p ] into
this category. In combination, this realizes a “derived p-adic Simpson functor” via the diagram:

Perf(XHT)[ 1
p ]

Perf(Xv)
{
Higgs-perfect complexes on X

}α∗X
βX̃

p-adic Simpson

Besides giving a partial answer to Question 1.1 in this case, this provides a fruitful new geometric
perspective on Faltings’ p-adic non-abelian Hodge theory [17]. Indeed, we use it to prove:

(1) new derived versions of the local and global p-adic Simpson functor for small Higgs bundles,
generalising these from vector bundles to perfect complexes (Theorems 1.5 and 1.6),

(2) a derived version of Sen theory in families in the arithmetic setting, (Theorem 1.8).
This leads to a uniform geometric approach to Sen theory and p-adic Simpson in this context. As
an application, the generalisation from vector bundles to perfect complexes formally implies the
comparison of cohomology in each case. We now describe each of these results in more detail.

1In fact, our methods are strong enough to also handle the case that k is only assumed to be p-finite, i.e.,
[k : kp] <∞, cf. Remark 5.9
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1.2. The smoothoid case. Let X be qcqs smoothoid p-adic formal scheme. For simplicity, we
assume that X lives over a perfectoid base ring R0. Let Ω1

X := Ω1
X|R0

be the sheaf of p-completed
Kähler differentials, which is finite locally free, cf. Lemma 5.4. Let (A0, I0) be the perfect prism
associated with R0, i.e., A0/I0 ∼= R0. We denote by {1} the Breuil–Kisin twist I0/I2

0 ⊗R0 (−).
We then define a relative formal group scheme T ]X{1} → X as the PD-envelope of the zero

section of the (twisted) tangent bundle TX{1} of X relatively over R0, i.e., locally on X = Spf(R),

TX{1} := Spf(Sp(Ω1
R{−1})) and T ]X{1} := Spf(ΓR(Ω1

R{−1})∧p ),

where Sp(−) denotes the p-completed symmetric algebra and ΓR(−) denotes the PD-algebra.
From the results of Bhatt–Lurie in [9, 10], we will deduce:

Theorem 1.3 (Theorem 6.20). Any section X → XHT of XHT → X induces an isomorphism

XHT ∼= BXT ]X{1}

of T ]X{1}-gerbes between the Hodge–Tate stack of X and the classifying stack of T ]X{1} over X,
hence a fully faithful functor

D(XHT) ↪→ D(T ∨X {−1}).
Its essential image is given by thoseM∈ D(T ∨X {−1}) for which on any affine open U := Spf(R) ⊆
X, each δ ∈ Ω1,∨

R {1} (seen as a section of T ∨U {−1}) acts locally nilpotently on H∗(U,M⊗LR R/p).

In particular, a splitting of XHT implies that vector bundles on XHT can be described as vector
bundlesM on X together with a Higgs field, i.e., a morphism of vector bundles

θM : M→M⊗OX Ω1
X{−1}

with θM ∧ θM = 0 whose components are topologically nilpotent.

1.3. Globalization. The assumption that XHT is split is rather restrictive, cf. [10, Remark 5.13].
It is satisfied ifX = Spf(R) is affine and smooth over some perfectoid ring R0, c.f. [10, Construction
5.2]. For example, a splitting is induced by the datum of a toric chart for X.

To globalise the construction, we therefore show that the pushout of XHT along a rescaling
map is already split by the datum of a flat lift of X to A0/I

2
0 . The existence of such a lift is a

much weaker condition than that of a prismatic lift. We thus obtain a p-adic Simpson functor for
a considerably weaker datum, at the expense of introducing a stronger convergence conditions on
the Higgs field. Assume that the perfectoid base R0 contains a primitive p-th root of unity ζp ∈ R0.

Theorem 1.4 (Theorem 7.11, Proposition 7.12). Each lift X̃ of X to A0/I
2
0 induces a morphism

ΦX̃ : XHT → BXT ]X{1}, linear over T ]X{1}
1−ζp−−−→ T ]X{1}, that induces a natural equivalence

(1− ζp)∗XHT ∼−→ BXT ]X{1}.

Thus the pullback
Φ∗
X̃

: Perf(BXT ]X{1})→ Perf(XHT)

is fully faithful on isogeny categories.

This will lead to our global version of a derived p-adic Simpson functor for small objects: The
category Perf(BXT ]X{1}) can again be described by Higgs bundles as in Theorem 1.3. Roughly,
the Higgs field gets multiplied by (1 − ζp) under Φ∗

X̃
. Thus, if XHT → X is split, the essential

image of Φ∗
X̃

is given by Higgs perfect complexes (M, θM) with the stronger convergence condition
that 1

(1−ζp)θM is topologically nilpotent. In effect, this means that given an A0/I
2
0 -lift, the local

descriptions of perfect complexes on XHT can be glued after introducing a convergence condition.

1.4. A derived p-adic Simpson correspondence. As a consequence of our analysis of com-
plexes on the Hodge–Tate stack, we get a derived improvement of the previously known p-adic
Simpson correspondence for “small” objects. The starting point of this is Theorem 1.3. Passing
to the isogeny category of perfect complexes on both sides leads to the notion of a Higgs perfect
complex on the generic fibre X . Roughly, this is a perfect complexM on X with a Higgs field

θM : M→M⊗OX Ω1
X {−1}.

The condition describing the essential image generalises to this context: we call a Higgs perfect
complex ω-Hitchin-small if θM is topologically nilpotent, see Definition 6.24. Here: ω = (1−ζp)−1.

Combining Theorems 1.2 and 1.3, we obtain a derived version of a local p-adic Simpson functor:
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Theorem 1.5 (Theorem 6.37). Let X be a smoothoid formal scheme with adic generic fibre X .
Any splitting s : X → XHT (for example induced by a toric chart) induces a fully faithful functor

LSs :

{
ω-Hitchin-small Higgs
perfect complexes on X

}
↪→ Perf(Xv).

Using instead Theorem 1.4, we also get a global derived p-adic Simpson functor. For this we
need to rescale the convergence condition on Higgs fields by a factor of (1− ζp) and arrive at the
stronger notion of a Hitchin-small Higgs perfect complex, see Definition 6.24.

Theorem 1.6 (Theorem 7.13). Each lift X̃ of X to A0/I
2
0 induces a natural fully faithful functor

SX̃ :

{
Hitchin-small Higgs

perfect complexes on X

}
↪→ Perf(Xv).

Since Theorems 1.5 and 1.6 work on the derived level, they in particular include a comparison of
cohomology and an extension of known functors to coherent Higgs modules on X . They furthermore
use a smallness condition which only involves the spectral properties of the Higgs field, contrary to
other instances of the p-adic Simpson correspondence in the literature, e.g. in [17]. We note that
for v-vector bundles, Faltings’ notion of smallness implies Hitchin smallness.

1.5. The arithmetic case. Switching to an arithmetic setup, let us now assume that X is a
qcqs smooth p-adic formal scheme over the ring of integers OK of a p-adic field, i.e. a complete
discretely valued extension K of Qp with perfect residue field. Let C be the completion of an
algebraic closure of K. Let X be the rigid generic fibre of X. Then v-vector bundles on X bear
a relation to p-adic representations of Gal(C|K): For X = Spf(OK), v-vector bundles on X are
equivalent to semi-linear representations of Gal(C|K) on finite dimensional C-vector spaces. For
general X, v-vector bundles thus give rise to p-adic families of Gal(C|K)-representations.

As in §1.2, we start by analyzing complexes on XHT when there exists a global prismatic lift of
X. The natural map XHT → Spf(OK)HT makes the relative Hodge–Tate structure map

πX|OK : XHT → X ×Spf(OK) Spf(OK)HT

into a gerbe banded by the affine, faithfully flat group scheme T ]X|OK{1} overX×Spf(OK)Spf(OK)HT,
cf. [10, Proposition 5.12]. Here, {1} refers to twisting by OSpf(Zp)HT{1}, cf. [9, Example 3.5.2].

Using this, we can describe complexes on XHT by a derived version of Higgs–Sen bundles:

Theorem 1.7 (Theorem 6.31). Assume furthermore that X = Spf(R) is affine and that there
exists a bounded prism (A, I) such that R = A/I. Then the resulting morphism

ρA : X → XHT

is faithfully flat and exhibits XHT ∼= BXGA as the classifying stack of the relative group scheme
GA over X which embeds into the semi-direct product (T ]A|Zp{1} ×Spf(A) Spf(R)) o G]m as the
subgroup of pairs (D : A → G]a{1} = I/I2 ⊗R G]a, x ∈ G]m) with D a continuous derivation such
that D(a) = (1− x)(a⊗ 1) for a ∈ I. Consequently, there exists a natural fully faithful functor

D(XHT) ↪→ ModT ∨
X|OK

{1}(D(OK [Θπ])).

The essential image is given by complexes M which are derived p-complete and such that each
δ ∈ Ω1,∨

X|OK{1} and each Θp
π − E′(π)Θπ act locally nilpotently on H∗(X,M⊗LZp Fp).

Here π ∈ OK is a choice of uniformiser and E(π) ∈W (k)[[u]] is the minimal polynomial of π over
the maximal unramified subextension K0 ofK. Theorem 1.7 then describes vector bundles on XHT

as triples (M, θM,Θπ) whereM is a vector bundle on X, where θM : M→M⊗OX Ω1
X|OK{−1}

is a topologically nilpotent Higgs field, and Θπ : M→M is a Sen operator, such that the diagram

M M⊗OX Ω1
X|OK{−1}

M M⊗OX Ω1
X|OK{−1}θM

θM

Θπ−E′(π)Θπ

commutes. We thus recover the notion of an “enhanced Higgs bundle” of Min–Wang, which they
have used to describe prismatic Hodge–Tate crystals [29, Theorem 4.3]. The latter are equivalent to
vector bundles on XHT via [10, Remark 9.2]. From this perspective, Theorem 1.7 is a generalisation
of this description from vector bundles to the derived category D(XHT).

In Definition 6.32, we define the notion of a Higgs–Sen perfect complex on the rigid generic fiber
X . We also define the subclass of Hitchin-small Higgs–Sen perfect complexes, for which there is a
convergence condition only on the Sen operator. We arrive at an analogue of Theorem 1.6:
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Theorem 1.8 (Theorem 7.14). Let K be p-adic and choose a uniformizer π ∈ OK . Let X = Xrig

for X a qcqs smooth p-adic formal scheme over OK . There exists a natural fully faithful functor

Sπ :

{
Hitchin-small Higgs-Sen
perfect complexes on X

}
↪→ Perf(Xv).

This is more canonical than Theorem 1.4 as there is a canonical choice of a lift: Arguing similarly
to [29], we derive Theorem 1.8 from Theorem 1.6 by using the canonical lift of the base change of X
to O

K̂
. Here, the Higgs field on the base change is automatically nilpotent by Galois equivariance.

1.6. Relation to previous work. The field of p-adic non abelian Hodge theory has seen many
developments in recent years. Let us explain how the previous theorems relate to the recent
literature on the p-adic Simpson correspondence. As the field has become vast, we only give some
pointers to the most directly related works rather than giving an exhaustive account.

(1) [9], [10], [16] have introduced the prismatization of a p-adic formal scheme, and in particular
the theory of Hodge–Tate stacks on which this paper is based. IfX = Spf(Zp), Theorem 1.2
can be deduced from [9, Proposition 3.7.3]. The description of vector bundles on XHT via
Higgs bundles (for X affinoid smoothoid) appears in [10, Corollary 6.6] and in this case
the Cartier theory we use in Theorem 1.7 yields a derived enhancement, which is probably
well-known. If K is p-adic, i.e., k perfect, and unramified, Higgs-Sen bundles and their
relation to XHT are discussed in [10, Remark 9.2].

(2) Similarly, there is a relation to the independent work of Tian on prismatic crystals [37].
The precise connection to our work is furnished by Bhatt–Lurie’s equivalence of prismatic
Hodge–Tate crystals and vector bundles on the Hodge–Tate stack, cf. [10, Theorem 6.5].
Theorem 1.7 is thus a derived version of Tian’s description of prismatic crystals and their
cohomology and as such generalises [37, Thm 4.12, Thm 4.14].

(3) When X is a smooth formal scheme over OC , Theorems 1.5 and 1.6 are closely related to
the local and global p-adic Simpson correspondence of Faltings [17], hence also the related
constructions of Abbes–Gros, Tsuji [1][38], Liu–Zhu [27] and Wang [39]. Indeed, v-vector
bundles are equivalent to Faltings’ generalised representations (cf [21, Prop. 2.3]).

Our p-adic Simpson functors are more general in three different ways: First, we work in a
derived setting with perfect complexes instead of vector bundles. Second, our convergence
condition of Hitchin-smallness encompasses both Faltings’ notion of smallness as well as
the local systems treated by Liu–Zhu. Third, we allow perfectoid families of smooth formal
schemes. In work in progess, we use this to improve from an equivalence of categories to
the more geometric statement of an isomorphism of moduli stacks of small objects.

(4) Our approach to non-abelian p-adic Hodge theory is in some sense a continuation of Abbes–
Gros’ idea of constructing a period sheaf geometrically (using what they call the torsor
of deformations). In our setting, period sheaves play a similar role, but a difference is
arguably that in our setting, their definition immediately suggests itself from the geometry
of XHT: the period sheaves arise as v-sheaves associated to the automorphism group of
splittings of the Hodge–Tate stack and its variants. See Section 7.5 for more details on the
relation of our approach to the ones of Faltings, Abbes–Gros, Liu–Zhu and Wang.

(5) Conceptually, our approach to the p-adic Simpson correspondence is perhaps most closely
related to that of Tsuji [1, IV]: The role that XHT plays in our article in reorganising this
correspondence in a geometric way is reminiscent of the role that the “Higgs site” plays
in Tsuji’s work. The latter is defined in terms of certain systems of Ainf/ξ

n-lifts of X.
Tsuji proves that “Higgs crystals”, certain modules on the Higgs site, correspond to Higgs
bundles with the same convergence condition as the one derived from our Theorem 1.4.

(6) For the arithmetic case of p-adic fields K, closely related results have been obtained by
Tsuji [38, §15] in the algebraic setup, and more recently also in a prismatic setting by
Min–Wang [29], [28], based on the earlier work of Tian [37]. They prove Theorem 1.2 for
vector bundles, including the comparison of cohomology. That being said, our proof of
Theorem 1.2 is different and the extension to perfect complexes is a new contribution.

(7) More generally, our approach is also suitable for Sen theory over discretely valued fields
with imperfect residue field (cf Remark 5.9). This has previously been considered by Brinon
[13], Yamauchi [40], Ohkubo [31], and more recently by Gao [19] and He [20].

(8) In [4], the authors obtained Theorem 1.2 for X = Spf(OK) where K is a p-adic field, and
deduced a description of the whole of Perf(Spa(K)v).

(9) [23] has asked to what extent the p-adic Simpson correspondence generalises from vector
bundles to principal bundles under rigid groups. Our approach is well-suited to study such
generalisations in the case of good reduction, by considering principal bundles on XHT.
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Further to the advantages mentioned above, one benefit of our approach to non-abelian Hodge
theory via XHT is that it is very general: it can in principle be applied to many p-adic formal
schemes without having to set up new machinery in each situation. On the one hand, this allows us
to treat the various setups considered in the literature in a completely uniform way. On the other,
it yields a strategy to construct Simpson/Sen-theoretic functors in new settings in the future.

1.7. Outlook. The results of this paper only deal with the rigid generic fibre of smooth formal
schemes, rather than with arbitrary smooth rigid analytic spaces. This good reduction restriction
comes from the fact that our method relies crucially on Bhatt-Lurie’s Hodge–Tate stacks, a theory
developed for p-adic formal schemes. That being said, without further global assumptions like
properness, the small p-adic Simpson correspondence is inherently a statement about integral
structures and will therefore always impose some conditions on integral models.

Towards a complete answer to Question 1.1, one therefore has to look beyond the small p-adic
Simpson correspondence. Instead, motivated by our results in this article, we hope for the existence
of an “analytic Hodge–Tate stack” XHT attached to any rigid space X that would give the answer
to Question 1.1. This will be the subject of future work of the first and third author.

Another question is how to describe the essential image of the functors Theorems 1.6 and 1.8.
Motivated by [32], we expect that if X is a smooth rigid space over a perfectoid field C, then any
F ∈ Perf(Xv) admits a canonical Higgs field θF : F → F ⊗OX Ω1

X (−1). The essential image of the
functor SX̃ should then be given by those F such that θF satisfies a suitable topological nilpotence
condition. We will study the case of vector bundles in the companion paper [5].

1.8. Plan of the paper. §2-§5 are devoted to the proof of Theorem 1.2. The construction of α∗X
is not difficult and very general, but the proof of fully faithfulness is more involved. We ultimately
reduce it to a computation in group cohomology in §5. Most work is devoted to making a group
action of perfectoid Galois covers explicit, a subtle issue that we address in §3-§4.

Using the local geometry of the Hodge–Tate stack, we then prove Theorems 1.3 and 1.7 in §6.
Putting everything up to this point together, these combine with Theorem 1.2 to give the local
version of our derived p-adic Simpson correspondence at the end of §6.

In order to be able to globalise this, we then explain in §7 how XHT relates to various stacks of
square-zero lifts of X. Based on this discussion, we then prove Theorems 1.6 and 1.8.

Acknowledgements. We would like to thank Bhargav Bhatt, Hui Gao, Tongmu He, Juan Este-
ban Rodríguez Camargo, Peter Scholze, Yupeng Wang, Matti Würthen and Bogdan Zavyalov for
helpful discussions.

The second author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – Project-ID 444845124 – TRR 326.

Notations. We will use the following notations.
(1) Let p be a prime. Let Zcycl

p := Zp[ζp∞ ]∧p and Qcycl
p := Zcycl

p [ 1
p ], the cyclotomic perfectoid

field. We fix a primitive p-th root of unity ζp ∈ Zcycl
p and write ω = (ζp − 1)−1 ∈ Qcycl

p .
(2) If R0 → R is a morphism of p-complete rings, we denote by Ω1

R|R0
the p-completion of the

module of differential forms of R over R0. This glues to define, for any morphism X → X0

of p-adic formal schemes, a sheaf Ω1
X|X0

of p-completed differential forms. Its OX -linear
dual, the tangent sheaf, is denoted by TX|X0

. We use analogous notation for adic spaces.
(3) If X is a p-adic formal scheme, we denote by X� (resp. XHT) the Cartier–Witt stack of X

(resp. the Hodge–Tate locus in the Cartier–Witt stack of X, or Hodge–Tate stack of X),
which is denoted WCartX (resp. WCartHT

X ) in [10, Definition 3.1, Construction 3.7]).
(4) For each (A, I) ∈ (X)� there exists the natural morphism

ρA = ρA,X : Spf(A)→ X�,

cf. [10, Construction 3.10], where X� is denoted by WCartX . We let

ρA : Spf(A/I)→ XHT

be the natural induced morphism to the Hodge–Tate locus.

2. A criterion for fully faithfulness

Let X be a bounded2 p-adic formal scheme. In this section, we make the following assumptions:
(1) X = Spf(R) is affine and R ∼= A/I for some prism (A, I). By §1.8.(4) this induces a map

η := ρA : Spf(R) ∼= Spf(A/I)→ XHT.

2That is locally X ∼= Spf(R) with R having bounded p∞-torsion.
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(2) The group scheme GA of isomorphisms of η is p-completely (faithfully) flat over X.
(3) There exists a perfect prism (A∞, I∞) over (A, I) such that R = A/I → R∞ := A∞/I∞ is

a quasi-syntomic cover (this condition actually implies that X is a bounded).
Furthermore, we set X∞ := Spf(R∞) and let Γ be a profinite group with a continuous right-

action on X∞, such that the morphism f : X∞ → X is Γ-equivariant for the trivial action on X. In
all examples we are interested in, the adic generic fibre X∞ → X of f will be a pro-étale Γ-torsor.

The goal of this section is first to construct a natural functor

Perf(XHT)[ 1
p ]→ Perf([X∞/Γ])[ 1

p ],

and then to derive a useful criterion, Assumption 2.2, which guarantees that this is fully faithful.

AsX∞ is perfectoid, we haveX∞ ∼= XHT
∞ and hence f : X∞ → X lifts canonically to a morphism

f̃ : X∞ → XHT. More precisely, we have f̃ = ρA∞ . Our assumptions now imply that there exists
a 2-commutative diagram

X

X∞

XHT

η

f

f̃

and thus the two morphisms f̃ and η ◦ f are isomorphic in XHT(X∞). We deduce:

Lemma 2.1. (1) The morphism η : X → XHT is affine and p-completely faithfully flat.
(2) The morphism f̃ is affine and p-completely faithfully flat.

Proof. We first show that η : X → XHT is a surjection for the flat topology. This may be checked
for f̃ : X∞ → XHT instead. As X∞ → X is quasi-syntomic by assumption, we can deduce from
[10, Lemma 6.3] that fHT : XHT

∞ → XHT is surjective in the flat topology, and the statement
follows because X∞ ∼= XHT

∞ . As GA is p-completely faithfully flat over X, we can conclude now
that the morphism X → XHT is p-completely flat. This implies that f̃ is p-completely flat because
f̃ ∼= η ◦ f and f is quasi-syntomic. That η is affine follows by base-change from the fact that
ρA : Spf(B)→WCartX is affine by [9, Corollary 3.2.9]. This finishes the proof. �

We can conclude that BXGA := [X/GA] ∼= XHT via η. Consider the n-fold fibre product

X(n) := X ×XHT . . .×XHT X, Z(n) := X∞ ×XHT X(n)

for n ≥ 1 so that X = X(1). Set Z := Z(1) ∼= X∞ ×XHT X. Note that Z is a Γ-equivariant
GA-torsor over X∞. Let ηn : X(n) → XHT be the projection. Then for n ≥ 2 we have

X(n) ∼= GA ×X . . .×X GA, Z(n) ∼= Z ×X GA ×X . . .×X GA,

where the fibre products are (n − 1)-fold. The second isomorphism is Γ-equivariant if Γ acts via
the natural action on Z and trivially on the each GA. For n ≥ 1 we get a Cartesian diagram

Z(n) X(n)

X∞ XHT.

hn ηn

f̃

f̃n

where hn is the projection to the first factor. By Lemma 2.1, Z = Spf(B+
A,R∞

) for some p-adically
complete, p-completely faithfully flat R∞-algebra B+

A,R∞
. There are a right action by Γ and a left

action by GA which makes Z into a torsor over X∞ = Spf(R∞). These actions induce on B+
A,R∞

a
continuous, R∞-semilinear left action by Γ, and a right action by GA, and these actions commute.

We also set
BA,R∞ := B+

A,R∞
[ 1
p ].

We nowmake the following crucial assumption in whichRΓ(Γ,−) refers to continuous Γ-cohomology,
defined as the cohomology of the formal stack [Spf(Zp)/Γ]. Equivalently, this can be computed via
the bar complex of Γ with continuous cochains. In our applications, Γ will always be ∼= Zdp or a
semi-direct thereof, hence for any bounded complex K, the cohomology RΓ(Γ,K) will be bounded.

Assumption 2.2. The cofiber of R→ RΓ(Γ, B+
A,R∞

) is bounded and killed by pi for some i ≥ 1.

As the morphism f̃ : X∞ → XHT is Γ-equivariant (by naturality of the Hodge–Tate stack), it
factors over a map

β := [f̃/Γ] : [X∞/Γ]→ XHT

over the stack quotient [X∞/Γ] (for the fpqc-topology). Here, Γ refers to the affine formal group
scheme Spf(C(Γ, R∞)) over X∞ where C(Γ, R∞) is the R∞-algebra of continuous maps Γ→ R∞.
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Proposition 2.3. Under Assumption 2.2, the cofibre of the natural map

OXHT → Rβ∗O[X∞/Γ]

is killed by pi for some i ≥ 1.

Proof. Using the Čech nerve for the covering [Z/Γ]→ [X∞/Γ] we see that

O[X∞/Γ]
∼= lim←−∆

[hn/Γ]∗O[Z(n)/Γ].

⇒ Rβ∗(O[X∞/Γ]) = lim←−∆
Rβ∗[hn/Γ]∗(O[Z(n)/Γ]).

We have a commutative diagram

[Z(n)/Γ] X(n)

[X∞/Γ] XHT

[hn/Γ]

β

βn

ηn

and thus
Rβ∗[hn/Γ]∗(O[Z(n)/Γ]) ∼= ηn,∗Rβn,∗(O[Z(n)/Γ]),

where we used that ηn is affine. Now we use that

Z(n) ∼= Z ×X X(n) ∼= Spf(B+
A,R∞

⊗̂RO(X(n))).

Since GA → X is p-completely faithfully flat by Lemma 2.1, the same is true for X(n) → X. We
may thus apply Lemma 2.4 below to deduce:

Rβn,∗(O[Z(n)/Γ]) = RΓ(Γ,OZ(n)) ∼= RΓ(Γ, B+
A,R∞

)⊗̂LROX(n) .

Assumption 2.2 and the assumption that OXn is p-completely flat over R now imply that the
cofiber of the natural map

OXn → Rβn,∗(O[Zn/Γ])

is bounded independently of n and killed by pi for some i independent of n. Thus the cofiber of

OXHT
∼= lim←−∆

ηn,∗OXn → lim←−∆
ηn,∗Rβn,∗(O[Zn/Γ]) ∼= Rβ∗O[X∞/Γ]

is killed by pj for the same j ≥ 1, as the homotopy witnessing that pi on the cofiber Kn is ∼= 0 is
induced by the homotopy on K0, hence is compatible with the morphisms in the inverse limit.

It follows from this that if we denote by K the object of Db(XHT) = Db([X/GA]) = Db
GA

(R)

associated to RΓ(Γ, B+
A,R∞

) with its GA-action induced from the GA-action on B+
A,R∞

, then

Rβ∗O[X∞/Γ]
∼= lim←−∆

ηn,∗Rβn,∗(O[Z(n)/Γ]) = RΓ(GA, B
+
A,R∞

)

where the latter is the “group cohomology of GA” computed by the bar complex of GA. In order
to show that the cofiber of the natural map from

OXHT
∼= lim←−∆

ηn,∗OXn ∼= RΓ(GA,OX)

is killed by pj for some j ≥ 0, it therefore suffices to show that the map OX → B+
A,R∞

has pj-torsion
cofiber K ′ inside Db

GA
(R). To see this, we invoke Assumption 2.2 to conclude that pi = 0 on the

cohomology groups of K ′. Since K ′ is bounded, it follows that there is j ≥ 0 such that pj = 0 on
K ′: For example, this can be seen from RHom(K ′,K ′)⊗Z Z[ 1

p ] = RHom(K ′,K ′ ⊗Z Z[ 1
p ]) = 0. �

In the proof, we have used the following lemma, which is essentially a projection formula.

Lemma 2.4. For any M ∈ Db([Spf(R)/Γ]) and any p-complete and p-completely flat R-module
N , the following natural map is an isomorphism:

N⊗̂LRRΓ(Γ,M)→ RΓ(Γ, N⊗̂LRM).

Here we see Γ as the pro-finite group scheme Spf(C(Γ, R)) relatively over R.

Proof. The continuous group cohomology RΓ(Γ,M) can be calculated via the double complex

M →M⊗̂LRC(Γ, R)→M⊗̂LRC(Γ, R)⊗̂LRC(Γ, R)→ . . .

with uniformly bounded columns. Similarly, RΓ(Γ, N⊗̂LRM) is calculated by the double complex

N⊗̂LRM → N⊗̂LRM⊗̂
L
RC(Γ, R)→ N⊗̂LRM⊗̂

L

RC(Γ, R)⊗̂LRC(Γ, R)→ . . . .

which has again uniformly bounded columns by p-completeness and p-complete flatness ofN . Thus,
for a fixed cohomological degree, only finitely many columns contribute, and thus the statement
follows from exactness of the functor N⊗̂R(−) on p-complete complexes of R-modules. �
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Corollary 2.5. Let E ∈ Perf(XHT) be a perfect complex. Then under Assumption 2.2, the map

RΓ(XHT, E)→ RΓ([X∞/Γ], β∗E)

has cofiber killed by pi for some i ≥ 1.

Proof. By the projection formula, we have Rβ∗(β∗E) ∼= E⊗̂LOXHT
Rβ∗(O[X∞/Γ]). Let K be the

cofiber of OXHT → Rβ∗(O[X∞/Γ]), then it suffices to see that RΓ(XHT, E⊗̂LOXHT
K) is killed by pi.

But this follows from our assumption by Proposition 2.3. �

Proposition 2.6. Under Assumption 2.2, the following functor is fully faithful:

β∗[ 1
p ] : Perf(XHT)[ 1

p ]→ Perf([X∞/Γ])[ 1
p ]

Here, the (−)[ 1
p ] refers to the isogeny category, i.e., the ∞-category with the same objects but

RHom-complexes tensored with Qp.

Proof. This follows from Corollary 2.5 because perfect complexes are dualizable and hence mor-
phisms between them can be calculated via cohomology. �

Next, we reinterpret Proposition 2.6 via the v-site Xv of the adic generic fibre X of X. Recall
that Xv is the category of analytic perfectoid spaces T over X endowed with v-topology, i.e. the
Grothendieck topology generated by surjections between affinoid perfectoid spaces. Let Xv,affd be
the full subcategory with T affinoid perfectoid. Note that this does not change the v-topos of X .

If T = Spa(B,B+) ∈ Xv is affinoid perfectoid, then B+ is a perfectoid ring and the natural
morphism Spf(B+) → Spf(R) lifts canonically to a morphism Spf(B+) → XHT. Pulling back a
perfect complex along this morphism and then tensoring with B (i.e. inverting p) yields a functor

α+,∗
X : Perf(XHT)→ lim←−

Spa(B,B+)∈Xv,affd

Perf(B).

By v-descent for perfect complexes on perfectoid spaces, cf. [6, Theorem 2.1], the inverse limit
identifies with the category of perfect complexes on the ringed site (Xv,O) for the structure sheaf
O defined by T 7→ O(T ). Formally inverting p, i.e. passing to isogeny categories, yields a functor

α∗X : Perf(XHT)[ 1
p ]→ Perf(Xv).

Proposition 2.7. Assume that the Γ-action on X∞ makes the adic generic fibre X∞ → X into a
pro-étale Γ-torsor and that Assumption 2.2 holds. Then α∗X is fully faithful.

Proof. Let S∞ := O(X∞) and S+
∞ = O+(X∞). By v-descent of perfect complexes on perfec-

toid spaces it suffices to show that the functor from perfect complexes on XHT to the category
PerfΓ(S∞) of perfect complexes over S∞ with a continuous Γ-action3 is fully faithful. The functor

PerfΓ(S+
∞)[ 1

p ]→ PerfΓ(S∞)

is fully faithful by an argument similar to the proof of Proposition 2.6. Now R∞ → S+
∞ has cofiber

killed by some pn as the p∞-torsion in R∞ is bounded and both R∞/torsion and S+
∞ define lattices

in the Banach space S∞. This implies that the functor

PerfΓ(R∞)[ 1
p ]→ PerfΓ(S+

∞)[ 1
p ]

is fully faithful. Now, clearly the functor Perf(XHT)[ 1
p ] → PerfΓ(S∞) factors over the functor

β∗[ 1
p ] : Perf(XHT)[ 1

p ]→ PerfΓ(R∞)[ 1
p ]. By Proposition 2.6 we can conclude. �

Remark 2.8. Since quasi-syntomic covers X → Y of bounded p-adic formal schemes give rise
to surjections XHT → Y HT for the flat topology ([10, Lemma 6.3]), one may hope to prove
Theorem 1.2 by quasi-syntomic descent. But if X = Spf(R) is quasi-regular semiperfectoid, XHT =

Spf(�R), while the diamond of X is Spd(Rperfd[ 1
p ], Rperfd). Hence the functor α∗X will not be fully

faithful for such an X in general.4 This is why we will rather prove fully faithfulness in the
smoothoid and arithmetic cases via Proposition 2.7, by verifying the assumption that the (higher)
Galois cohomology of a certain geometrically defined period ring, namely BA,R∞ = B+

A,R∞
[ 1
p ], is

trivial.

3This notion can for example be defined via solid mathematics, or by considering the Čech nerve X∞ × Γ•.
4If R is quasi-regular semi-perfectoid, p-torsionfree and non-reduced, e.g. R = OCp 〈T 1/p∞ 〉/(T ), then �R[ 1

p
] is

non-reduced as well. On the other hand, Rperfd[ 1
p

] is reduced, which makes it impossible for α∗X to be fully faithful.
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In order to verify that Assumption 2.2 holds in all situations of interest to us, we will use stability
properties of Proposition 2.7 resp. Assumption 2.2 under ind-p-completely étale extensions R→ R′

which we now discuss. Since δ-structures lift uniquely to ind-étale extensions by [12, Lemma 2.18],
R→ R′ lifts uniquely to a morphism (A, I)→ (A′, I ′) of prisms. We can set A′∞ := A∞⊗̂AA′ and
I ′∞ := I∞A

′
∞ with its induced continuous Γ-action. Note that R′∞ is again perfectoid.

Lemma 2.9. If Assumption 2.2 holds for (R,A,R∞, A∞,Γ), then it holds for (R′, A′, R′∞, A
′
∞,Γ).

Proof. As X ′ := Spf(R′)→ X is ind-p-complete étale, the natural map X ′,HT → XHT×XX ′ is an
isomorphism, cf. [10, Remark 3.9] or Lemma 2.10 below. This implies the claim by Lemma 2.4. �

Lemma 2.10. Let Z → Y be a smooth map of bounded p-adic formal schemes. Then

πZ|Y : ZHT → Y HT ×Y Z

is a gerbe banded by the flat affine formal group scheme T ]Z|Y {1} given by the twist of T ]Z|Y :=

Spf(Γ•OZ (Ω1
Z|Y )∧p) by the pullback of the line bundle OSpf(Zp)HT{1} from [9, Example 3.5.2].

Proof. The argument of [10, Proposition 5.12] applies here as well. �

There is another stability property of Assumption 2.2. Namely, assume that there exists a perfect
prism (A0, I0) with a morphism (A0, I0)→ (A, I) such that the Γ-action on A∞ is A0-linear. Now
let (A0, I0)→ (B0, J0) be a morphism with (B0, J0) another perfect prism.

Lemma 2.11. Assume Assumption 2.2 holds for (R,A,R∞, A∞,Γ). Assume that the natural map

(X ×Spf(A0/I0) Spf(B0/J0))HT → XHT ×Spf(A0/I0) Spf(B0/J0)

is an isomorphism, for example this happens if X → Spf(A0/I0) is p-completely smooth. Then
Assumption 2.2 holds for the data (R⊗̂A0/I0B0/J0, A⊗̂A0

B0, R∞⊗̂A0/I0B0/J0, A∞⊗̂A0
B0,Γ). If

(A0, I0)→ (B0, J0) is p-completely faithfully flat, then the converse holds.

Proof. This follows again from Lemma 2.4. �

Lastly, we explain how Theorem 1.2 can be localized on X.

Lemma 2.12. In the setup of Theorem 1.2 assume that X = ∪ni=1Xi with Xi ⊆ X affine open.
Assume that Theorem 1.2 holds for Xi and all their intersections. Then Theorem 1.2 holds for X.

Proof. Let E ,F ∈ Perf(XHT). We have to check that the morphism

RHomPerf(XHT)(E ,F)→ RHomPerf(Xv)(α
+,∗
X E , α

+,∗
X F)

has cofiber K killed by pm for some m ≥ 1. As X is qcqs this can be checked after pullback along∐n
i=1Xi → X. Namely, RHomD(Zp)(K,K) can be calculated as a finite limit of the cofibers KY of

RHomPerf(Y HT)(E ,F)→ RHomPerf(Y rig
v )(α

+,∗
Y E , α

+,∗
Y F),

where Y runs through the finite intersections of the Xi’s. We may choose m ≥ 1 large enough such
that pmKY = 0 for all Y . Now a finite limit in D(Z) of complexes of Z/pm-modules is a complex of
Z/pm′-modules for some m′ ≥ m as follows by considering finite products and fiber sequences. �

3. Explicit naturality for the prismatization

The goal of this section is to make explicit some group actions on the Hodge–Tate stack coming
from its functorial nature, which will be important for checking Assumption 2.2 in practice.

3.1. Explicit naturality. Let R be a p-complete ring with bounded p∞-torsion and X := Spf(R).
Let (A, I) ∈ (X)� and consider the morphism from §1.8.(4)

ρA : Spf(A/I)→ XHT.

Our aim in this section is to make explicit how this behaves with respect to morphisms in (X)�.
In order to make certain morphisms of animated rings concrete, we fix a surjection F → R by

a free polynomial algebra. Let a := ker(F → R). For (A, I) ∈ (X)� we assume that there exists
a lift of the structure morphism ιA : R → A/I to a morphism ι̃A : F → A of rings. We can then
make ρA explicit: let f : A → S be a morphism with S a p-complete ring and g : A → W (S) the
lift induced by the δ-structure. The base change of I → A along g defines the Cartier-Witt divisor

(I ⊗A,g W (S)
α−→W (S))

for S, and together with the natural composition R
ιA−→ A/I

g−→ cone(α) this yields the point
ρA(f) ∈ X�(S). More explicitly, the composition g ◦ ιA can be represented by the diagram
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a I I ⊗A,g W (S)

F A W (S),

ι̃A x 7→x⊗1

α

gι̃A

where each column represents the respective animated ring.

Construction 3.1. Let ϕ : (A, I)→ (B, J) be a morphism in (X)�, then the diagram

Spf(B) Spf(A)

X�

ϕ∗

ρB ρA

commutes naturally, i.e., in the groupoid X�(B) there exists a natural isomorphism

canϕ : ρA ◦ ϕ∗ → ρB .

We now make canϕ explicit: We may assume that R→ B has a lift ι̃B : F → B. Let ϕ : A/I → B/J
be the reduction of ϕ, then the requirement that ϕ is a morphism of R-algebras yields the homotopy

hϕ : F → J, s 7→ ϕ ◦ ι̃A(s)− ι̃B(s).

If f : B → S is a morphism and g : B → W (S) its natural lift, then the point ρA(ϕ∗(f)) =

ρA(ϕ ◦ f) ∈ X�(S) can be represented by the commutative diagram

a I I ⊗A,g◦ϕW (S)

F A W (S),

ι̃A x 7→x⊗1

α

g◦ϕι̃A

where the implicit Cartier-Witt divisor is the rightmost column. On the other hand, the element
ρB(f) ∈ X�(S) can be represented by the diagram

a J J ⊗B,g W (S)

F B W (S).

ι̃B x 7→x⊗1

β

gι̃B

Define the isomorphism

Φϕ : I ⊗A,g◦ϕW (S) ∼−→ J ⊗B,g W (S), i⊗ w 7→ ϕ(i)⊗ w,

which yields the isomorphism of Cartier-Witt divisors

I ⊗A,g◦ϕW (S) J ⊗B,g W (S)

W (S) W (S).

Φϕ

βα

Id

This defines the first part of data for canϕ. Let Φ′ϕ : cone(α)→ cone(β) be the induced isomorphism
of animated rings. The second datum is the isomorphism of the two morphisms of animated rings

R
ιA−→ A/I

g◦ϕ−−→ cone(α)
Φ′ϕ−−→ cone(β) and R

ιB−→ B/J
g−→ cone(β)

constructed as follows: We combine the morphism (R
ιA−→ A/I) → (R

ιB−→ B/J) coming from
the equality ιB = ϕ ◦ ιA (of morphisms of usual rings) with the natural isomorphism between

A/I
g◦ϕ−−→ cone(α)

Φ′ϕ−−→ cone(β) and A/I
ϕ−→ B/J

g−→ cone(β) witnessed by the following cube:

(1)

I ⊗A,g◦ϕW (S) J ⊗B,g W (S)

I J

W (S) W (S)

A B

α

Φϕ

β

Id

ϕ
g
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Explicitly, we seek a homotopy for the morphisms of complexes given by the outer columns of

a I I ⊗A,g◦ϕW (S) J ⊗B,g W (S)

F A W (S) W (S)

ι̃A g◦ϕ Φϕ

ι̃A

α

g◦ϕ Id

β and
a J J ⊗B,g W (S)

F B W (S).

ι̃B g

β

ι̃B g

Now the homotopy

(2) h′ϕ : F → J ⊗B,g W (S), x 7→ hϕ(x)⊗ 1

does what we want as hϕ witnesses the equality ιB = ϕ ◦ ιA. We can now set canϕ = (Φϕ, h
′
ϕ). �

Definition 3.2. If ϕ,ψ : (A, I)→ (B, J) are two morphisms in (X)�, then from the diagram

Spf(B)

Spf(A) Spf(A)

X�

ψ∗

ρB

ϕ∗

ρA

canψ

ρA

canϕ

we obtain a natural isomorphism

γϕ,ψ := (Φϕ,ψ, h
′
ϕ,ψ) := can−1

ψ ◦ canϕ : ρA ◦ ϕ∗ → ρA ◦ ψ∗.

Using Construction 3.1, we can make γϕ,ψ explicit. For this let f : B → S be a morphism to a
p-complete ring S, and g : B →W (S) its natural lift. The part of γϕ,ψ (more precisely, its pullback
along Spf(S)→ Spf(B/J)) acting on the Cartier-Witt divisor is induced by the composition

Φϕ,ψ = Φ−1
ψ ◦ Φϕ : I ⊗A,g◦ϕW (S)

Φϕ−−→ J ⊗B,g W (S)
Φ−1
ψ−−−→ I ⊗A,g◦ψ W (S),

yielding the isomorphism

I ⊗A,g W (S) I ⊗A,g◦ψ W (S)

W (S) W (S)

Φϕ,ψ

α

Id

α′

of Cartier-Witt divisors. We get the induced isomorphism

Φ′ϕ,ψ : cone(α) ∼−→ cone(α′)

of animated rings. The following is the main computation of this subsection:

Lemma 3.3. Assume that I is generated by some distinguished element ξ ∈ A, that f : B → S
factors over B/J , and that ϕ = ψ agree as maps A/I → B/J . Set

uϕ,ψ,ξ := ϕ(ξ)
ψ(ξ) ∈ B

×.

Then γϕ,ψ = (Φϕ,ψ, h
′
ϕ,ψ) : ρA ◦ ϕ∗ → ρA ◦ ψ∗ is given explicitly by the isomorphism

Φϕ,ψ : I ⊗A,g W (S)→ I ⊗A,g◦ψ W (S), aξ ⊗ w 7→ aξ ⊗ g(uϕ,ψ,ξ)w

and the homotopy

h′ϕ,ψ : F → J ⊗B,g W (S), x 7→ ξ ⊗ g
(ϕ(ι̃A(x))−ψ(ι̃A(x))

ψ(ξ)

)
.

Proof. Since I = ξA, we know that J = ϕ(ξ)B = ψ(ξ)B and ϕ(ξ), ψ(ξ) are distinguished elements
as ϕ,ψ are morphisms of prisms. The assumptions that f factors over B/J and ϕ = ψ imply that
g ◦ ϕ = g ◦ ψ. We can therefore compute Φϕ,ψ = Φ−1

ψ ◦ Φϕ as follows: For a ∈ A,w ∈W (S),

Φ−1
ψ ◦ Φϕ(aξ ⊗ w) =Φ−1

ψ (ϕ(aξ)⊗ w) = Φ−1
ψ (ϕ(ξ)⊗ g(ϕ(a))w) = Φ−1

ψ (ψ(ξ)⊗ g(ψ(a))g(uϕ,ψ,ξ)w)

=Φ−1
ψ (ψ(a)ψ(ξ)⊗ g(uϕ,ψ,ξ)w) = aξ ⊗ g(uϕ,ψ,ξ)w

as desired. The second part of data of γϕ,ψ is an isomorphism of the two compositions

(3) R
ιA−→ A/I

g◦ϕ−−→ cone(α)
Φ′ϕ,ψ−−−→ cone(α′) and R

ιA−→ A/I
g◦ψ−−→ cone(α′).

In order to compute this, we first consider the isomorphism between the compositions

(4) R
ιA−→ A/I

g◦ϕ−−→ cone(α)
Φ′ϕ−−→ cone(β) and R

ιA−→ A/I
g◦ψ−−→ cone(α′)

Φ′ψ−−→ cone(β)

defined by identifying both with R ιB−→ B/J
g−→ cone(β) via the previously described second parts

of canϕ, canψ. Using (2), the isomorphism between the morphisms in (4) is given by the homotopy

h′ϕ − h′ψ : F → J ⊗B,g W (S), x 7→ (hϕ(x)− hψ(x))⊗ 1,
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and we compute that for any x ∈ F , we have

hϕ(x)− hψ(x) =
(
ϕ ◦ ι̃A(x)− ι̃B(x)

)
−
(
ψ ◦ ι̃A(x)− ι̃B(x)

)
= ϕ ◦ ι̃A(x)− ψ ◦ ι̃A(x)

⇒ h′ϕ(x)− h′ψ(x) = (ϕ ◦ ι̃A(x)− ψ ◦ ι̃A(x))⊗ 1 = ϕ(ξ)⊗ g
(ϕ◦ι̃A(x)−ψ◦ι̃A(x)

ϕ(ξ)

)
To get the isomorphism between the maps in (3), we apply Φ−1

ψ : J ⊗B,gW (S)→ I ⊗A,g◦ψW (S):

Φ−1
ψ ◦ (h′ϕ(x)− h′ψ(x)) = ξ ⊗ g(uϕ,ψ,ξ)g

(ϕ(ι̃A(x))−ψ(ι̃A(x))
ϕ(ξ)

)
= ξ ⊗ g

(ϕ(ι̃A(x))−ψ(ι̃A(x))
ψ(ξ)

)
. �

Remark 3.4. Base changing γϕ,ψ : ρA ◦ ϕ∗ → ρA ◦ ψ∗ from Lemma 3.3 to XHT → X� yields a
natural isomorphism γϕ,ψ : ρA ◦ ϕ ∼−→ ρA ◦ ψ of morphisms Spf(B/J) → XHT. If ϕ = ψ, this is
an automorphism. If f : B → S is a morphism factoring over B/J , then Lemma 3.3 makes the
pullback of γϕ,ψ along Spf(S)→ Spf(B/J) explicit in the case that I = ξA.

Remark 3.5. The formulas in Lemma 3.3 are independent of the auxiliary choice of F in the
following sense: If κ : F ′ → F is some morphism such that F ′ → R is still surjective, then one
checks that the formulas agree after replacing ι̃A by ι̃A ◦ κ. Note that if A/I = R, then we can
in all calculations actually take F = A with its natural surjection to R and ι̃A = IdA. This will
be the only case we are interested in. We chose the presentation involving a general F in order to
simplify the exposition of the subtle isomorphisms between morphisms of animated rings. Namely,
if A = F then we could take ι̃A = IdA and ι̃B = ϕ. However, when discussing canψ we could not
change from ι̃B = ϕ to ι̃B = ψ, but we have to take the same ι̃B for canϕ and canψ.

3.2. Automorphisms of ρA. Let (A, I) be a prism. Set R := A/I and X := Spf(R). In this
section we want to understand the group sheaf of automorphisms

GA := Aut(ρA)

of ρA : Spf(A/I)→ XHT more explicity. We follow [10, Construction 9.4], and generalize it slightly
to allow non-noetherian rings like OC〈T±1〉 for C a complete algebraically closed extension of Qp.

Let S be a p-complete R-algebra. We recall that for any two objects

(J
α−→W (S), R

ι−→ cone(α)) and (J ′
β−→W (S), R

ι′−→ cone(β)) ∈ X�(S),

an isomorphism between these is given by a pair (γ1, γ2) of an isomorphism γ1 : J ∼−→ J ′ of W (S)-
modules such that α = β ◦ γ1, and an isomorphism γ2 (from left to right) of the two morphisms

R
ι−→ cone(α)

γ1−→ cone(β), R
ι′−→ cone(β)

of animated rings. Here, γ1 is the isomorphism of animated rings induced by γ1.
We now describe γ1, γ2 more explicitly. We first recall from [9, 3.4.9] the formal group scheme

G]m := Spf(Zp〈( (t−1)n

n! )n∈N〉)
given by the p-completed PD-hull of Gm with respect to the ideal defined by the identity section.
Similarly, we recall from [9, 3.4.12] the formal group scheme defined analogously for Ga:

G]a := Spf(Zp〈(x
n

n! )n∈N〉)

The relevance of G]m and G]a is that there are natural isomorphisms of formal group schemes

(5) W [F ]× ∼−→ G]m and W [F ] ∼−→ G]a
defined by the projection to the first component by [9, 3.4.11, 3.4.12]. Moreover:

Lemma 3.6. Let (J
β−→W (S)) ∈ ZHT

p (S) be any Cartier–Witt divisor.

(1) The multiplication action of W×[F ] on J yields via (5) an isomorphism between G]m and

T 7→ Aut(J ⊗W (S) W (T )
β⊗1−−−→W (T )) ∈ ZHT

p (T ).

considered as a group sheaf on the category of p-complete S-algebras.
(2) We have ker(β) = J ⊗W (S) W [F ](S). For β ∈ Spf(R)HT(S), this identifies via (5) with

ker(β) = I/I2 ⊗A G]a(S).

Proof. For part (1), given x ∈ W×[F ](T ), we claim that we have x · β = β. Indeed, this equality
can be checked fpqc-locally on T , and Zariski-locally on T we know that β identifies with the
multiplication by V (u) for some u ∈ W (T )×. Then xV (u) = V (F (x)u) = V (u) as desired. Hence
there is a natural map from G]m to the group sheaf in question. This is an isomorphism: As J is
an invertible W (S)-module, any automorphism is given by multiplication by some x ∈W (T ) such
that x · β = β, and by the above computation we deduce F (x) = 1 from injectivity of V .
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For part (2), the first statement can again be checked fpqc-locally on S, so we may assume
that β identifies with multiplication by V (u) for some u ∈ W (S)×. This morphism has kernel
W [F ](S) because u is a unit and V injective. For the second statement, we note that the W (S)-
action on W [F ](S) factors over S = W (S)/V (W (S)) and A→ S factors over R. This shows that
J ⊗W (S) W [F ](S) = I ⊗AW [F ](S) ∼= I/I2 ⊗RW [F ](S). Now use (5). �

Let f : A→ A/I ∼= R→ S be the composition and g : A→W (S) its natural lift. The action of
GA on the Cartier-Witt divisor (I ⊗AW (S)

α−→W (S)) yields by Lemma 3.6.1 a homomorphism

π : GA → G]m = W×[F ].

For γ = (γ1, γ2) ∈ GA this yields a more explicit understanding of γ1.
We now turn to a description of γ2. Set x := π(γ) ∈W×[F ](S). By construction, the maps

R→ cone(α)
γ1−→ cone(α) and R→ cone(α)

are induced by the commutative diagrams

I I ⊗A,g W (S)

A W (S)

i 7→i⊗x

g

α and
I I ⊗A,g W (S)

A W (S).

i 7→i⊗1

g

α

An isomorphism γ2 from left to right is then a p-adically continuous homotopy D : A→ I⊗AW (S).
We can now describe precisely which such pairs (γ1, γ2) define elements of GA.

Lemma 3.7. The group sheaf GA identifies naturally with the sheaf

S 7→
{

(x,D) ∈ G]m(S)×DerZp(A,G]a{1}(S))
∣∣∣ D(a) = (x− 1)(a⊗ 1) for a ∈ I

}
where DerZp denotes the (p, I)-adically continuous derivations. The group structure is given by

(x′, D′) · (x,D) := (x′ · x,D′ · x+D).

The action of (x,D) on (I ⊗A W (S)
α−→ W (S), R → cone(α)) is via multiplication with x on

I ⊗AW (S) and by the homotopy D : A→ I ⊗AW [F ](S).

Proof. Write F for the displayed sheaf, then the above discussion yields a natural map GA → F :
Indeed, as α◦D = g−g = 0, the mapD factors through ker(α) = I⊗AW [F ](S) ∼= I/I2⊗RW [F ](S)
by Lemma 3.6.2. Thus, D is even (p, I)-adically continuous. The fact that γ2 is an isomorphism
of two morphisms of animated rings implies that D : A → I ⊗AW [F ](S) is actually a (Zp-linear)
derivation. The requirement that D is a homotopy from left to right means that for all a ∈ I,

D(a) = a⊗ x− a⊗ 1 = (x− 1)(a⊗ 1).

We thus get the desired map GA → F . Conversely, any (p, I)-adically continuous derivation
D : A→ I⊗AW [F ](S) satisfying the above equation defines a homotopy D which naturally yields

an isomorphism between the morphisms R → cone(α)
γ′1−→ cone(α) and R → cone(α) of animated

rings, cf. [14, Section 5.1.8]. Hence the map GA → F is an isomorphism.
For the group structure, it is clear from Lemma 3.6.1 that the projection to the first factor is a

group homomorphism. To compute the effect of the group structure on the homotopy, note that
the isomorphism R→ cone(α) underlying (x′, D′) · (x,D) · α is given by

R→ cone(α)
x−→ cone(α)

x′−→ cone(α).

The isomorphism of this to R→ cone(α) defined by (x′, D′) · (x,D) is the composition
I I ⊗W (S) I ⊗W (S) I ⊗W (S)

A W (S) W (S) W (S)

x x′

Id Id

→

I I ⊗W (S) I ⊗W (S)

A W (S) W (S)

x

Id

→

I I ⊗W (S)

A W (S)


where the first morphism is induced by D′ and the second by D. By commuting the order of x
and x′ in the first diagram, we see that the first arrow is the composition of (D′, x′) with x, which

corresponds to the homotopy A D′−−→ I⊗W (S)
x−→ I⊗W (S). Thus the composition is D′x+D. �

Definition 3.8. For any R-moduleM , we denote by ΓR(M) the p-completed PD-hull of Sym•R(M)
with respect to the ideal generated by M . For example, we could write G]a as Spf(ΓR(R · x)).
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Consider ΓR(Ω̂1
A|Zp ⊗AR) where Ω̂1

A|Zp are the (p, I)-completed differentials of A over Zp. Then
the functor S 7→ DerZp,cont(A,G]a{1}(S)) = HomR(Ω̂1

A|Zp ⊗A R,G
]
a{1}(S)) is represented by

T ]A|Zp{1} ×Spf(A) Spf(R) := Spf(ΓR(Ω̂1
A|Zp ⊗A R{−1})).

From Lemma 3.7, we deduce as in [10, Construction 9.4] that

GA ⊆ (T ]A|Zp{1} ×Spf(A) Spf(R)) oG]m,

where the semidirect product is formed with respect to the natural rescaling action of G]m on
T ]A|Zp{1} ×Spf(A) Spf(R). Here and in the following, we now swap the order of γ1, γ2 to align with
the convention of writing semi-direct products in such a way that the normal subgroup comes first.

Proposition 3.9. The projection GA → T ]A|Zp{1} ×Spf(A) Spf(R), (D,x) 7→ D is an isomorphism
of sheaves on p-complete R-algebras. In particular, GA is representable by a formal group scheme
over R. The group structure on GA transfers to the operation for D,D′ ∈ T ]A/Zp{1}×Spf(A) Spf(R)

D′ ∗D := D′ +D + D(I)
I⊗1 D

′,

where D(I)
I⊗1 ∈ G]a is the unique element which Zariski-locally where I = ξA is given by D(ξ)

ξ⊗1 .

Proof. For (D,x) ∈ GA we have x(a ⊗ 1) = a ⊗ 1 + D(a) for all a ∈ I by Lemma 3.7. As
I is invertible, this determines x uniquely by D. More precisely, assume that I = (ξ) and let
λ ∈ A×. Then D(λξ) = λD(ξ)+ξD(λ) = λD(ξ) because the A-module structure on G]a{1} factors
over R = A/ξ. This implies that D(I)

I⊗1 := D(ξ)
ξ⊗1 = D(λξ)

λξ⊗1 is independent of the choice of ξ and

hence glues to an element in G]a. Now, x = 1 + D(I)
I⊗1 ∈ G]m is uniquely determined by D, namely

x(ξ⊗1) = D(ξ)+ξ⊗1 implies x = D(ξ)
ξ⊗1 +1. The group structure (D′, x′) ·(D,x) = (D+x ·D′, x′x)

from Lemma 3.7 then gives the desired description D′ ∗D = D +D′ + D(ξ)
ξ⊗1 D

′. �

In the setup of Lemma 3.3, this has the following consequence:

Proposition 3.10. Let (A, I) be a prism with A/I = R and assume that I = (ξ) is principal. Let
ϕ,ψ : (A, I)→ (B, J) be two morphisms of prisms such that ϕ = ψ : A/I → B/J agree. Then the
automorphism γϕ,ψ : ρA ◦ϕ→ ρA ◦ψ from Remark 3.4 is given for any p-complete B/J-algebra S
with its natural lift g : B →W (S) by the action of the element (Dϕ,ψ,ξ, xϕ,ψ,ξ) ∈ GA(S) defined by

Dϕ,ψ,ξ : A→ I ⊗A G]a(S), a 7→ ξ ⊗ g(ϕ(a)−ψ(a)
ψ(ξ) ),

xϕ,ψ,ξ = g(uϕ,ψ,ξ), where uϕ,ψ,ξ := ϕ(ξ)
ψ(ξ) ∈ B

×.

Proof. We wish to apply Lemma 3.3. For this we can set F = A, ι̃A = IdA due to Remark 3.5.
Note that if S is p-torsion free, then G]a(S)→ Ga(S) is injective, so also the following is injective:

GA(S)→ (TA|Zp{1} ×Spf(A) Spf(R) oGm)(S).

Hence Dϕ,ψ,ξ, xϕ,ψ,ξ are determined by their composition with I ⊗A W [F ](S) → I ⊗A S and
W×[F ](S)→ S×, i.e., by their first Witt component. The result now follows from Lemma 3.3. �

Corollary 3.11. If Ω̂1
A|Zp

∼= ⊕ni=0A · dui for some ui ∈ A, Proposition 3.9 yields an isomorphism

GA
∼−→ T ]A|Zp{1} ×Spf(A) Spf(R) ∼=

n∏
i=0

G]a{1}, D 7→ (D(u0), . . . , D(un)).

If there is a generator ξ of I that we can use to trivialise the Breuil-Kisin twist Ga{1} ∼= Ga, then
the group structure on GA transfers through this to the map

n∏
i=0

G]a ×
n∏
i=0

G]a →
n∏
i=0

G]a, ((ai)i=0,...,n, (bj)j=0,...,n) 7→ (ak + bk + ak
n∑
l=0

bl∂ξ
∂ul

)k=0,...,n

where the ∂
∂ul

: A→ R are the derivations forming the dual basis for du0, . . . , dun. If ξ = E(u0) is
a polynomial in u0 with coefficients killed by all ∂

∂ul
, this simplifies to

((ai)i=0,...,n, (bj)j=0,...,n) 7→ (ak(1 + E′(u0)b0) + bk)k=0,...,n.

Proof. This is immediate from Proposition 3.9 by unravelling the formulas there. �

For n = 0, Corollary 3.11 recovers the formula of [10, Example 9.6].
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3.3. Application to group actions. We now apply §3.1 and §3.2 in a more specific situation.

Setup 3.12. Fix a prism (A, I) over Zp with I = ξA principal. Set R := A/I and X := Spf(R).
Let ϕ : (A, I)→ (A∞, J) be a morphism of prisms such that R∞ := A∞/J is p-torsionfree. Let

τ : (A∞, J)→ (A∞, J)

be an automorphism of prisms. Set ψ := τ ◦ ϕ. We assume that ϕ : R → R∞ is invariant under
σ := τ : R∞ → R∞, i.e., ψ = σ◦ϕ = ϕ, so we are in the setting of Lemma 3.3 and Proposition 3.10.

In our applications, R[ 1
p ]→ R∞[ 1

p ] will be pro-étale Galois, and σ will be in the Galois group.
The naturality of A 7→ ρA yields 2-commutative diagrams

(6)

Spf(A∞) Spf(A)

X�

Spf(A∞) Spf(A)

ρA

ρA

ϕ

ϕ

ρA∞

ρA∞
τ and

Spf(R∞) Spf(R)

XHT

Spf(R∞) Spf(R)

ρA

ρA

ϕ

ϕ

ρA∞
ρA∞

σ

where the diagram on the right is the base change to the Hodge–Tate locus of the one on the left.
The aim of this subsection is to study the fibre product ZA making the following square Cartesian

(7)
ZA Spf(R∞)

Spf(R) XHT.

ϕ
ρA∞

ρA

As ρA is affine, ZA is represented by a formal scheme. The S-points of ZA on a p-complete algebra S
are pairs (x, γ) of a morphism x : Spf(S)→ Spf(R∞) and an isomorphism γ : ρA∞ ◦x→ ρA◦ϕ◦x in
XHT(S). Hence ZA inherits from Spf(R∞) a natural action of σ: The automorphism σ : R∞ → R∞
induces first a natural 2-arrow canσ : ρA∞ ◦σ → ρA∞ obtained from (6) by Construction 3.1. This
defines an automorphism ZA → ZA over σ: Explicitly, in terms of functors of points, this is defined
by sending (x, γ) to (σ ◦ x, γ ◦ canσ) where γ ◦ canσ is defined as the composition

ρA∞ ◦ σ ◦ x
canσ−−−→ ρA∞ ◦ x

γ−→ ρA ◦ ϕ ◦ x.

We can equivalently regard ZA → ZA as an R∞-linear isomorphism

σZA : ZA → σ∗ZA := ZA ×Spf(R∞),σ Spf(R∞).

Our aim is now to make this natural isomorphism explicit. To do so, we first observe that since
ρA is a torsor under the formal group scheme GA from Proposition 3.9, it follows by base-change
that the map ZA → Spf(R∞) is a torsor under the formal group scheme over Spf(R∞) defined by

GA,R∞ := GA ×Spf(R) Spf(R∞).

Thus ZA receives a natural left GA,R∞ -action by letting g ∈ GA(S) send (x, γ) ∈ ZA(S) to (x, g◦γ).
The map ϕ indicated as the dotted arrow in the diagram defines a splitting of this torsor. Indeed,

the natural 2-isomorphism canϕ : ρA ◦ ϕ→ ρA∞ from Construction 3.1 yields an identification

ϑϕ : GA,R∞
∼−→ ZA.

Observe that GA,R∞ also receives a natural σ-action via the action on the second factor. Here
we note that we have a natural R∞-linear isomorphism σ∗GA

∼−→ GA since σ leaves R invariant.
The map ϑϕ need not commute with the σ-actions on both sides, as ϕ need not be τ -invariant.

Instead, to make σZA explicit in terms of GA, we can transport it via ϑϕ to the automorphism

σGA,R∞ := σ∗ϑ−1
ϕ ◦ σZA ◦ ϑϕ : GA,R∞ → σ∗GA,R∞

∼= GA,R∞ .

Now ϑϕ identifies ZA and its σZA-action with GA,R∞ and its induced σGA,R∞ -action.

Theorem 3.13. The isomorphism σGA,R∞ can be described in terms if the right multiplication by
GA,R∞ as the translation by the element (D,x) ∈ GA,R∞(R∞) where

D : A→ I ⊗A G]a(R∞), a 7→ ξ ⊗ g( τ(ϕ(a))−ϕ(a)
ϕ(ξ) ), and x = g( τ(ϕ(ξ))

ϕ(ξ) ) ∈ G]m(R∞).

Here g : A∞ → R∞ is the canonical reduction, and we use that R∞ is p-torsionfree to describe D
via the inclusion G]a(R∞) ⊆ R∞. Similarly, we implicitly use G]m(R∞) ⊆ Gm(R∞) to describe x.

This the final outcome of our discussion in Section 3.
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Proof. We consider the fibre product of (6) with the morphism ρA : Spf(R) → XHT. Note that
the fibre product of ρA with itself is GA. That the homotopy canϕ induces the isomorphism ϑϕ
now means that it makes the following diagram 2-commutative:

GA,∞

ZA Spf(R)

Spf(R∞)

Spf(R∞) XHT.

ϑϕ

ρA◦ϕId
ρA∞

In terms of functors of points, GA,R∞ sends any R-algebra S to the pairs (x, h) of a morphism
x : Spf(S)→ Spf(R∞) over R and an isomorphism h : ρA ◦ϕ◦x→ ρA ◦ϕ◦x in XHT(S). Then ϑϕ

ϑϕ : GA
∼−→ ZA is given by (x, h) 7→ (x, ρA∞ ◦ x

can−1
ϕ−−−−→ ρA ◦ ϕ ◦ x

h−→ ρA ◦ ϕ ◦ x),

hence its inverse ϑ−1
ϕ is given similarly by precomposing with canϕ. Combined with the explicit

description of σZA given above, it follows that σGA = σ∗ϑ−1
ϕ ◦σZA ◦ϑϕ is given by the composition

GA
∼−→ GA, (x, h) 7→ (x, ρA ◦ϕ◦x

canϕ−−−→ ρA∞ ◦σ ◦x
canσ−−−→ ρA∞ ◦x

can−1
ϕ−−−−→ ρA ◦ϕ◦x

h−→ ρA ◦ϕ◦x)

where we use that ϕ ◦ σ = ϕ to identify the first term of the homotopy. Using that ψ = ϕ ◦ σ, this
homotopy is the translation

h 7→ h ◦ can−1
ϕ ◦ canψ.

But by definition, can−1
ϕ ◦ canψ = γ−1

ϕ,ψ. We now use that by Proposition 3.10, the automorphism
γϕ,ψ is given on S-points by the action of the pair (Dϕ,ψ,ξ, xϕ,ψ,ξ) ∈ GA(S) defined by

Dϕ,ψ,ξ : A→ I ⊗A G]a(S), a 7→ ξ ⊗ g(ϕ(a)−ψ(a)
ψ(ξ) ) and xϕ,ψ,ξ = g(ϕ(ξ)

ψ(ξ) ) = g( ϕ(ξ)
τ(ϕ(ξ)) ),

where g : A∞ →W (S) is the canonical lift of A∞ → R∞ → S. By functoriality, this is determined
by its value on S = R∞. Since R∞ is p-torsionfree by assumption, we can use θ : W (R∞) → R∞
to identify any element in W [F ](R∞) = G]a(R∞) with its image in Ga(R∞) = R∞.

Finally, one calculates using the semi-direct product structure explained in Proposition 3.9 that
the inverse is given by (D,x) = (−Dϕ,ψ,ξx

−1
ϕ,ψ,ξ, x

−1
ϕ,ψ,ξ), as described. �

Remark 3.14. We implicitly made a sign convention, related to the question whether ZA is a
torsor for a left or right action of the (possibly non-commutative) group GA. In the above, the
left action on GA,R∞ identifies via ϑϕ with the GA-action on ZA, making the latter a torsor under
a left GA-action. One could instead define the homotopy in the definition of ZA to go into the
other direction, so the GA-action on ZA is from the right. Equivalently, we can decide to let GA
act via its inverse. Either way, turning around all arrows in the above discussion, the statement of
Theorem 3.13 would become that the morphism is given by left-multiplication with (Dϕ,ψ,ξ, xϕ,ψ,ξ).

Remark 3.15. By definition, the pair (D,x) in Theorem 3.13 depends on ϕ,ψ = τ ◦ϕ and ξ. Let
(A0, I0)→ (A, I) be a morphism of prisms such that ϕ and τ are A0-linear. Furthermore, assume
that ξ ∈ I0, then x = 1 and D : A → G]a(R∞), a 7→ −ξ ⊗ g(ϕ(a)−ψ(a)

ξ ) with g : A∞ → W (R∞)

the δ-lift of A∞ → R∞. If a ∈ ξ · A, then D(a) = 0. Indeed, write a = ξb for some b ∈ A. Then
we have ϕ(a)−ψ(a)

ξ = ϕ(b)− ψ(b), and as R∞ is p-torsion free it suffices to check that the image of
ϕ(b)− ψ(b) vanishes under A∞ → R∞. But this follows because σ is R-linear.

4. Examples

We now discuss various settings of smooth formal schemes over different base rings in which we
apply the discussion from §3.3 to make the action on GA,R∞ described in Theorem 3.13 explicit.

4.1. p-adic fields. Let K be a p-adic field and R := OK its ring of integers. Set C := K̂ and
R∞ := OC . Then Gal(K/K) acts on R∞ and this action extends to an action on

(A∞ := Ainf(OC), J := ker(θ : A∞ → R∞)).

Let π ∈ R be a uniformizer. Then we get the associated Breuil-Kisin prism

(A, I) := (S := W (k)[[u]], (E(u))).

Any choice of a system π[ = (π, π1/p, . . .) ∈ O[C of p-power roots of π yields a morphism

ϕ : A→ A∞, u 7→ [π[]
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of prisms. As R ∼= A/I and each σ ∈ Gal(K/K) fixes R, we are then in the situation of Setup 3.12.
Fix a compatible system ε = (1, ζp, . . .) ∈ O[C of primitive p-power roots of unity and as usual
set µ := [ε] − 1, ξ := µ

ϕ−1(µ) . Let us use E(u) ∈ I as a generator (this plays the role of ξ in
Theorem 3.13, and the ξ we just defined has a different role). As usual, we have Fontaine’s map

θ : A∞ → OC .

Lemma 4.1. Let σ ∈ Gal(K|K) and let τ : A∞ → A∞ be the induced automorphism. Then
the associated element (D,x) ∈ GA(R∞) of Theorem 3.13 can be described as follows: We have
Ω1
A|Zp = A · du and D is the unique derivation A→ I ⊗A G]a(OC) such that

D(u) = E(u)⊗ c(σ)πz

where c(σ) ∈ Zp is the unique element such that σ([π[]) = εc(σ)[π[], and where we define

z := θ
(

µ
E([π[])

)
= (ζp − 1)θ

(
ξ

E([π[])

)
.

Second, we have x = χπ[(σ) := 1 + c(σ)E′(π)πz ∈ G]m(OC).

Remark 4.2. The map

χπ[ : Gal(K/K)→ 1 + π(ζp − 1)OC , σ 7→ χπ[(σ) = 1 + c(σ)E′(π)πz

is a cocycle and plays a similar role as the cyclotomic character, cf. [4, Lemma 3.6].

Proof of Lemma 4.1. As explained in Theorem 3.13, since R∞ is p-torsionfree, it suffices to identify
(D,x) after composition with GA → TAoGm, i.e. we may apply θ′ : W (R∞)→ R∞. The formula
for x in Theorem 3.13 then boils down to the following computation, which we use again later:

Lemma 4.3. Let B be a perfectoid Zcycl
p -algebra. Let σ be a Zp-linear automorphism of B, we

also denote by σ the induced automorphism of Ainf(B). Let t[ ∈ B[ be an element such that σ fixes
t := t[] ∈ B. Let E(u) be a polynomial in Ainf(B)[u] with coefficients that are fixed by σ. Then

σ(E([t[])) ≡ E([t[]) + c(σ) · E′([t[]) · [t[] · µ mod µ2

where c(σ) ∈ Zp is any element such that σ([t[]) = εc(σ)[t[].5 In particular, this shows

θ
(E(σ([t[]))−E([t[])

µ

)
= c(σ)t∂E∂u (t) ∈ B.

Proof. We calculate
E(σ([t[])) = E(εc(σ)[t[]) = E((1 + µ)c(σ)[t[]).

Calculating modulo µ2 gives (1 + µ)c(σ) ≡ 1 + c(σ)µ mod µ2 and therefore

E(σ([t[])) ≡ E([t[] + c(σ)µ[t[])) ≡ E([t[]) + c(σ)µE′([t[])[t[] mod µ2.

It follows that
E(σ([t[]))−E([t[])

µ ≡ c(σ) · E′([t[]) · [t[] mod µ.

Since µ ∈ ker(θ), applying θ gives the desired description as θ([t[]) = t. �

By [11, Lemma 3.23], ker(A∞ →W (R∞)) = µ ·A∞. By Lemma 4.3 with t[ = π[, this shows

x = θ
(E(σ([π[]))

E([π[])

)
= θ(1 + c(σ)E′([π[])[π[] µ

E([π[]])
) = 1 + c(σ)E′(π)πz = χπ[(σ)

where c(σ) ∈ Zp and z are as defined in the statement of the Lemma, and we use that µ/ξ = ϕ−1(µ).
Second, we now calculate the derivation D. Since Ω̂1

A/Zp = A · du, it suffices to compute D(u).
According to Theorem 3.13, and using again Lemma 4.3 (for E(u) = u), we have

D(u) = E(u)⊗ θ
(σ([π[])−[π[]

E([π[])

)
= E(u)⊗ θ

(σ([π[])−[π[]
µ

µ
E([π[])

)
= E(u)⊗ c(σ)πz. �

Remark 4.4. Alternatively, one could deduce the description of D from the one of x: As D is a
derivation, we have D(E(u)) = E′(π)D(u). On the other hand, D(E(u)) = (x − 1)(E(u) ⊗ 1) by
Lemma 3.7. Hence,

E′(π)D(u) = (x− 1)(E(u)⊗ 1) ∈ I/I2 ⊗R R∞,
⇒ D(u) = (x− 1)E(u)⊗1

E′(π) = E(u)⊗ c(σ)πz

since x − 1 = E′(π)c(σ)πz. This determines D(a) for a ∈ A as D(a · E(u)) = (x − 1)(aE(u) ⊗ 1)
while on the other hand D(a · E(u)) = aE′(π)D(u) + E(π)D(a).

Via Theorem 3.13, Lemma 4.1 now describes the action of Gal(K/K) on ZA from (7):

5If B is p-torsion free, this element is unique.
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Proposition 4.5. The choice of π[ yields an isomorphism

ZA ∼= GA,R∞
∼= G]a = Spf(

⊕̂
n≥0

R∞ · a
n

n! )

with respect to which the R∞-semilinear action of Gal(K/K) is given for σ ∈ Gal(K/K) by

σ(a) = χπ[(σ)a+ c(σ)πz.

Proof. Since Ω1
A|Zp = A ·du, the displayed isomorphism is given by the projection to the first factor

via Proposition 3.9. By Theorem 3.13, σ acts as the right multiplication by D(u). By Lemma 4.1,
this evaluates to D(u) = E(u)⊗ c(σ)πz. By Corollary 3.11, the action by D(u) is thus given by

a 7→ a(1 + E′(π)c(σ)πz) + c(σ)πz = χπ[(σ)a+ c(σ)πz. �

We previously obtained Proposition 4.5 in [4], where we have studied the example given in this
subsection in detail. In particular, we can deduce Assumption 2.2 from [4, Theorem 3.12].6

Remark 4.6. If t := 1+E′(π)a, then σ(t) = χπ[(σ)t, which might be easier to remember. Indeed,

σ(t) = 1 + E′(π)σ(a) = 1 + E′(π)c(σ)πz + E′(π)χπ[(σ)a = χπ[(σ)(1 + E′(π)a) = χπ[(σ)t.

4.2. Tori over perfectoid rings. Let R0 be any p-torsion free perfectoid ring containing Zcycl
p .

Set Ainf := Ainf(R0), and define elements [ε], ξ, µ ∈ Ainf as in Section 4.1. Set

R := R0〈T±1
1 , . . . , T±1

n 〉 and A := Ainf〈u±1
1 , . . . , u±1

n 〉
with its δ-structure such that δ(ui) = 0 for i = 1, . . . , n. We identify A/(ξ) ∼= R, ui 7→ Ti. We set

R∞ := R0〈T±1/p∞

1 , . . . , T±1/p∞

n 〉 and A∞ := Ainf(R∞),

then R → R∞ is the usual perfectoid cover. Choose T [i = (Ti, T
1/p
i , . . .) ∈ R[∞ for i = 1, . . . , n,

then sending ui 7→ [T [i ] defines a map
ϕ : A→ A∞.

The group Γ := Zp(1)n acts on R∞ fixing R. Moreover, the action of Γ lifts to A∞ (not fixing ϕ!).

Lemma 4.7. Let σ ∈ Zp(1)n and let τ : A∞ → A∞ be the induced lift. Then the associated
element (D,x) ∈ GA(R∞) of Theorem 3.13 can be described as follows: We have x = 1 and D is
the derivation A→ I ⊗A G]a(R∞) given on any f = f(u1, . . . , un) ∈ Ainf〈u±1

1 , . . . , u±1
n 〉 by

D(f) = ξ ⊗
n∑
i=1

ci(σ)(1− ζp)Ti ∂f∂ui (T1, . . . , Tn)

where ci(σ) ∈ Zp is the unique element such that σ([T [i ]) = [ε]ci(σ)[T [i ].

Proof. The action of σ leaves ϕ(ξ) invariant, hence x = θ
( τ(ϕ(ξ))

ϕ(ξ)

)
= 1. Using that the map

A∞ → R∞ is given by Fontaine’s θ, we see that the derivation D is given by

D : A→ ξAinf ⊗Ainf
R∞, f(u1, . . . , un) 7→ ξ ⊗ θ

( f(σ([T [1 ]),...,σ([T [n]))−f([T [1 ],...,[T [n])
ξ

)
Using Lemma 4.3 and the fact that µ/ξ = ϕ−1(µ) for which θ(ϕ−1(µ)) = (ζp − 1), we see that

D(Ti) = ξ ⊗ θ
(σ([T [i ])−[T [i ]

ξ

)
= ξ ⊗ θ

(σ([T [i ])−[T [i ]
µ

)
θ
(
µ
ξ

)
= ξ ⊗ ci(σ) · Ti · (ζp − 1).

We now use that Ω1
A|Zp = ⊕ni=1Adui: By continuity and linearity, the value of D(ui) for i = 1, . . . , n

now determines D(f) via the usual formula for derivations for any f = f(u1, . . . , un) ∈ A. �

By Theorem 3.13 and Corollary 3.11 this describes the action of Γ on ZA from (7):

Proposition 4.8. We have

ZA ∼= (G]a)n = Spf(
⊕̂

m1,...,mn≥0

R∞
a
m1
1

mn! . . .
amnn
mn! )

and the R∞-semilinear action of Γ on ZA is given for σ ∈ Γ by sending

σ(ai) = ai +
n∑
j=1

cj(σ)(ζp − 1)Tj .

Proof. Since Ω1
A|Zp = ⊕ni=1Adui, the first isomorphism follows from ZA = GA,R∞ and Proposi-

tion 3.9. By Theorem 3.13, the action of σ is computed on ai by the right multiplication by D(ui).
This has the described effect by Lemma 4.7 and Corollary 3.11: Here we use that in the notation
of Corollary 3.11, E(u0) = ξ is a constant polynomial and hence E′(u0) = 0. �

6The reference proves that K ∼= RΓ(GK , BA,R∞ ), but the proof shows the stonger statement that OK →
RΓ(GK , B

+
A,R∞

) has cofiber killed by some pi, i ≥ 1. Alternatively, the cohomology is calculated by a two term
complex of Banach spaces and the open mapping theorem implies the existence of a suitable pi killing the cofiber.
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4.3. Tori over p-adic fields. Let K be a p-adic field and C = K̂. We let

R = OK〈T±1
1 , . . . , T±1

n 〉 and A = S〈u±1
1 , . . . , u±1

n 〉,

where S is the Breuil-Kisin prism of §4.1 and the completion is (p,E(u))-adic. Set u0 := u and
T0 := π. We define a δ-structure on A extending that of S by setting δ(ui) = 0, i = 1, . . . , n. Then
(A, I = (E(u))) is a prism. We have a natural isomorphism A/I ∼= R by ui 7→ Ti. We also set

R∞ := OC〈T±1/p∞

1 , . . . , T±1/p∞

n 〉 and A∞ := Ainf(R∞),

soR→ R∞ is the usual perfectoid cover. Choose π[ = (π, π1/p, . . . ) ∈ O[C and T [i = (Ti, T
1/p
i , . . .) ∈

R[∞ for i = 1, . . . , n. Sending u 7→ [π[], ui 7→ [T [i ] then defines a map ϕ : A→ A∞. Consider now

Γ := (Zpγ1 ⊕ · · · ⊕ Zpγn) o Gal(K/K),

the semi-direct product for the action of Gal(K/K) on Zpγ1 ⊕ · · · ⊕Zpγn given by gγig−1 = γ
χ(g)
i

(with χ the cyclotomic character) for g ∈ Gal(K/K) and i = 1, . . . , n. Then Γ acts on R∞ by
γi · T 1/pk

j = ζ
δi,j
pk

T
1/pk

j and the natural action of Gal(K/K) on OC . This action leaves R fixed and
admits a natural lift to A∞ via γi · [T [j ] = [εδi,j ][T [j ]. We are thus once again in Setup 3.12.

Lemma 4.9. Let σ = γm1
1 . . . γmnn g ∈ Γ and let τ : A∞ → A∞ be the induced lift. Then the

associated element (D,x) ∈ GA(R∞) of Theorem 3.13 can be described as follows: We have

x = 1 + E′(π) · π · z · c(g) = χπ[(g)

as in Lemma 4.1. The derivation D sends f = f(u0, . . . , un) ∈ A = W (k)[[u]]〈u±1
1 , . . . , u±1

n 〉 to

D(f) = E(u)⊗ z ·
∑n
i=0 ci(σ)Ti

∂f
∂ui

(T0, T1, . . . Tn).

where ci(σ) is defined by σ([T [i ]) = [ε]ci(σ)[T [i ] for i = 1, . . . , n, and z was defined in Lemma 4.1.

Proof. The computation of x works exactly as in Lemma 4.1. In order to compute the derivation
D, we use that Ω̂1

A/Zp = ⊕ni=0Adui, so it suffices to describe the action on the generators ui ∈ A.
For this we evaluate the formula from Theorem 3.13 by using Lemma 4.3 applied with t = πi:

D(ui) := E(u)⊗ θ
(σ([T [i ])−[T [i ]

E([π[])

)
= E(u)⊗ θ

(σ([T [i ])−[T [i ]
µ

)
z = E(u)⊗ ci(σ) · Ti · z.

The description of D(f) follows by linearity and continuity by the usual formula for derivatives. �

As in the previous subsections, we derive from Lemma 4.9, Theorem 3.13 and Corollary 3.11
the following description of the Γ-action on the formal scheme ZA of (7):

Proposition 4.10. We have

ZA ∼= Spf(
⊕̂

m0,...,mn≥0

R∞
a
m1
0

mn! . . .
amnn
mn! ),

where ai corresponds to dui ⊗ 1 ∈ Ω̂1
A/Zp⊗̂AR. The R∞-semilinear action of Γ on ZA is given by

σ(ai) = χπ[(σ)ai +
∑n
j=0 cj(σ)zTj .

for σ ∈ Γ and i = 0, . . . , n. Here, χπ[(σ) := 1 + c0(σ)E′(π)πz can be regarded as the composition
of the cocycle χπ[ from Remark 4.2 with the projection Γ→ Gal(K/K).

Proof. The factor (1 + E′(u0)b0) in Corollary 3.11 evaluates to χπ[(σ) by definition. �

5. Galois cohomology and the proof of fully faithfulness

In this section, we verify Assumption 2.2 in the examples of §4. We start with the key calculation.

5.1. The key calculation. Set S := Zcycl
p 〈κ, T±1〉 and S∞ := Zcycl

p 〈κ, T±1/p∞〉. Then Γ :=
Zp(1) acts in the usual way continuously and S-linearly on R∞. Fix a topological generator
γ = (1, ζp, ζp2 , . . .) ∈ Γ of Zp(1). We define the p-complete, p-completely faithfully flat S∞-algebra

B+ :=
⊕̂
n≥0

S∞
xn

n!

and the Qp-Banach algebra B := B+[ 1
p ]. For the fixed primitive p-th root of unity ζp, set c :=

(ζp − 1) · κ. We now extend the natural Γ-action on S∞ to a continuous action on B+ by setting

γ(x) := x+ c.
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We note that the action is well-defined because for any
∑
n≥0

an
xn

n! ∈ B
+, we have

(8) γ(
∞∑
n=0

an
xn

n! ) =
∞∑
n=0

γ(an) (x+c)n

n! =
∞∑
n=0

γ(an)
n∑
k=0

xk

k!
cn−k

(n−k)! =
∞∑
n=0

( ∞∑
m=0

γ(an+m) c
m

m!

)
xn

n!

and the last sum in brackets converges if am → 0 for m→∞ since the p-adic valuation

vp((ζp − 1)n/n!) ≥ n
p−1 −

n−sp(n)
p−1 =

sp(n)
p−1 ≥ 0

is bounded below by Legendre’s formula (here sp(n) is the sum of the digits of n in base p).

Theorem 5.1. There is n ∈ N such that for any p-complete S-algebra R, the cofiber of the map

R→ RΓ(Γ, B+⊗̂SR)

is killed by (cp)n. Thus if c maps to a unit in R[ 1
p ], this map is an isomorphism after inverting p.

Proof. As B+ is topologically free over S, we have R⊗̂SB+ ∼= R⊗̂LSB+. Therefore the complex

R⊗̂SB+ γ−1−−−→ R⊗̂SB+

computes continuous Γ-cohomology and we can by Lemma 2.4 reduce to R = S. By (8) we have

(γ − 1)
∞∑
n=0

an
xn

n! =
∞∑
n=0

(
(γ − 1)an +

∞∑
m=1

γ(an+m) c
m

m!

)
xn

n!

for any
∞∑
n=0

an
xn

n! ∈ B
+. Consider now the subring B+

0 :=
⊕̂
n≥0

S x
n

n! ⊆ B+ as well as the quotient

Q := B+/B+
0
∼=
⊕̂
n≥0

S∞/S
xn

n! . As S → RΓ(Γ, B+) factors through RΓ(Γ, B+
0 ), it suffices to show:

(1) the map S → RΓ(Γ, B+
0 ) has cofiber killed by some (cp)n, n ≥ 1, that

(2) the complex RΓ(Γ, Q) is killed by (cp)n for some n ≥ 1.
We begin with proving (2). We may replace Γ by Γ′ = Zpγp

m

as RΓ(Γ, Q) = RΓ(Γ/Γ′, RΓ(Γ′, Q)).
This changes the effect on x to x 7→ x+pmc. We may therefore without loss of generality make |c| as
small as we like. In terms of the orthonormal basis (en := xn

n! )∞n=0 relatively over the Zcycl
p -Banach

module S∞/S, we can represent γ − 1 : Q→ Q as the infinite upper triangular matrix

M =


γ − 1 γ · c γ · c

2

2! γ · c
3

3! · · · γ · c
n

n! · · ·
γ − 1 γ · c γ · c

2

2! γ · cn−1

(n−1)! · · ·
. . .


Lemma 5.2. The kernel and cokernel of the map γ− 1: S∞/S → S∞/S are bounded p∞-torsion.

Proof. This follows from [33, Lemma 5.5] by base change along Zcycl
p 〈T±1〉 → S. �

The map γ − 1: S∞/S[ 1
p ] → S∞/S[ 1

p ] of Qp-Banach spaces thus admits a continuous R-linear
inverse ρ. This induces an S-linear continuous operator on Q[ 1

p ] with matrix representation given
by the diagonal matrix of ρ. Then M · ρ = 1 + U where U is an upper triangular matrix. Making
c smaller if necessary, we can assume that U has entries of absolute value < 1, converging to 0 in
each row. Then

∑∞
m=0(−U)m is an inverse to 1 + U . Thus M · ρ : Q[ 1

p ]→ Q[ 1
p ] is invertible, and

therefore so is M : Q[ 1
p ]→ Q[ 1

p ]. By the Banach open mapping theorem, statement (2) follows.
For (1), we argue similarly: γ is an S-linear endomorphisms of the Banach S-module B+

0 , and
the matrix representing γ−1 on B+

0 with respect to the orthogonal basis (en := xn

n! )∞n=0 over S has
zeros on the diagonal. In particular, S ⊆ B+

0 being fixed by Γ, there is a copy of S in the kernel.
We now consider the induced map φ : B+

0 /S → B+
0 and claim that this is an isomorphism up

to (cp)n-torsion for some n ≥ 1. Take as a basis in B+
0 /S the elements e1, e2, . . . and in B+

0 the
elements e0, e1, . . ., then the resulting matrix M representing φ is now of the form:

c c2

2!
c3

3! · · · cn

n!

c c2

2!
cn−1

(n−1)!

. . .


This is c times a unipotent matrix, and after shrinking c by the same trick as before, we can assume
that the strictly upper diagonal entries are in pS. Then M = c(1 + U) for a matrix U such that
∞∑
m=0

(−U)m converges. Then M : B+
0 /S → B+

0 is an isomorphism up to c-torsion as claimed. �
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5.2. Fully faithfulness in the smoothoid case. We recall the following definition from §1:

Definition 5.3. A p-adic formal schemeX is smoothoid ifX is locally smooth over some perfectoid
p-adic formal scheme X0.

This is a variant for formal schemes of the “smoothoid adic spaces” introduced in [22, §2]. More
precisely, the adic generic fibre X of any smoothoid formal scheme is such a smoothoid adic space,
in particular X is sousperfectoid and hence sheafy. Like in [22, Definition 2.10], there is a good
notion of a global sheaf of differentials on any smoothoid p-adic formal scheme:

Lemma 5.4. (1) Let Z → Y be a morphism of perfectoid p-adic formal schemes, then the
(automatically p-completed) cotangent complex LZ|Y vanishes.

(2) If X is any smoothoid formal scheme, then H0(LX|Zp) = Ω1
X|Zp [0] is a finite, locally free

sheaf concentrated in degree 0.

Proof. We first prove (1). We may assume that Z = Spf(T ), Y = Spf(S) are affine. Let (A, I) resp.
(B, J) be the perfect prisms associated with S resp. T . Then L∧T |S ∼= L∧B|A⊗̂

L
BT for the p-completed

cotangent complexes and L∧B|A ⊗
L
B B/p

∼= L(B/p)|(A/p) vanishes as B/p,A/p are perfect.
For (2), we may work locally and assume that there is a smooth morphism f : X → S where S

is a perfectoid formal scheme. Consider the transitivity triangle

OX⊗̂
L
OSLS|Zp → LX|Zp → LX|S .

The first term has vanishingH0 since S is perfectoid. The last term is Ω1
X|S [0] since f is smooth. �

Definition 5.5. Let X be a smoothoid formal scheme. Motivated by Lemma 5.4, we simply write
Ω1
X := Ω1

X|Zp . If there is a smooth morphism X → S to a perfectoid space, then Ω1
X = Ω1

X|S , but
since we usually do not make the local perfectoid base S explicit, we drop this from notation.

We now to establish Theorem 1.2 in the smoothoid case, i.e., prove the following theorem.

Theorem 5.6. Assume that X is a qcqs smoothoid formal scheme. Then the functor

α∗X : Perf(XHT)[ 1
p ]→ Perf(Xv)

is fully faithful, where X is the adic generic fibre of X.

Proof. By Lemma 2.12 we may assume that X is affine and even étale over some torus TnR0
:=

Spf(R0〈T±1
1 , . . . , T±1

n 〉) over a perfectoid base Spf(R0). By André’s lemma ([2, Théoréme 2.5.1],
[12, Theorem 7.12] and [12, Remark 7.13]) there exists a quasi-syntomic cover R0 → S0 with S0 a
perfectoid Zcycl

p -algebra. Let S• be the Cech nerve of S0 over R0. Then XHT ×Spf(R0) Spf(Sn) ∼=
(X ×Spf(R0) Spf(Sn))HT for any n ≥ 0, each Sn is a Zcycl

p -algebra and each X ×Spf(R0) Spf(S0) is
smoothoid. Contemplating this Cech nerve further shows that it is sufficient to prove Theorem 5.6
for all X ×Spf(R0) Spf(Sn), n ≥ 0. Indeed, we can commute inverting p with the inverse limit
calculating RHom because the terms of the inverse limit are uniformly bounded.

Hence, we may assume that R0 is a Zcycl
p -algebra. By Lemma 2.9 we may reduce to X = TnR0

by choosing (A, I), (A∞, I∞),Γ as in §4.2. We are then in the setup of §4.2 (by [8, Lecture 4,
Proposition 3.2] we may assume that R0 is p-torsionfree because R0/

√
pR0 is perfectoid and both

sides of the statement only depend on this p-torsionfree quotient) and use the notations introduced
there. We want to verify that Assumption 2.2 holds in this setup, namely we claim that the map

R = R0〈T±1
1 , . . . , T±1

n 〉 → RΓ(Γ, B+
A,R∞

)

has cofiber killed by pi for some i ≥ 1, where by §4.2,

B+
A,R∞

∼= O(GA,R∞) =
⊕̂

m1,...,mn≥0

R∞
a
m1
1

m1! · · ·
amnn
mn!

with Γ = Zp(1)n acting R∞-semilinearly as described in Proposition 4.8. If n = 1, the claim follows
from applying Theorem 5.1 to the map S → R, sending κ to c1(γ)T1. The general case follows
inductively by iterating this process. Hence we can conclude by Proposition 2.6. �

5.3. Fully faithfulness in the arithmetic case. Let K be a p-adic field. We retain the setup
and notation of §4.3. In particular, we have R∞ := OC〈T±1/p∞

1 , . . . , T
±1/p∞

n 〉.

Proposition 5.7. Set BA,R∞ := O(GA,R∞)[ 1
p ] with its natural Γ-action as described in §4.2. Then

R[ 1
p ] ∼−→ RΓ(Γ, BA,R∞)

is an isomorphism.
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Proof. Using Theorem 5.1 we can as a first step argue exactly as in the proof of Theorem 5.6 to
take care of the Tate variables T1, . . . , Tn and thus reduce to the case that R = OK . Then

B+
OC
∼=
⊕̂
n≥0

OC · a
n

n! , BOC := B+
OC [ 1

p ].

by Proposition 4.5. The calculation is now reduced to showing that for H := Gal(C|K), we have
K ∼= RΓ(H,BOC ) for the H-action as in §4.3. This is precisely [4, Theorem 3.12]. �

We have thus established Assumption 2.2 for R = OK〈T±1
1 , . . . , T±1

n 〉. We can deduce:

Theorem 5.8. Let K be a p-adic field. For any qcqs smooth morphism X → Spf(OK), the functor

α∗X : Perf(XHT)[ 1
p ]→ Perf(Xv)

from §2 is fully faithful, where X is the adic generic fibre of X.

Proof. As in Theorem 5.6 we can reduce to the case that X = Spf(OK〈T±1
1 , . . . , T±nn 〉), where we

have established Assumption 2.2 in Proposition 5.7. Thus, we can conclude by Proposition 2.7. �

Remark 5.9. Theorem 5.8 can be extended to qcqs smooth formal schemes over a complete p-adic
discrete valuation ring OK with p-finite residue field, cf. [25, §.4], using very similar calculations.
More precisely, analogs to the Breuil-Kisin prisms have been constructed for OK in [18] and
following [25] one can construct the necessary concrete perfectoid extension K∞ of K := Frac(OK),
analogous to the cyclotomic extension. There again exists Tate’s normalized traces ([18, §4.3,
Ingredient 2], [31, Lemma 6.5], [25, §3]) and thus the proof [4, Theorem 3.12] goes through for K.

6. Complexes on the Hodge–Tate stack and Higgs modules

In this section we want to prove Theorems 1.3, 1.4 and 1.6 to 1.8 from the introduction. Since
fully faithfulness of the functor α∗X is now proved, this is mainly a question of describing complexes
on the Hodge–Tate stack (and some variants of it) for suitable formal schemes X explicitly in terms
of (derived) Higgs or Higgs–Sen bundles. As the structure of the stacks differs in the smoothoid
and in the arithmetic case, our discussion will naturally take a different form in these two cases.

However, the general principle is the same in all settings. Indeed, in all settings of §4, the
Hodge–Tate stack XHT is (after some choices isomorphic to) the classifying stack of some formal
group scheme G := GA over X, which has the explicit shape of being an extension

1→ V ] → G→ H → 1

(usually split) with V ] the PD-hull of the zero section of a (geometric) vector bundle V over X and
H = {1} or H ∼= G]m or H ∼= G]a, which acts by multiplication on V ] via the natural morphism

XHT → Spf(Zp)HT ∼= BG]m.

We will therefore now study the representation theory of G. While wo do not seek maximal
generality, our arguments extend to more general situations (BH could be some p-adic formal
stack Z, and V ] the PD-envelope of the zero-section of some (geometric) vector bundle over Z).

6.1. Representations of G. We begin by fixing the general setup and introducing some notation.
Let R be a p-complete ring with bounded p∞-torsion.

Definition 6.1. For any finite projective R-module W , we write

S(W ) := Sym•R(W ), Sp(W ) = S(W )∧p , V(W ) := Spf(Sp(W )).

Then V(W ) is the geometric vector bundle over Spf(R) corresponding to W .

Let E be a finite projective R-module. Let

V := V(E), A := Γ•R(E)∧p , V ] := Spf(A),

then A is the p-completed PD-hull of the zero section of V .
We also give ourselves a p-completely flat affine group scheme G over R which is an extension

1→ V ] → G→ H → 1,

where H is either {1},G]m or G]a, or an extension of such by U ], for another geometric vector
bundle U . We want to describe the representations of G. By [4, Theorem 2.5], the representation
theory of H is understood. We now wish to describe D(BG) in terms of V ] and D(BH).

The idea for describing the category D(BG) of the formal stack BG over Spf(R) is quite simple.
By p-completely faithfully flat descent, D(BG) is equivalent to the category of O(G)-comodules in
the category D(Spf(R)) = D̂(R) of derived p-complete complexes of R-modules.
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Remark 6.2. Let us first explain the strategy in a simple, underived special case: assume for the
moment thatH = {1}, so G = V ], and letM be a finite projective module over R endowed with the
structure of an O(G)-comodule. Explicitly, this means that there is a coaction M →M ⊗R O(G).
Then this can be dualized to an action on M of the R-algebra

O(G)∨ := HomR(O(G), R) = HomR(Γ•R(E), R),

which is naturally a Hopf algebra over R by dualizing the multiplication and comultiplication on
O(G). Now by [7, Proposition A10], the dual O(G)∨ identifies with the (already p-complete) (E∨)-
adic completion Ŝym•R(E∨) of the symmetric algebra Sym•R(E∨), i.e., the power series algebra on
E∨ := HomR(E,R). Hence the O(G)-coaction on M is equivalently given by some morphism

E∨ ⊗RM →M.

the existence of an extension to Ŝym•R(E∨) now enforces the condition that each δ ∈ E∨ the action
M

δ−→M is topologically nilpotent for the natural topology on M as a finite projective R-module.

If H 6= {1}, we aim for a similar argument, but we need to work in the category D(BH) of
representations of H. We therefore aim to prove the following. Recall that Sp(E∨) = Sym•R(E∨)∧p .
We can regard this as an E∞-algebra in D(BH) via the natural H-action on E∨.

Theorem 6.3. There exists a natural fully faithful functor

ΦBH : D(BG)→ ModSp(E∨)(D(BH)),

Its essential image is given by M for which each δ ∈ E∨ acts locally nilpotently on H∗(M ⊗LZp Fp).

Geometrically, let V ∨ := V(E∨) = Spf(Sp(E∨)) be the dual (geometric) vector bundle of V over
Spf(R). Through the H-action on E∨, this naturally lives over the classifying stack BH, and we
denote this geometric vector bundle over BH by V∨ → BH. The category ModSp(E∨)(D(BH)) in
Theorem 6.3 is then equivalent to the category D(V∨) because the morphism V∨ → BH is affine.

For the proof of Theorem 6.3, we require some preliminaries to implement the strategy of [9,
Theorem 3.5.15]. The following calculation of the Cartier dual of V ] = Spf(A) is well-known.

Lemma 6.4. The functor S 7→ HomGrp(V ] ×Spf(R) Spf(S),Gm) on p-complete R-algebras is rep-
resented by the formal group scheme

V̂ ∨ := Spf(B),

where B := HomR(A,R). Here V̂ ∨ is the formal completion of V ∨ = V(E∨) along its zero section.

Proof. The functor V ] sends a discrete R-algebra S to the S-module of R-linear maps x : E → S

together with divided powers x(e)n

n! for each e ∈ E and n ≥ 0. The functor V̂ ∨ sends a p-nilpotent
R-algebra S to the S-module of R-linear morphisms a : E∨ → S such that a(ϕ) ∈ S is nilpotent
for each ϕ ∈ E∨. Now the duality is induced by the pairing

(9) V̂ ∨ ×Spf(R) V
] → Gm, (a, x) 7→ exp(〈a, x〉) :=

∞∑
n=0

(x(a))n

n! ,

where a : E∨ → S is seen as an element in E⊗R S and x(a)n

n! is extended in its unique fashion. �

Note that the topology on B is not p-adic: In fact B ∼=
∏
n≥0 Symn

R(E∨), and the topology is the
product of the p-adic topologies on Symn

R(E∨), or in other words the (p, Sym>0
R (E∨))-adic topology.

We will define ΦBH as a sort of Fourier transform (in the spirit of [26]). For any a ∈ V̂ ∨(S), let

χa : V ] ×Spf(R) Spf(S)→ Gm, x 7→ exp(〈a, x〉)
be the associated character. Then we obtain the natural pairing

V̂ ∨ ×Spf(R) BV
] → BGm, (a, T ) 7→ χa,∗(T ) := Gm ×V

]

T

via pushing forward V ]-torsors along χa. Let L be the pullback of the tautological line bundle on
BGm along this pairing. We can view L as an A-comodule in D(Spf(B)). As a 7→ exp(〈a, 0〉) is the
zero map, the underlying B-module of L is trivial. Moreover, B = HomR(A,R) is equipped with
the V ]-action on the dual. More precisely, we can write the regular representation A = lim−→n

A≤n

with A≤n :=
∑
m≤n ΓmR (E) as a colimit of V ]-stable subrepresentations, which are finite projective

over R. Now, the coactions HomR(A≤n, R)→ HomR(A≤n, R)⊗R A combine to a coaction

(10) B → B⊗̂RA,
where the tensor product is completed with respect to the adic topology on B (and not just p-adic).
Let Z ⊆ V̂ ∨ be the zero section. Note that Z is cut out by a regular sequence if E is finite free.
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Let d be the rank of E, assumed to be constant. We denote by

pr1 : V̂ ∨ ×BV ] → V̂ ∨ and pr2 : V̂ ∨ ×BV ] → BV ]

the projections, where the fibre products are over Spf(R).

Definition 6.5. We define the functor

ΦSpf(R) : D(BV ])
FR−−→ D(V̂ ∨)

RΓZ−−−→ D(V ∨) ∼= ModSp(E∨)(D(Spf(R)))

as the composition of the following two functors: The first is the “Fourier transform”

FR : D(BV ])→ D(V̂ ∨), M 7→ Rpr1∗(pr∗2(M)⊗̂L⊗̂R det(E∨)[d]),

where the first ⊗̂ is over O
V̂ ∨×BV ] . The second functor in the definition of ΦSpf(R) is the functor

RΓZ : D(V̂ ∨)→ D(V ∨).

of cohomology with support in Z. This is the derived p-completion of the usual functor of local
cohomology as defined in [35, Tag 0952]. Explicitly, according to [35, Tag 0952], for a set of
generators δ1, . . . , δr ∈ Sym1

R(E∨) of I := Sym>0
R (E∨), we can define this as

RΓZ(K) := R limn

(
[B/pn →

∏
iBδi/p

n →
∏
i,j Bδiδj/p

n → · · · → Bδ1···δr/p
n]⊗LB K

)
It is straightforward to get a p-completed version of [35, Tag 0A6X] for this:

Lemma 6.6. The functor RΓZ : D(V̂ ∨)→ D(V ∨) is fully faithful. Its essential image is given by
thoseM ∈ ModSp(E∨)(D(Spf(R))) for which each δ ∈ E∨ acts locally nilpotently on H∗(M⊗LZpFp).

Proof. For every n ∈ N, let V̂ ∨n := V̂ ∨ × Spec(Z/pn) as well as V ∨n := V ∨ × Spec(Z/pn) and
Zn := Z × Spec(Z/pn). Then we have exact functors

RΓZn : D(V̂ ∨n )→ D(V ∨n ) = ModS(E∨)/pn(D(R/pn))

and by definition we have RΓZ(K) = R limnRΓZn(K⊗LZ/pn). Here we define D(V̂ ∨n ) = ̂D(B/pn)
as the full subcategory of D(B/pn) of derived complete objects for the adic topology on B/pn. By
[35, Tag 0A6X], the functor RΓZn is then fully faithful with essential image given by the complexes
M which are torsion for the ideal Sym>0

R (E∨)/pn ⊆ S(E)/pn. Equivalently, this means that the
action of each δ ∈ E∨ is locally nilpotent on H∗(M). As usual, via the exact triangle

M ⊗L Z/pn−1 →M →M ⊗L Z/p
we see inductively that this is equivalent to asking that each δ ∈ E∨ acts locally nilpotently on
H∗(M). Using that RΓZn(M)⊗LZ/pn−1 = RΓZn−1(M⊗LZ/pn−1), we get the desired description
in the limit over n, as ModSp(E∨)(D(Spf(R))) embeds into ModS(E∨)(D(Spec(R))) as the full
subcategory of derived p-complete objects. Similarly, the full faithfulness follows from that of
RΓZn using first that for any two derived complete complexes N and M in D(V̂ ∨) we have

RHomD(V̂ ∨)
(M,N) = R lim

n
RHomD(V̂ ∨n )

(M ⊗L Z/pn, N ⊗L Z/pn),

then full faithfulness of RΓZn , and finally the analogous equality in D(V ∨). �

Definition 6.7. As the functor ΦSpf(R) is natural in Spf(R), it descends to a functor

ΦBH : D(BG)→ ModSp(E∨)(D(BH)),

for the stackBH and theBV ]-gerbeBG over it. This will be the functor mentioned in Theorem 6.3.

Next we want to make ΦSpf(R) explicit. Let M ∈ D(BV ]). By construction,

ΦSpf(R)(M) = RΓZ(RΓ(BV ],M⊗̂LRB⊗̂R det(E∨)[d])),

where the tensor product is (p, I)-adically completed. In this formula, the BV ]-module structure
of M⊗̂LRB⊗̂R det(E∨)[d] is the A-comodule structure on it base-changed from the A-comodule
structure on B explained in (10). The right-hand side carries the B-module structure induced by
the B-module structure on M⊗̂LRB⊗̂R det(E∨) (with M seen here as an R-module). Now,

RΓZ(RΓ(BV ],M⊗̂LRB⊗̂R det(E∨)[d])) = RΓ(BV ], RΓZ(M⊗̂LRB⊗̂R det(E∨)[d]))
= RΓ(BV ],M⊗̂RRΓZ(B⊗̂R det(E∨))[d]).

Here, the last tensor product is p-completed. To continue, we need the next lemma.

Lemma 6.8. We have RΓZ(B⊗̂R det(E∨)) ∼= A[−d] with the regular A-coaction and its natural
B-action B⊗̂RA

coact⊗Id−−−−−−→ B⊗̂RA⊗̂RA
eval⊗Id−−−−−→ A.
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Proof. Note that B⊗̂R det(E∨) is, as a B-module, the dualizing sheaf ω on V̂ ∨. The V ]-equivariant
structure on it (i.e. its structure of A-comodule) is induced by base change from the one on B
described above. Thus the lemma is essentially Serre duality applied to the projective bundle
P(E) → Spf(R) and can be checked by a direct calculation with Koszul complexes. Another
possibility is to check first that RΓZ(ω) is concentrated in degree d to avoid issues with working
in the derived category and then reduce to [35, Tag 0A82]. �

Consequently,

(11) ΦSpf(R)(M) = RΓ(BV ],M⊗̂RA[−d][d]) = M,

where the last equality comes from the fact that A is endowed with the regular A-coaction. The
action of Sym•R(E∨) ⊆ B is given by the adjoint of the coaction M →M⊗̂RA.

It is tempting to try to use this explicit formula to prove directly Theorem 6.3, by relating
derived A-comodules and B-modules by adjunction. It is indeed possible, but we only know an
argument using nuclear modules in the sense of [15]. Here we offer a different and simpler argument,
closer to an argument of Bhatt–Lurie. We need a few more preliminaries to establish Theorem 6.3.

Definition 6.9. Let

K• := (0→ ∧dR(E∨)⊗̂RB → ∧d−1
R (E∨)⊗̂RB → . . .→ E∨⊗̂RB)

be the Koszul complex in D(V̂ ∨), with its quasi-isomorphism K• → R ∼= B/I. We define

E• := HomR,cont(K•, R) = (A⊗̂RE → A⊗̂R ∧2
R (E)→ . . .→ A⊗̂R ∧dR (E)→ 0),

which is a resolution R→ E• of the trivial V ]-representation R by coinduced A-comodules.

Lemma 6.10. Let M ∈ D(BV ]). Then there exists a canonical resolution

M → (M⊗̂RA⊗̂RE →M⊗̂RA⊗̂R ∧2
R (E)→ . . .)

and a canonical quasi-isomorphism

RΓ(BV ],M)→ (M →M⊗̂RE →M⊗̂R ∧2
R (E)→ . . .).

We will refer to the natural map M →M⊗̂RE as the coaction of E on M .

Proof. The first statement follows by tensoring R ∼= E• with M , the second by applying the
projection formula M⊗̂RA ∼= |M |⊗̂RA, where |M | is given the trivial action. �

Remark 6.11. As in [9, Corollary 3.5.14], Lemma 6.10 implies that if M ∈ D(BV ]) satisfies
M ∼= R as R-modules and the coaction M →M ⊗R E is zero, then M ∼= R as A-comodules.

Lemma 6.12. D(BV ]) is generated under shifts and colimits by the trivial representation R.

Proof. Using the isomorphism M ∼= M⊗̂RE• and the projection formula for the faithfully flat
morphism η : Spf(R) → BV ], the proof of [9, Proposition 3.5.15] applies here. Hence, it suffices
to show that the regular A-comodule A = η∗(R) admits a filtration by sub-comodules with graded
pieces isomorphic to R as an A-comodule. This is a concrete calculation in A using Remark 6.11.
Alternatively, this statement passes to direct summands in E, hence can be reduced to E = Rd.
Taking tensor products it suffices to assume d = 1, where it follows from [4, Proposition 2.9]. �

Lemma 6.13. The functor ΦSpf(R) : D(BV ])→ ModSp(E∨)(D(Spf(R))) is fully faithful.

Proof. We want to see that for any M,N ∈ D(BV ]), the map

RHomD(BV ])(M,N)→ RHomD(V ∨)(ΦSpf(R)(M),ΦSpf(R)(N))

is an isomorphism. As ΦSpf(R) commutes with filtered colimits (by the explicit formula for ΦSpf(R)

given above, ΦSpf(R) is the identity on underlying R-modules) we may assume by Lemma 6.12 that
M = R. By Lemma 6.10 the left-hand side is calculated by the complex

N → N ⊗R E → N ⊗R ∧2
R(E)→ . . . ,

and the right-hand side as well by (11) and the Koszul resolution of R as Sp(E∨)-module. �

Proof of Theorem 6.3. We first assume thatH = {1}. Fully faithfulness was proven in Lemma 6.13.
By Lemma 6.12 the essential image is generated by ΦSpf(R)(R) ∼= R and shifts and colimits.
In particular, the essential image is contained in the subcategory of (automatically p-complete)
complexesM ∈ ModSp(E∨)(D(R)) such that each δ ∈ E∨ acts locally nilpotently on H∗(M⊗LZpFp).
By fully faithfulness, to show that M lies in the essential image of ΦSpf(R), we may pass to a finite
Zariski cover of Spf(R) as this will express M as a finite limit of complexes in the essential image.
Hence, we may assume that E is finite free. By [35, Tag 0A6X] we can conclude that the category
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of such M is generated under colimits by RΓZ(B). But as in the proof of Lemma 6.8 we see that
RΓZ(B) = ΦSpf(R)(A)[−d] (the factor det(E)∨ disappears as E was assumed to be trivial).

Now assume that H 6= 1. Using that Φ(−) is natural in R we can conclude by descent along
the faithfully flat map Spf(R) → BH that ΦBH is fully faithful. The description of the essential
image can be checked after pullback along Spf(R) because the cohomology of H can be calculated
as a finite limit, cf. [4, Proposition 2.7] and Lemma 6.10. We may thus reduce to H = {1}. �

Remark 6.14. Let Z be any V ]-gerbe over Spf(R), and let R[E] = R⊕ εE be the trivial square-
zero extension of R by E. Then there exists a canonical automorphism

ρ : IdZ×Spf(R)Spf(R[E]) → IdZ×Spf(R)Spf(R[E]).

Namely, the trivial V ]-torsor acts as the identity on Z, and on the trivial V ]-torsor acts the natural
element in V ](R[E]) = HomR(Γ•R(E)∧p , R[E]) coming from the projection

Γ•R(E)∧p =
⊕̂
n≥0

ΓnR(E)→ R⊕ εE

where εE ∼= Γ1
R(E). If F ∈ D(Z) is any complex, then ρ∗ yields an R[E]-linear automorphism

F ⊗R R[E] ∼−→ F ⊗R R[E],

that reduces to IdF after base change along R[E]→ R, E 7→ 0. Equivalently, this defines a map

IdF + εθF : F → F ⊗R R[E] = F ⊕ εF ⊗R E for some θF : F → F ⊗R EinD(Z)

Definition 6.15. We call θF the “canonical Higgs field” attached to F .

In comparison with [9, Theorem 3.5.8] the equivalence Theorem 6.3 (if H = {1}) would ideally
be stated as saying that the pullback along any section η : Spf(R)→ Z yields a fully faithful functor
F 7→ (η∗(F), η∗(θF ) from D(Z) to a derived category of Higgs fields, whose essential image is given
by the condition of topological nilpotence of the Higgs field. However, this would require setting
up enough coherences for the Higgs field condition θF ∧ θF = 0, which we avoided by using the
Fourier transform. Up to these coherence issues, Theorem 6.3 realizes this desideratum in the sense
that the constructed Sp(E∨)-action restricts to the adjoint of the canonical Higgs field.

6.2. The isogeny category of perfect complexes. We retain setup and notation of §6.1 with
H = {1} the trivial group. The aim of this subsection is to describe the p-isogeny category
Perf(BV ])[ 1

p ] by describing its essential image under the functor ΦSpf(R)[
1
p ], as follows.

Proposition 6.16. The functor

D(BV ])
ΦSpf(R)−→ ModSp(E∨)(D(Spf(R)))→ ModS(E∨)[ 1

p ](D(Spec(R[ 1
p ])))

induces a fully faithful functor

ΨSpf(R) : Perf(BV ])[ 1
p ]→ Perf(S(E∨)[ 1

p ]).

The idempotent completion of the essential image of ΨSpf(R) consists of thoseM ∈ Perf(S(E∨)[ 1
p ])

that are perfect over R[ 1
p ] and satisfy the following condition: After base change R → S to any

p-complete valuation ring, the action of each δ ∈ E∨ on the cohomology of M ⊗L
R[ 1

p ]
S[ 1

p ] is topo-

logically nilpotent for the natural topology induced by the non-archimedean field S[ 1
p ].

The following proof, relying on [36], was suggested to us by Peter Scholze.

Proof. We set T := S(E∨) = Sym•R(E∨). Recall that the category of p-complete objects in D(T )
is equivalent to the category ModSp(E∨)(D(Spf(R))). By Theorem 6.3 applied with H = {1},
the category Perf(BV ]) is therefore equivalent via ΦSpf(R) to the full subcategory C ⊆ D(T ) of
objects N such that N is perfect over R and such that each δ ∈ E∨ acts locally nilpotently on
H∗(N ⊗LZp Fp). Here we use that any such object is already p-complete by p-completeness of R.

By Lemma 6.17 below, we see that C ⊆ Perf(T ). We can conclude that the functor

ΨSpf(R) : C[ 1
p ]→ Perf(T [ 1

p ])

is fully faithful: Indeed, it suffices to check that Perf(T ) ⊆ Perf(T [ 1
p ]) is fully faithful. But

RHomT [ 1
p ](N1[ 1

p ], N2[ 1
p ]) ∼= RHomT (N1, N2)[ 1

p ]

for any N1, N2 ∈ Perf(T ) by reduction to the case that N1 = N2 = T .
Clearly, each objectM in the essential image of ΨSpf(R) satisfies the conditions of the statement,

i.e., M is perfect over R[ 1
p ] and the action of each δ ∈ E∨ is topologically nilpotent on the
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cohomology of M in the sense of the statement. As the category of such M ∈ Perf(T [ 1
p ]) is

idempotent complete, these assertions extend to the idempotent completion C′ of C[ 1
p ].

Let now M ∈ Perf(T [ 1
p ]) be as in the statement. Set X := Spec(T ) with its open subscheme

U := Spec(T [ 1
p ]). Let Z ⊆ X be the closure of the support of M in X. By [36, Proposition (5.2.2)]

we can extendM⊕M [1], considered as a perfect complex on U with support on Z∩U , to a perfect
complex N on X with support in Z. The topological nilpotence condition ensures:

Claim. The subscheme Z ∩ Spec(T/p) is contained (as a set) in the zero section.

Proof of claim: The subset Z ∩ U is pro-constructible in X and hence its closure is given by the
set of specializations of elements in Z. Each specialization x ∈ U = Spec(T [ 1

p ]) of some point in Z
is witnessed by some map T → S′ with S′ a valuation ring. Let S be the p-adic completion of S′.
Then Spec(S[ 1

p ]) maps still to Z, while the closed point of Spec(S) maps to x.
To see that x lies in the zero section we may replace R by S, and we may assume that S[ 1

p ]

is algebraically closed. Then E∨ = Rδ1 ⊕ . . . ⊕ Rδd is trivial and Z ∩ Spec(T [ 1
p ]) is (as a set) a

finite union of closed subsets of the form W = V (δ1 − s1, . . . , δd − sd) with s1, . . . , sd lying in the
maximal ideal of S. But the mod p fiber of each W is contained in the zero locus of X. �

We have thus found a perfect complex N on X with support in Z such that N [ 1
p ] ∼= M ⊕M [1].

As the mod p fiber of Z is contained in the zero section, the action of each δ ∈ E∨ on H∗(N⊗LZp Fp)
is locally nilpotent. It remains to see that N is perfect over R. By p-completeness of R and N it
suffices to check this for N ⊗LRR/p, cf. [35, Tag 09AW]. Now we can apply Lemma 6.17 below. �

Lemma 6.17. Let R be a ring, E a finite projective R-module and T := Sym•R(E∨).
(1) If N ∈ D(T ) is perfect over R, then N is perfect over T .
(2) If the support of N ∈ Perf(T ) in Spec(T ) is finite over Spec(R), then N ∈ Perf(R).

Proof. Both claims are local on R, hence we may assume that E∨ is trivial, i.e., T ∼= R[δ1, . . . , δd]
is a polynomical ring. For (1), using induction on d, we can (by replacing R by R[δ1, . . . , δd−1])
reduce to the case that d = 1. Let δ := δ1. If N ∈ D(T ) is arbitrary, then we get a fiber sequence

N ⊗LR T
δ⊗IdT−IdN⊗δ−−−−−−−−−→ N ⊗LR T → N

as we check by reduction to N = T via colimits. If N ∈ Perf(R), then this shows N ∈ Perf(T ).
For (2), we embed Spec(T ) into the projective bundle

f : P(E∨ ⊕R)→ Spec(R).

Since the support of N is closed in P(E∨ ⊕R) (by finiteness of the support over Spec(R)), we can
extend N to a perfect complex N ′ on P(E∨ ⊕ R) by extending it by zero on the complement of
the support using [35, Tag 08DP]. Then Rf∗(N ′) is a perfect complex on R by [35, Tag 0B91], but
Rf∗(N

′) is also just the complex N seen as an R-module. This finishes the proof. �

Remark 6.18. The proof of Proposition 6.16 also applies to the group scheme Spf(R)×Spf(Zp)G]m,
and hence to Gπ ×Spf(OK) Spf(R) for Gπ as in §4.1 and some morphism OK → R.

Lemma 6.19. Let x ∈ R. Then multiplication x : V ] → V ] induces a functor

x∗ : Perf(BV ])→ Perf(BV ]),

which is fully faithful after inverting x, and its essential image are those perfect complexes (M, θM )
on BV ], such that (M, θM ) = (M,xθ′M ) for some (M, θ′M ) ∈ Perf(BV ]).

Proof. Fully faithfulness follows from Lemma 6.10. The essential image is clear. �

6.3. Application to the smoothoid case. Let X be a qcqs smoothoid p-adic formal scheme
over Zcycl

p with sheaf of p-completed differentials Ω1
X := Ω1

X|Zcycl
p

from Definition 5.5. Let (A0, I0)

be the perfect prism associated with Zcycl
p , i.e., A0/I0 ∼= Zcycl

p . This describes the Breuil–Kisin
twist {1} on Zcycl

p -modules as I0/I2
0 ⊗Zcycl

p
(−). As in §1.2, T ]X{1} := T ]

X|Zcycl
p
{1} is the p-completed

PD-envelope of the zero section of the tangent bundle TX{1} of X, i.e., locally X = Spf(R) and

T ]X{1} := Spf(ΓR(Ω1
R{−1})∧p ), TX{1} := Spf(Sp(Ω1

R{−1})),
where ΓR denotes the PD-algebra, and Sp(−) the p-completed symmetric algebra. The main
player of this subsection is the relative classifying stack BT ]X{1}. We use it to describe complexes
on the Hodge–Tate stack in some cases and describe the isogeny category of the category of perfect
complexes on it in terms of the generic fiber X of X. Indeed, we can now prove Theorem 1.3:
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Theorem 6.20. Any section X → XHT of the projection XHT → X induces an isomorphism

XHT ∼= BT ]X{1}

of T ]X{1}-gerbes. In particular, it induces a fully faithful functor

D(XHT) ↪→ D(T ∨X {−1}).

Its essential image is given by complexes M on T ∨X {−1} such that locally on any affine open
U := Spf(R) ⊆ X each D ∈ TR{1} acts nilpotently on H∗(RΓ(U,M)⊗LR R/p).

Proof. By the proof of [10, Proposition 5.12], XHT → X is a gerbe for T ]X{1} (note that XHT is
equivalently the Hodge–Tate stack of the relative prismatization ofX over A0 as Zcycl

p is perfectoid).
So any splitting X → XHT induces XHT ∼= BT ]X{1}. The second part follows from Theorem 6.3 as
the functor in Definition 6.5 is natural in Spf(R), hence can be glued over affine pieces of X. �

Remark 6.21. The convergence condition for Higgs fields appearing in the description of the
essential image of Theorem 6.20 also appears in the work of Tsuji in the context of the Higgs site
[1, §IV.3.6, Thm IV.3.4.16] as well as the work of Tian [37, Def. 4.9, Thm 4.12]. In our context,
its appearance is explained geometrically by the isomorphism XHT ∼= BT ]X{1}.

Via reduction mod p, there is also a relation to the nilpotent Higgs bundles appearing in the
mod p Simpson correspondence of Ogus-Vologodsky [30] over Fp. In particular, they also consider
the mod p version of the PD-cotangent sheaf T ]X{1} from Theorem 6.20, see [30, §2.3].

Recall that the Hodge–Tate stack does not split in general, but it does when X admits a smooth
lift to A0 equipped with a δ-structure, e.g. when X is affine.

Corollary 6.22. Let X = Spf(R) be a smooth p-adic formal scheme over Zcycl
p . LetM∈ D(XHT),

seen as an object M ∈ D̂(R) with an R-linear action of S := Sp(TR{1}) via Theorem 6.20. Then

RΓ(XHT,M) ∼= RHomS(R,M) ∼= RHomS(...→ ∧2(TR{1})⊗R S → TR{1} ⊗R S → S,M).

In particular, this cohomology is computed as cohomology of the Dolbeault complex

Dol(M) := M
θM−→M ⊗R Ω1

R{−1} θM−→M ⊗R Ω2
R{−2} → . . .

Proof. The first isomorphism follows from fully faithfulness in Theorem 6.20 applied to morphisms
from the unit object on XHT, the second from the Koszul resolution of R as an S-module. �

Remark 6.23. LetX be a smooth p-adic formal scheme over the ring of integers OL of a perfectoid
field extension L of Qp containing Qcycl

p , and X its generic fiber. As a consequence of Corollary 6.22
and Theorem 1.2, we recover Scholze’s computation [34, Proposition 3.23] that for j ≥ 0,

ΩjX (−j) ∼= Rjν∗OXproét

where ν∗ : Xproét → Xét is the natural morphism of sites. The proof below is not very different from
the original but explains perhaps more clearly how differentials enter the picture; it is quite similar
to Bhatt–Lurie’s new proof of Hodge–Tate comparison for prismatic cohomology using XHT.

For any j ≥ 0, the OX -module Rjν∗OXproét
is finite locally free by [33, Lemma 4.5, Lemma

5.5]. We may therefore assume that X = Spf(R) is affine. Note that in the above formula, we can
replace the pro-étale site by the v-site and the Tate twist by a Breuil-Kisin twist. We will still
denote by ν∗ the natural morphism of topoi X̃v → X̃ét. Now by construction α∗XOXHT = OXv ,
hence applying successively Theorem 1.2 and Corollary 6.22, we obtain

RΓ(Xv,OXv ) ∼= RΓ(XHT,OXHT)[ 1
p ] = R[ 1

p ]
0−→ (Ω1

R{−1})[ 1
p ]

0−→ . . .

giving the claim. Note that we additionally get the splitting of the complex Rν∗OXv in this case.

In order to describe the isogeny category Perf(XHT)[ 1
p ], we now define the notions of Higgs

perfect complexes and Hitchin-smallness. Recall our notation ω := (ζp − 1)−1.

Definition 6.24. Let Y be a smoothoid analytic adic space over Qcycl
p .7

(1) Recall that TY is the OY -linear dual of Ω1
Y = Ω1

Y|Qcycl
p

. A Higgs perfect complex on Y is a
complex on the ringed site (Y,Sym•OY (TY{1})) that is already perfect over (Y,OY).

7I.e., Y is locally for its analytic topology smooth over some perfectoid space over Qcycl
p , cf. [22, Definition 2.2.].

Similarly to Lemma 5.4 each smoothoid space has finite locally free sheaf of differentials Ω1
Y , cf. [22, Definition 2.10].
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(2) Assume that Y = Y rig is the rigid generic fiber of a smoothoid p-adic formal scheme
Y over Zcycl

p . Then a Higgs perfect complex M on Y is called Hitchin–small if for any
point ξ : Spa(C,C+) → Y valued in a non-archimedean field (C,C+), the action of each
δ ∈ ω ·TY {1}ξ ⊆ TY{1}ξ on each cohomology group ofM⊗LOY C is topologically nilpotent.

(3) More generally, for 0 6= z ∈ Qcycl
p , we call a Higgs perfect complex z-Hitchin-small if instead

δ is topologically nilpotent for any δ ∈ ω
z · TY {1}ξ.

We letHigY be the∞-category of Higgs perfect complexes on Y, andHigH-sm
Y its full subcategory of

Hitchin-small objects. Similarly, let Higz−H-sm
Y be the full subcategory of z-Hitchin-small objects.

Example 6.25. A Higgs perfect complex for which the underlying OY -module is a vector bundle is
the same thing as a vector bundle M on Y together with a Higgs field θM : M →M ⊗OY Ω1

Y{−1}.
It is Hitchin-small if and only if δ ◦ θM is topologically nilpotent for any δ ∈ ω.TY |Zcycl

p
{1}ξ. For

example, this is the case if M admits a formal model M→M⊗Ω1
X{−1} that is ≡ 0 mod (1− ζp).

Remark 6.26. The normalisation by (1 − ζp) in the definition of Hitchin smallness is chosen
to make it easiest to state the global correspondence in §7. In particular, it gives the cleanest
comparison to Faltings’ notion of smallness. We also note that the additional factor of (1− ζp) is
not explained by the difference between Breuil-Kisin and Tate twists: Indeed, ω·TY {1} = ω2·TY (1).
From the perspective of this section, ω-Hitchin smallness would be the more intrinsic notion.

Remark 6.27. A priori, the notion of Hitchin-smallness in Definition 6.24 depends on the formal
model Y because the lattices Ω1

Y/Zcycl
p
{−1}ξ ⊆ Ω1

Y/Qcycl
p
{−1}ξ do. However, these lattices are in

fact intrinsic to Y by [11, §8]: It suffices to check this when Y = Spf(R) is affine and small. Then

Ω1
R/Zcycl

p
{−1} ∼= H1(Lη(ζp−1)(RΓ(Yproét,O+)))

by [11, Theorem 8.7], and this is is intrinsic to Y, defined as a submodule of Ω1
R[1/p]/Qcycl

p
{−1} ∼=

H1(Yproét,O+) via the natural map Lη(ζp−1)RΓ(Yproét,O+)→ RΓ(Yproét,O+).

By Theorem 6.3, complexes on BT ]X{1} generalize the natural integral version of ω-Hitchin-small
Higgs perfect complexes. Note that we have a natural, fully faithful functor

ΞX [ 1
p ] : Perf(BT ]X{1})[

1
p ]→ Higω-H-sm

X .

This functor is not far from being an equivalence:

Proposition 6.28. (1) Suppose that X is affine. Then ΞX [ 1
p ] is an equivalence of categories,

up to passing to the idempotent completion Perf(BT ]X{1})[
1
p ]idem of Perf(BT ]X{1})[

1
p ].

(2) In general, ΞX [ 1
p ] defines an equivalence onto Higω-H-sm

X from the global sections of the

stackification of the functor on XZar defined by U 7→ Perf(BT ]U{1})[
1
p ]

idem
.

Proof. Part (1) follows from Proposition 6.16. For (2), by descent of perfect complexes on X , the
functor U 7→ Higω−H-sm

X on XZar is a stack of ∞-categories. Now Ξ(−)[
1
p ] constitutes a natural

transformation of functors. By (1) it follows that ΞX [ 1
p ] is an equivalence after stackification. �

We can now put everything together and summarise our main results in the smoothoid case so
far by way of a derived generalisation of Faltings’ “local p-adic Simpson functor” in our setting:

Theorem 6.29 (derived local p-adic Simpson functor). Let X be a smoothoid formal scheme.
Assume that XHT admits a splitting s : X → XHT.8 Then for the generic fibre X of X, there is a
fully faithful functor LSs from the category of ω-Hitchin-small Higgs perfect complexes on X into
the category of perfect complexes on Xv which is natural in s and fits into a diagram

Higω-H-sm
X Perf(Xv)

Perf(XHT)[ 1
p ]idem

LSs

ΞX [ 1
p ]
∼

α∗X

Proof. By combining Theorem 6.20 and Proposition 6.28, we see that s induces an equivalence
ΞX [ 1

p ] whose image can be identified with Higω−H-sm
X according to Definition 6.24. The fully

faithful functor α∗X exists by forming the idempotent completion of the one in Theorem 5.6, using
that Perf(Xv) is already idempotent complete. We then set LSs := α∗X ◦ ΞX [ 1

p ]−1. �

8If X = Spf(R) is affine, such a choice is induced by a prismatic lift (A, I) with A/I = R, or by a toric chart.
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We note that this is a generalisation of Faltings’ functor (in the case of good reduction) even in
the more classical case of coherent sheaves on smooth rigid spaces:

Corollary 6.30. Assume that X is an affine smooth formal scheme with a prismatic lift (A, I)
(e.g. induced by a toric chart), inducing a splitting s of XHT, then we obtain a fully faithful functor

LScoh
s :

{
ω-Hitchin-small coherent
Higgs modules on X

}
↪→
{
OXv −modules
on (Xv,OXv )

}
where X is the rigid generic fibre. Moreover, for any ω-Hitchin-small coherent Higgs bundleM,

Dol(M) = RΓ(Xv,LScoh
s (M)).

Proof. For any affine smooth rigid space X = Spa(A), the ring A is regular, hence perfect complexes
concentrated in degree 0 are equivalent to coherent OX -modules. The cohomological comparison
is immediate from Corollary 6.22 by comparing RHom(O,−) on both sides. �

6.4. Application to the arithmetic case. Let K be a p-adic field. Let X be a smooth formal
scheme over X0 := Spf(OK), not necessarily affine. By Lemma 2.10, the relative Hodge–Tate map

πX/X0
: XHT → X ×X0 X

HT
0

is a gerbe under the affine flat group scheme T ]X|OK{1} over X ×X0
XHT

0 . Here, {1} refers to
twisting by the pullback to X×X0 X

HT
0 of the canonical line bundle OSpf(Zp)HT{1}, cf. [9, Example

3.5.2]. We denote by T ∨X|OK{−1} the dual geometric vector bundle to TX|OK{1} over X×X0 X
HT
0 .

Assume first that X = Spf(R) and that R = A/I for some prism (A, I). Let

f := ρA : X = Spf(A/I)→ XHT and g : X → XHT πX/X0−−−−→ X ×X0 X
HT
0

be the induced morphism. Set G := Aut(f), H := Aut(g) as the induced affine p-completely flat
group schemes over X of automorphisms of f, g, and let G→ H be the natural morphism. Then

BG ∼= XHT, X ×X0
XHT

0
∼= BH

and there exists a natural exact sequence

1→ T ]X|OK{1} → G→ H → 1

of group schemes over X (here (−){1} = I/I2 ⊗R (−) by our choice of prismatic lift of R). The
conjugation action of G on T ]X|OK{1} equals the natural action of H via the Breuil–Kisin twist.

We can draw the following conclusion, which settles Theorem 1.7.

Theorem 6.31. Assume X = Spf(R) with R = A/I for some prism (A, I). This choice defines
an isomorphism XHT = BG which induces a fully faithful functor

D(XHT)→ ModSp(TX|OK {1})
(D(X ×X0 X

HT
0 ))

that is natural in (A, I). Its essential image is given by objects M such that each δ ∈ TX|OK{1}
acts locally nilpotently on H∗(M ⊗LZp Fp). Here we regard TX|OK{1} ∈ D(X ×X0

XHT
0 ).

Proof. This follows from Theorem 6.3 and our preceeding discussion. �

The choice of a uniformizer π ∈ OK gives rise to an isomorphism XHT
0
∼= BGπ. We let Gπ act

on T ]X|OK{1} via multiplication by E′(π), cf. [4, Theorem 2.5]. Then

ZX := BT ]X|OK{1}

is a gerbe over X ×X0
BGπ. Our next goal is to describe Perf(ZX)[ 1

p ], analogously as in §6.3
To do so, we first define the notion of Higgs–Sen perfect complexes. Let Y be a smooth rigid

space over K (viewed as an adic space). We define the sheaf of (non-commutative) rings on Y
HSY := Sym•OY (TY|K{1})[Θ] such that [Θ, δ] = −δ and [δ, δ′] = 0 for any δ, δ′ ∈ TY|K .

Definition 6.32. Let Y → Spa(K,OK) be a smooth rigid space over K.
(1) A Higgs–Sen perfect complex is a complex in the derived category of the ringed site

(Y,HSY), which is already perfect over (Y,OY).
(2) A Higgs–Sen perfect complex (M, θM : M → M ⊗OY Ω1

Y|K{−1}, ϑM : M → M) is called
Hitchin-small if for any point y : Spa(C,C+) → Y valued in a non-archimedean field, the
eigenvalues of ϑM are all in Z + δ−1

OK/Zp ·mK where δ−1
OK/Zp is the inverse different of OK .

We let HigSenY be the∞-category of Higgs–Sen perfect complexes on Y, and HigSenH-sm
Y its full

subcategory of Hitchin-small Higgs–Sen perfect complexes.
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Remark 6.33. If Y = Spa(B,B+) is affinoid, then by [3, Theorem 1.4], Perf(Y) is equivalent to
Perf(B). From here one can deduce that a Higgs–Sen perfect complex on Y = Spa(B,B+) is a
perfect complex over B together with an action of the global sections of HSY .

Remark 6.34. The name is motivated as follows: WhenM vector bundle, by Proposition 6.35 be-
low, the Hitchin fibration for Higgs–Sen modules should be defined by sending a triple (M, θM , ϑM )
to the characteristic polynomial of ϑM . Then a Higgs–Sen vector bundle is Hitchin-small if and
only if its image under the Hitchin fibration lands in an open subspace depending only on δ−1

OK/Zp .

First, we analyze the local situation. Fix a uniformizer π as before. Assume that X = Spf(R)
is affine of pure dimension n. We define a non-commutative ring

T := R[Θπ, θ1, . . . , θn] with [Θπ, θi] = −E′(π)θi, [θi, θj ] = 0 for i, j = 1, . . . , n.

Proposition 6.35. Let M ∈ D(T [ 1
p ]) be such that M is perfect over R[ 1

p ].

(1) Each canonical truncation of M is perfect over R[ 1
p ].

(2) Each θi, i = 1, . . . , n acts nilpotently on each cohomology object of M .
(3) The functor R[ 1

p ]⊗R (−) induces a functor

Ξ: {N ∈ D(T ), perfect over R} → {M ∈ D(T [ 1
p ]), perfect over R[ 1

p ]}

that is fully faithful after passing to the isogeny category on the left, i.e., inverting p.
(4) If E′(π)−1Θπ has all eigenvalues in Z + δ−1

OK/Zp ·mK on each cohomology object on M (in
the sense of Definition 6.32), then M lies in the essential image of Ξ[ 1

p ].

The proof of nilpotence follows an argument of Min–Wang [29, Remark 4.2].

Proof. The first part is implied by regularity of R, which itself follows from smoothness of the
formal scheme X over OK . By (1) we may assume thatM is concentrated in a single degree. Then
the claim is true with R[ 1

p ] replaced by any noetherian Q-algebra. Namely, it suffices to argue for
reduced noetherian Q-algebras, and the noetherian induction reduces to the case of generic points,
and then further to some algebraically closed field F over Q. In this case, we get a morphism

Φ: 〈θ1, . . . , θn,Θπ〉F /([Θπ, θi] = −θi, [θi, θj ] = 0, i, j = 1, . . . , n)→ End(M),

of F -Lie algebras. Let L be the image of Φ. Clearly, the commutator [L,L] is generated by the
images of θ1, . . . , θn. Note that L is solvable since [L,L] is abelian as we just saw. This implies
that [L,L] acts nilpotently on any representation, cf. [24, §4.1, Cor A]. This proves (2).

We now prove (3). The algebra T is in fact a Hopf algebra over R (it is the universal enveloping
algebra of the R-version of the Lie algebra appearing in the proof of (2)), and each N ∈ D(T ),
which is perfect over R, is dualizable for the induced symmetric monoidal structure

−⊗LR − : D(T )×D(T )→ D(T ).

Now, RHomT (R,N) is calculated by the fiber of multiplication by Θπ on the (shifted by n) Koszul
complex for the θ1, . . . , θn on N . As this holds similarly for RHomT [ 1

p ](R[ 1
p ], N [ 1

p ]) we can conclude
fully faithfulness of Ψ on the isogeny categories. For (4), we may by (1) and (3) assume that M
is concentrated in degree 0. By (2), there is a finite filtration of M as a T [ 1

p ]-module such that
θ1, . . . , θn act by 0 on graded pieces. As all these submodules are perfect over R[ 1

p ] (by regularity),
we may assume that M is killed by θ1, . . . , θn. Then Remark 6.18 yields a Θπ-stable R-perfect
submodule N of M , and equipping this N with the trivial θ1, . . . , θn-action does the job. �

Consider the functor
ΞX,π[ 1

p ] : Perf(ZX)[ 1
p ]→ HigSenH-sm

X

defined as follows: By Theorem 6.3 complexes on ZX embed fully faithfully in perfect complexes
over (X,HSX,π) which are already perfect over (X,OX), where

HSX,π := Sym•OX (TX|K{1})[Θπ]

such that [Θπ, δ] = −E′(π)δ and [δ, δ′] = 0 for any δ, δ′ ∈ TX|K . The isogeny category of this
category itself naturally maps to the category of perfect complexes over (X ,HSX ,π) which are
already perfect over (X ,OX ). Sending Θπ to E′(π)Θ defines an isomorphism between HSX ,π and
HSX , giving the desired functor ΞX,π. This functor is not very far from being an equivalence:

Proposition 6.36. (1) If X is affine, then ΞX,π[ 1
p ] is an equivalence of categories.

(2) For general X, this identifies HigSenH-sm
X with the global sections of the stackification of

the functor on XZar defined by U 7→ Perf(ZU )[ 1
p ].
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Proof. Part (1) follows from Proposition 6.35. By descent of perfect complexes on X the functor
U 7→ HigSenH-sm

Urig on XZar is a stack of∞-categories. The Ξ(−) constitute a natural transformation
of functors. It follows from the first part that this is an equivalence up to stackification. �

Like in the geometric case of the last subsection, we can now put our work in the arithmetic case
so far together and arrive at the following local p-adic Simpson functor in the arithmetic setting:

Theorem 6.37. Let X be an affine smooth p-adic formal scheme over OK . Assume that we are
given a prismatic lift (A, I) such that A/I = R (for example induced by a toric chart), inducing a
splitting s of XHT → X. Then for the generic fibre X of X, there is a fully faithful functor

HigSenH-sm
X ,π Perf(Xv)

Perf(XHT)[ 1
p ]

LSs

ΞX,π [
1
p ]

∼
α

from Hitchin-small Higgs-Sen perfect complexes on X into perfect complexes on Xv, natural in s.

Proof. We have the equivalence ΞX,π[ 1
p ] by combining Theorem 6.31 and Proposition 6.36. The

fully faithful functor α comes from Theorem 5.6. We can thus define LSs as α ◦ ΞX,π[ 1
p ]−1. �

Exactly as in the geometric case, Corollary 6.30, we can deduce for discrete objects:

Corollary 6.38. In the situation of Theorem 6.37, LSs restricts to a fully faithful functor

LScoh
s :

{
Hitchin-small coherent
Higgs-Sen modules on X

}
↪→
{
OXv -modules
on (Xv,OXv )

}
.

7. Globalization in terms of square-zero lifts

Let X be a p-adic formal scheme. We assume that X is smoothoid and lives over a perfectoid
base ring R0, or that X is smooth over the ring of integers of a p-adic field. In Theorem 6.29, resp.
Theorem 6.37, we have constructed a local p-adic Simpson functor for perfect complexes under the
condition that XHT is split. The reason we call this functor “local” is that the assumption that
XHT → X splits is a restrictive one. It is satisfied when X is affine, but rarely in general.

The goal of this section is to relax this assumption and thus to construct a “global” p-adic
Simpson correspondence. In the p-adic Simpson literature, e.g. in [17][1][39], when the base R0

is the ring of integers OC of an algebraically closed perfectoid extension of Qp, this is usually
achieved by switching from toric charts to the datum of lifts of X along Ainf(OC)/(ker θ)2 → OC .
We will now make an analogous switch of perspective in our setting, in terms of XHT. As we
will explain, there is an intrinsic motivation to do so, given by the inherent relation between
Cartier–Witt divisors and square-zero extensions. As a special case, this also leads to a geometric
reinterpretation of the aforementioned construction of Faltings, Abbes–Gros and Wang, see §7.5.

More generally, for applications to the arithmetic case of smooth formal schemes X over a p-
adic base OK , it is beneficial to consider lifts of X to larger square-zero extensions of OC inside
Ainf(OC)/(ker θ)2[ 1

p ]. In a second step, these will allow us to also glue the local correspondences in
the arithmetic case. As an application, we get for the base-change XOC a canonical global p-adic
Simpson functor for perfect complexes at the expense of a stricter convergence condition.

7.1. Square-zero lifts of perfectoid base rings. We start by discussing the more general
variants of the square-zero thickening Ainf(OC)/ξ2 → OC that we need.

Definition 7.1. Let S be a p-torsion free perfectoid ring with associated perfect prism (A, I).
Set A2 := A/I2, this is a square-zero extension of S by S{1} = I/I2. Let x ∈ S[ 1

p ] be such that
S ⊆ xS and consider the S-submodule xS{1} ⊆ S{1}[ 1

p ] defined as the image of the S-module

map S{1} ·x−→ S{1}[ 1
p ]. Then we define a square-zero extension A2(x)→ S as the pushout

0 S{1} A2 S 0

0 xS{1} A2(x) S 0

inside A2[ 1
p ]. Note that this is naturally an A2-algebra. As S is p-torsionfree, we have A2(1) = A2.

Definition 7.2. For any p-adic formal scheme X over S, an x-lift is a flat lift X̃ of X to A2(x).
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Such lifts arise naturally in our setup: Let K be a p-adic field with residue field k. Let C = K̂.
Recall that by henselian lifting, there is then a canonical lift9 of K → C to a morphism

s : K → B+
dR/ξ

2 = Ainf(OC)/ξ2[ 1
p ].

However, the map s does not in general send OK into Ainf(OC)/ξ2. Rather, we have the following:

Proposition 7.3. Let A2 := Ainf(OC)/ξ2. Then under the canonical lift s : K → B+
dR/ξ

2 = A2[ 1
p ],

the A2-submodule generated by s(OK) is precisely δ−1
OK |W (k)ξOC + A2. In particular, there is a

canonical lift s : OK → A2(e−1) where for any uniformizer π ∈ OK with minimal polynomial E
over W (k), we let e = E′(π) be the induced generator of the different ideal δOK |W (k).

Proof. If K = W (k) is unramified, then s is induced by the lift OK = W (k) → W (O[C) → A2,
using that k ∼= O[K . So the statement holds in this case. In general, the map s : K → A2[ 1

p ] is
therefore uniquely determined by s(π), which needs to satisfy E(s(π)) = 0.

Let (S = W (k)[[u]], (E(u))) be the Breuil-Kisin prism associated with π ∈ OK , and consider
the morphism of prisms f : S → Ainf(OC), u 7→ [π[]. Then we have (ξ) = (f(E(u))) = (E([π[]))
in Ainf(OC) by [12, Lemma 3.5], hence there is a unit v ∈ Ainf(OC) such that vξ = E([π[]).

Since θ(s(π)) = π = θ([π[]), we can write s(π)− [π[] = cξ for some c ∈ K. Then inside A2[ 1
p ],

0 = E([π[] + cξ) = E([π[]) + E′(s(π))cξ = (v + E′(s(π))c)ξ.

Thus cξ = vE′(s(π))−1ξ. Since v is a unit in A2, it follows that

s(π) ·A2 +A2 = (cξ + [π[])A2 +A2 = δ−1
K|W (k)ξOC +A2

and the statement follows because this is already a subalgebra of A2[ 1
p ]. �

Corollary 7.4. Let X be a p-adic formal scheme over K. Then for x := e−1, the base-change
XOC has a canonical Galois-equivariant x-lift in the sense of Definition 7.2 defined by

X̃OC := X ×Spf(OK) Spf(A2(x)).

7.2. Square-zero lifts of p-adic formal schemes. Fix a p-torsionfree perfectoid base ring R0

over Zp. For simplicity, let us make the harmless additional assumption that R0 contains a primitive
p-th root ζp ∈ R0. Let S be a p-torsionfree perfectoid base S over R0 and fix (A, I) and x ∈ S[ 1

p ]

as in Definition 7.1. In the following, we consider Ga as an affine formal group over S and let xGa
be the affine formal group over S with a morphism Ga → xGa, with xGa abstractly isomorphic
to Ga such that Ga → xGa identifies with the multiplication by x. In particular, for any x and
p-torsionfree S-algebra T the T -valued points of xGa are given by xO(T ) ⊆ O(T )[ 1

p ].

Definition 7.5. LetRx be the square-zero extension ofGa by xGa{1}[1] classifying the obstruction
to lifting an S-algebra to A2(x), i.e. the ∞-sheaf of animated S-algebras that sends (p-nilpotent)
animated S-algebras T to the animated square zero extension T ⊕T{1}[1] with S-algebra structure

S
δx−→ S ⊕ S{1}[1]→ T ⊕ T{1}[1],

where the second map is the base change from S to T of the trivial extension of S by S{1}[1], and
the first map classifies the square zero extension A2(x) of S by S{1}[1], cf. [14, Section 5.1.9].

Let now X be any p-adic formal scheme over S.

Definition 7.6. Let LftX,x be the stack sending any (p-nilpotent) S-algebra T to X(Rx(T )).

When x = 1, we just write R := R1 and LftX = LftX,1.
By construction of Rx we have an equivalence of groupoids between LftX,x(X) and the groupoid

of x-lifts of X (cf. Definition 7.2). Moreover, this groupoid identifies with the fiber of the map

MapOX (LX/Zp , x ·Ga{1}[1])→ MapOX (OX ⊗S LS/Zp , x ·Ga{1}[1])

over LS/Zp → I(x)[1], which classifies the square zero extensionA2(x). Here x·Ga{1} ∼= I(x)⊗SOX .

Let now 0 6= x ∈ S[ 1
p ] be such that S ⊂ xS and let 0 6= z ∈ S be such that ωxz ∈ S with

ω = (1− ζp)−1 as before, e.g. x = 1 and z = ζp− 1. The assumptions on x, z imply that the maps

can: G]a → xGa and xGa
·z−→ G]a

of formal group schemes over S are well-defined due to the natural divided powers on xz.
The relation of our discussion to XHT is furnished by the following observation of Bhatt-Lurie:

9This canonical lift can uniquely be characterized by the requirements that it is natural in K and that it is
induced by the composition W (k)[ 1

p
] = W (O[K)[ 1

p
]→W (O[C)[ 1

p
] if K = W (k)[ 1

p
] is unramified.
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Proposition 7.7. Let W (−) := cone
(
I0 ⊗A0 W (−)→W (−)

)
. This is a square zero extension of

Ga by G]a{1}[1] on p-nilpotent S-algebras. There exists a unit10 u ∈ Z×p such that the pushout of
W (−) along u ·can: G]a{1}[1]→ xGa{1}[1] is the square zero extension Rx(−) of Ga by xGa{1}[1].

Proof. When x = 1, this is [10, Construction 5.10, Remark 5.11]. The general case follows because
the natural map R(−)→ Rx(−) is clearly the pushout along can: Ga → xGa. �

Proposition 7.8. The pushout of the BT ]X|S{1}-gerbe X
HT → X along

u · can: T ]X|S{1} → xTX|S{1}

is canonically isomorphic to LftX,x. Here xTX|S{1} := TX|S ⊗Ga xGa{1}.
Proof. This can be seen as in the proof of [10, Proposition 5.12]. In fact, the same arguments as in
[10, Proposition 5.12] show that LftX,x is an xTX|S{1}-gerbe over X, and visibly the composition
XHT → LftX → LftX,x is linear over u · can: T ]X|S{1} → TX|S{1} → xTX|S{1}. �

Definition 7.9. Let z∗(XHT) be the pushforward of the T ]X|S{1}-gerbe X
HT along the multipli-

cation map z : T ]X|S{1} → T
]
X|S{1}. Then there is a diagram

XHT LftX,x

z∗X
HT

which is linear over

T ]X|S{1} x · TX|S{1}

T ]X|S{1}.

u·can

u−1zz

Remark 7.10. Let F ∈ D(z∗(X
HT)), and let θF : F → F ⊗OX Ω1

X|S{−1} be its canonical Higgs
field, cf. Remark 6.14. Let g : XHT → z∗(X

HT) be the morphism introduced above. Then the
canonical Higgs field of g∗F is the composition

g∗F g∗θF−−−→ g∗F ⊗OX Ω1
X{−1} Id⊗z−−−→ g∗F ⊗OX Ω1

X{−1}.
We can conclude that

g∗ : Perf(z∗(X
HT))→ Perf(XHT)

is fully faithful on isogeny categories and (up to stackification via open subsets of X) its essential
image in (the stackification of) Perf(XHT)[ 1

p ] is given by those E ∈ Perf(XHT)[ 1
p ] whose canonical

Higgs field θE satisfies that 1
z θE is topologically nilpotent (in the sense of Proposition 6.16). Indeed,

these statements can be checked locally on X, and follow from Lemma 6.19 if XHT is split.

Theorem 7.11. (1) Each x-lift X̃ induces a natural isomorphism of T ]X{1}-gerbes over X

z∗(X
HT) ∼= BT ]X{1}.

(2) Let ΦX̃,x,y : XHT → z∗(X
HT) ∼= BT ]X{1} be the induced morphism. Then the pullback

Φ∗
X̃,x,y

: Perf(BT ]X{1})→ Perf(XHT)

is linear over z : T ]X{1} → T
]
X{1}. It is fully faithful after inverting p.

(3) The essential image in Perf(XHT)[ 1
p ] is up to stackification on XZar given by those E

whose canonical Higgs field θE satisfies that 1
z θE is topologically nilpotent, i.e., locally on

X the Higgs field 1
z θE is topologically nilpotent for any choice a splitting of XHT.

Proof. The first statement is clear because LftX,x maps to z∗(XHT). The fully faithfulness in (2)
follows from Lemma 6.19. Part (3) follows from Remark 7.10. �

7.3. Applications to the global p-adic Simpson correspondence, geometric case. We can
finally harvest the fruit of our work. We first consider the smoothoid case. We assume that the
base ring R0 contains a primitive p-th root ζp ∈ R0. Let x, y ∈ R0[ 1

p ] be such that |x| ≥ 1 and
|y| ≤ |1− ζp| and set z = y/x. We are particularly interested in setting x = 1 and y = z = ζp − 1.
The following proposition is a direct corollary of Theorem 7.11 and for x = 1 settles Theorem 1.4.

Proposition 7.12. Let X be a qcqs smoothoid formal scheme over R0 with x-lift X̃. Then

Φ∗
X̃,x,y

: Perf(BT ]X{1})[
1
p ]→ Perf(XHT)[ 1

p ].

is fully faithful, with essential image given by those objects E for which the scaled canonical Higgs
field z−1θE is topologically nilpotent locally on X.

10A priori u ∈ R×0 , but naturality forces u ∈ Z×p (e.g. consider Zcycl
p with Galois action). Conjecturally, u = 1.
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Proof. This is a reformulation of Theorem 7.11. �

We can thus prove Theorem 1.6, regarding the global p-adic Simpson correspondence.

Theorem 7.13. Let X be a smoothoid p-adic formal scheme over R0, with generic fiber X .
(1) Each x-lift X̃ of X to A2(x) induces a fully faithful functor, natural in X̃,

SX̃,x,y : Higωz-H-sm
X → Perf(Xv).

(2) If X is affine with prismatic lift (A, I) inducing a splitting s of XHT and X̃ = Spf(A/I2),
then SX̃,x,ζp−1 is the composition of Higz-H-sm

X ↪→ Higωz-H-sm
X with LSs from Theorem 6.29.

(3) The essential image of SX̃,x,y is contained in the essential image of α∗X from Theorem 5.6,
up to idempotent completion and replacing X by an affine open cover. Conversely, any E
in the essential image of α∗X admits a canonical Higgs field Θ with values in Ω1

X {−1}; then
E lies in the essential image of SX̃,x,y if and only if 1

zΘ is topologically nilpotent.

Proof. By Proposition 6.28 and Theorem 5.6, it suffices to construct a natural functor

Perf(BT ]X{1})→ Perf(XHT),

which is fully faithful on isogeny categories, with the prescribed compatibilities of (2) and (3). Here
we use that Perf(Xv)idem = Perf(Xv). Proposition 7.12 tells us that we can take Φ∗

X̃,x,y
. �

In what follows, when X has a lift X̃ to A2, we will simply write SX̃ := SX̃,1,ζp−1.

7.4. Applications to the global p-adic Simpson correspondence, arithmetic case. Let K
be a p-adic field andX a smooth formal scheme overX0 := Spf(OK) with rigid generic fibre X . The
rest of this section is devoted to proving the following, which is Theorem 1.8 in the introduction:

Theorem 7.14. The choice of a uniformizer π ∈ OK gives rise to a fully faithful functor

Sπ : HigSenH-sm
X → Perf(Xv).

Let C := K̂ be a completed algebraic closure of K with Galois group Γ. Let XOC :=
Spf(OC)×X0 X be the base change of X to OC along OK → OC . Note that

XHT
OC
∼= XHT ×XHT

0
Spf(OC)

with Spf(OC)→ XHT
0 the canonical lift of Spf(OC)→ X0. Namely, passing to Hodge–Tate stacks

commutes with Tor-independent limits and Spf(OC)HT ∼= Spf(OC). Set

Φ: ZXOC := Spf(OC)×XHT
0
ZX → ZX ,

with ZX defined after Theorem 6.31. This map is Γ-equivariant for the trivial action on the target.

Lemma 7.15. The following pullback functor is fully faithful:

Φ∗ : Perf(ZX)[ 1
p ]→ Perf([ZXOC /Γ])[ 1

p ].

Proof. We follow the proof of Proposition 2.6 combined with flat base-change. �

Next, we want to relate ZXOC and XHT
OC . This is possible thanks to Proposition 7.12. Indeed,

consider the canonical Γ-equivariant e-lift X̃OC → Spf(A2(e)) from Corollary 7.4. By Theo-
rem 7.11, applied with x = e−1 and y = p (so that z = ep), we get a Γ-equivariant morphism

ΦX̃OC
: XHT
OC → BT ]XOC {1}

∼= ZXOC
over X×X0

XHT
0 , which is linear over the multiplication by ep on BT ]XOC {1}. By Proposition 7.12,

Φ∗
X̃OC

: Perf(ZXOC )[ 1
p ]→ Perf(XHT

OC )[ 1
p ]

is fully faithful, and one deduces the same for the functor on Γ-equivariant objects

Perf([ZXOC /Γ])[ 1
p ]→ Perf([XHT

OC /Γ])[ 1
p ].

Proof of Theorem 7.14. By Proposition 6.36, pro-étale descent for v-perfect complexes and Theo-
rem 5.6 it suffices to construct a fully faithful functor

Perf(ZX)[ 1
p ]→ Perf([XHT

OC /Γ])[ 1
p ].

Here, we can take the composition of Φ∗
X̃OC
◦Φ∗ with the functor (M, θM ,Θπ) 7→ (M, (ep)−1θM ,Θπ)

on Higgs–Sen perfect complexes. �

Remark 7.16. The normalization by (ep)−1 in this proof makes the Higgs field of a perfect
complex on ZX compatible with the canonical Higgs field of the associated v-perfect complex.
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7.5. Comparison with previous constructions. Let X be a qcqs smoothoid formal scheme
over a perfectoid base S with sheaf of p-completed differentials Ω1

X (cf Definition 5.5) and rigid
generic fibre X . Let (A0, I0) be the perfect prism associated to S, i.e., A0/I0 ∼= S. Let X̃ be a flat
lift of X to A0/I

2
0 . To compare SX̃ to former constructions, we first make it more explicit. Set

z = y = ζp − 1. Let ψ := ΦX̃,1,y : X → z∗(X
HT) ∼= BT ]X{1} be the morphism from Theorem 7.11.

Definition 7.17. The pullback of ψ∗(OX) along j : XHT → z∗(X
HT) followed by pullback to Xv

defines a ring sheaf B+

X̃
on Xv with a Higgs field

ΘB+

X̃

: B+

X̃
→ B+

X̃
⊗OXv µ

∗Ω1
X{−1}

where µ is the pullback from the Zariski site of X to the v-site of X . We then set

BX̃ := B+

X̃
[ 1
p ] = α∗X(j∗ψ∗(OX)[ 1

p ])

with its associated Higgs field ΘBX̃ .

Lemma 7.18. Let M = (M, θM ) ∈ Perf(BT ]X{1}), considered as an object of HigH-sm
X via

Proposition 6.28). Then there is a natural isomorphism

SX̃(M) ∼= Dol(BX̃ ⊗
L
OX µ

∗M,ΘBX̃ ⊗ Id + Id⊗ θM ).

In particular, if M is a vector bundle on X , then

SX̃(M) ∼= ker(BX̃ ⊗OX µ
∗M

ΘB
X̃
⊗Id+Id⊗θM

−−−−−−−−−−−→ BX̃ ⊗OX µ
∗M ⊗LOX ν

∗Ω1
X {−1}).

Proof. Let V := SX̃(M). Let Y = Spa(S[ 1
p ], S)→ X be an affinoid perfectoid object of the v-site

of X . We want to describe the sections of V on Y: The induced map Y := Spf(S) → X lifts
uniquely to a map Y → XHT, which we can compose with the natural map XHT → z∗(X

HT) to
get a map f : Y → z∗(X

HT). The definition of V and the projection formula for f give

RΓ(Y, V ) ∼= RΓ(z∗(X
HT), Rf∗f

∗O ⊗z∗(XHT)M)[ 1
p ].

Since the pullback of f along ψ : X → z∗(X
HT) is the affine morphism Y ×X T ]X{1} → X, we have

Rf∗f
∗O = f∗O. Moreover, as z∗(XHT) ∼= BT ]X{1}, the cohomology of any object in D(z∗(X

HT))
can be described as Dolbeault cohomology (by the same argument as for Corollary 6.22). Hence,

RΓ(Y, V ) ∼= RΓ(X,Dol(f∗O⊗LOz∗(XHT)
M))[ 1

p ] = RΓ(Y,Dol(BX̃ ⊗
L
OX µ

∗M,ΘBX̃ ⊗ Id + Id⊗ θM )).

We deduce the desired formula. �

Definition 7.19. A Higgs bundle on X is called Faltings–small if Zariski-locally on X, it admits
a model (M, θM) consisting of a vector bundle M on X and a Higgs field θM : M→M⊗Ω1

X{−1}
such that the reduction of (M, θM) mod pα is isomorphic to the trivial Higgs bundle for some
α > 1/(p− 1). We denote the category of Faltings–small Higgs bundles on X by HiggsF-sm(X ).

Remark 7.20. It is clear that any Faltings–small Higgs bundle is Hitchin–small. We do not
currently know if any Hitchin–small bundle is also Faltings–small: the former notion seems more
general, for example any nilpotent Higgs bundle is Hitchin–small. But e.g. in the affine case, it
turns out that Hitchin-small bundles are also Faltings-small, see [1, Cor. IV.3.6.4].

In [39], Wang constructs a fully faithful embedding of the category of Faltings–small Higgs
bundles on X into the category of v-vector bundles on X , which we shall denote by SW

X̃
. Our next

goal is to prove that our functor SX̃ restricted to Faltings–small objects agrees with SW
X̃
. To be

able to compare setups, we assume in the following that S = Zcycl
p .

Proposition 7.21. Let X be a qcqs smoothoid p-adic formal scheme over S with generic fiber X
and X̃ a lift as before. LetM = (M, θM ) ∈ HiggsF-sm(X ). Then there is a natural isomorphism

SW
X̃

(M) ∼= SX̃(M).

Remark 7.22. Wang’s Simpson functor SW
X̃

also agrees with Faltings’ Simpson functor ([17]): cf.
[39, Remark 5.5]. Hence our functor is also compatible with Faltings’.

To construct SW
X̃
, Wang defines a period sheaf OC† depending on X̃ with a Higgs field11

ΘOC† : OC† → OC† ⊗OX ν∗Ω1
X {−1}

11Compared to [39], we consider a Higgs field valued in the Breuil–Kisin twist of the differentials rather than
the Tate twist (i.e. we renormalize by z = 1 − ζp) to be in accordance with our conventions in the rest of the
paper and in particular our definition of Higgs bundles. We note that this matches up the smallness condition in
Definition 7.19 with [39, Definition 5.2] because pνp(ρk)Ω̂1

X(−1) = Ω̂1
X{−1} in the notation of loc. cit.˙
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(cf. [39, Definition 2.27]) and then sets

SW
X̃

(M, θM ) ∼= ker(OC† ⊗OX µ∗M
ΘOC†⊗Id+Id⊗θM−−−−−−−−−−−→ OC† ⊗OX µ∗M ⊗OX ν∗Ω1

X {−1}).

Comparing with (7.18), we see that our task is to compare the period sheaves BX̃ and OC† and
their Higgs fields (thereby providing a geometric description of the latter, in the spirit of [1, §II.9]).

The morphism
η : X → LftX

induced by our lift X̃ is a TX{1}-torsor over LftX . Equivalently, this torsor defines an extension

0→ OLftX → E+
LftX

→ Ω1
X{−1} ⊗OX OLftX → 0

on LftX . Pulling back this extension via u · can: XHT → LftX yields an extension

(12) 0→ OXHT → E+
XHT → Ω1

X{−1} ⊗OX OXHT → 0.

Proposition 7.23. The pullback of (12) to O+
Xv -vector bundles is the twist by (1− ζp)O+

Xv (−1) =

O+
Xv{−1} of Wang’s “integral Faltings extension”

0→ 1
(1−ζp)O

+
Xv (1)→ E+ → Ω1

X ⊗OX O
+
Xv → 0

associated to the lift X̃ from [39, Theorem 2.9].

Proof. Assume X = Spf(R) is affine. Let S be a perfectoid ring with a map Spf(S) → X. By
definition, a map Spf(S) → LftX is a morphism R → R(S) of animated rings, which is also A0-
linear (for the A0-linear structure on R(S) described above). The canonical lift S̃ of S defines an
A0-morphism S → R(S) of animated rings, which we can precompose with R→ S. By definition,
the pullback of X → LftX to S compares this composition R → R(S) with the chosen A0-linear
morphism R → R(R) induced by R̃ (composed with R(R) → R(S)). The isomorphisms between
these two morphisms R→ R(S) identify with the maps of lifts R̃→ S̃. The functor sending S as
above to such maps of lifts is by deformation theory a torsor under Hom(Ω1

X ⊗OX O
+
Xv ,O

+
Xv{1})

which is by construction (cf. [39, p.12]) the twist by O+
Xv{−1} of Wang’s extension. �

Remark 7.24. If instead X is a smooth p-adic formal scheme over OK , withK a finite, unramified
extension of Qp, then we can also recover from the Hodge–Tate stack XHT the Faltings extension of
the generic fiber X of X, as originally defined by Faltings12. Indeed, consider the natural morphism
induced by the structure map of the Hodge–Tate stack and functoriality of its construction:

XHT → X ×Spf(OK) Spf(OK)HT.

It realizes the source as a T ]X/OK{1}-gerbe over the target. Let Y denote its pushout along the

natural map T ]X/OK{1} → TX/OK{1}. This gerbe canonically splits: indeed, as K is unramified the
first Breuil-Kisin twist has no cohomology on Spf(OK)HT, so both the relevant H2 and H1 vanish.
This canonical splitting makes X ×Spf(OK) Spf(OK)HT a TX/OK{1}-torsor over Y , which can be
pulled back to a TX/OK{1}-torsor over XHT, corresponding to a class in H1(XHT, TX/OK{1}). (We
slighthly abuse notation by still denoting TX/OK{1} the pullback of TX/OK{1} to XHT.) After
further pullback to Xv and inversion of p, this corresponds to an extension

0→ TX/K ⊗OX OXv (1)→ E → OXv → 0.

As proved in [1, II.10.19] (which in fact proves a finer, integral, statement), this recovers the
Faltings extension by dualizing and twisting by OXv (1).

Consider the commutative diagram

X

LftX z∗(X
HT) ∼= BT ]X{1}h

η
ψ

with η, ψ induced by the chosen lift X̃. Then there exists a natural morphism

c : h∗ψ∗(OX)→ η∗(OX).

12We thank Peter Scholze for a related discussion.
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We now construct an overconvergent version of c. For w ∈ mZcycl
p

consider the commutative diagram

X LftX LftX,w

z∗(X
HT) (wz)∗(X

HT)

gw

fw

h

η

ψ
hw

with LftX,w the pushforward of LftX along ·w : TX{1} → TX{1}. Set ηw := gw◦η, and ψw := fw◦ψ.
By Proposition 7.23, Wang’s OC†,+ is the colimit in sheaves on Xv of the pullback of the ind-object
” lim−→w→1

”g∗wηw,∗OX on LftX to Xv. By construction, we have natural maps, compatible with c,

cw : h∗wψw,∗OX → ηw,∗OX .

Definition 7.25. For w ∈ mZcycl
p

, we let B+

X̃,w
be the pullback of ψw,∗OX to Xv. We also let

B†,+
X̃

= lim−→w→1
B+

X̃,w

It comes with an injection c†,+ : B†,+
X̃
→ OC†,+, which is not compatible with the Higgs fields on

both sides, but satisfies ΘOC†,+ = u−1ΘB†,+
X̃

, as all hw are linear over u−1z : T ]X{1} → T
]
X{1} (with

u from Proposition 7.7) and we have renormalized Wang’s Higgs field by z = 1− ζp. Finally, let

BX̃,w = B+

X̃,w
[ 1
p ], B†

X̃
= B†,+

X̃
[ 1
p ].

Proof of Proposition 7.21. LetM = (M, θM ) be a Faltings–small Higgs bundle on X . Let α > 1
p−1

be as in Definition 7.19 for M. One sees that M comes from a vector bundle on (wz)∗X
HT for

any w ∈ mZcycl
p

such that vp(w) < α− 1
p−1 . We have natural injective maps

BX̃,w → B
†
X̃
→ BX̃

inducing natural injective maps (to simplify notation, we omit the index of Θ in the superscript)

(M ⊗OX BX̃,w)Id⊗Θ+
1
z θM⊗Id=0 → (M ⊗OX B

†
X̃

)Id⊗Θ+
1
z θM⊗Id=0 → (M ⊗OX BX̃)Id⊗Θ+

1
z θM⊗Id=0

which are isomorphisms by Lemma 6.19. Therefore, one can replace BX̃ in Lemma 7.18 by B†
X̃
.

We also have an injective map
B†
X̃
→ OC†

induced by the inclusion c†,+ of Definition 7.25. This map gives an injection

(M ⊗OX B
†
X̃

)Id⊗Θ+
1
z θM⊗Id=0 → (M ⊗OX OC†)Id⊗Θ+θM⊗Id=0,

by using Id ⊗ c†,+ and multiplication by u−1. To check that this map is an isomorphism we may
argue locally and assume that X̃ is induced by a prismatic lift: all lifts are locally isomorphic and the
statement is natural in X̃. If η′ : X → XHT is induced by the prismatic lift, and j : XHT → z∗X

HT

is the natural map as before, then there is an injection j∗ψ∗(OX)→ η′∗(OX). It yields an injection

BX̃ ↪→ C := C+[ 1
p ] = α∗X(η′∗(OX)[ 1

p ]),

where C+ is the pullback of η′∗(OX) to the v-site of the generic fiber X . By Lemma 6.19 the injection
BX̃ → C induces an isomorphism on the H0 of the Dolbeault complexes for (M, θM ). As we have
seen above, the same holds for B†

X̃
→ C. This implies the same statement for the map induced

by OC† → C on Dolbeault complexes for (M, θM ), and thus for the one induced by B†
X̃
→ OC†

because we already know injectivity on the H0. This finishes the proof that SW
X̃

(M) ∼= SX̃(M). �

Remark 7.26. We can make the above formulas for SX̃ more explicit in the setup of §4.2, i.e.,
X = Spf(R) for some prism (A, I) over (A0, I0), and there is a fixed morphism (A, I)→ (A∞, I∞).
We use the lift X̃ = Spf(A/I2) with its natural morphism from Spf(A∞/I

2
∞). In this situation we

evaluate B+

X̃
,OC†,+, the pullback D+ of η∗(O) to Xv and the overconvergent variants on X∞ =

Xrig
∞ . Comparing η : X → LftX with the given splitting η′ : X → XHT realises all these rings as

subrings of B+
A,R∞

, which itself identifies with O(GA,R∞). Note that B+
A,R∞

= C+(X∞) in the
notation of the proof of Proposition 7.21. Set E := Ω1

R{−1} ⊗R R∞. Then we have the following:
(1) O(GA,R∞) = Γ•R∞(E)∧p is the p-completed PD-algebra on E,
(2) B+

X̃
(X∞) = Γ•R∞((1− ζp)E)∧p ,

(3) D+(X∞) = Sp(E) is the p-completed symmetric algebra on E considered as an R∞-module.
It contains Γ•R∞((1− ζp)E)∧p because (1− ζp) admits divided powers,
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(4) B+

X̃,w
(X∞) = Γ•R∞(w(1− ζp)E)∧p for some w ∈ mZcycl

p
,

(5) B†,+
X̃

(X∞) = lim−→w→1
Γ•R∞(w(1− ζp)E)∧p ,

(6) OC†,+(X∞) = lim−→w→1
Sp(wE), which is contained in O(GA,R∞) and contains B†,+

X̃
(X∞).

In summary, the proof of Proposition 7.21 now used the following diagram of injections:

(5) (2)

(6) (3) (1)
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