
Ordinal Computability

by Peter Koepke

University of Bonn
Mathematisches Institut, Beringstraße 1, D 53115 Bonn, Germany

Email: koepke@math.uni-bonn.de

February 7, 2009

Abstract

Ordinal computability uses ordinals instead of natural numbers in abstract
machines like register or Turing machines. We give an overview of the computa-
tional strengths of α-β-machines, where α and β bound the time axis and the
space axis of some machine model. The spectrum ranges from classical Turing

computability to ∞-∞-computability which corresponds to Gödel’s model of con-
structible sets. To illustrate some typical techniques we prove a new result on
Infinite Time Register Machines (= ∞-ω-register machines) which were introduced
in [5]: a real number x ∈

ω
2 is computable by an Infinite Time Register Machine iff

it is Turing computable from some finitely iterated hyperjump 0
(n).

Keywords: Ordinal machines, Infinite Time Register Machines

1 Ordinal computations 1

Standard computability theory is fundamentally based on the set N= {0, 1, 2,� } of nat-
ural numbers: steps of a computation are clocked by natural numbers (“time”), cells of a
Turing tape are indexed by natural numbers (“space”), and read and write registers
contain natural numbers (“space”). The canonical wellorder 0 < 1 < 2 < � of natural
numbers allows recursive algorithms, the arithmetic properties of the structure (ω, + , · ,
0, 1) allow to code various information. A standard Turing computation can be repre-
sented by a space-time function or diagram with natural numbers axes.

 �

↑ n+ 1 0 0 0 0 0 � 0 0 �
n 0 0 0 0 0 � 0 1 �

S

 �

P 4 1 1 1 1 1 � 1 1
A 3 1 1 1 1 1 � 1 1
C 2 0 0 0 1 1 � 1 1
E 1 0 0 1 1 0 � 0 0

0 1 0 0 0 0 � 0 0

0 1 2 3 4 � m m+ 1 � �
T I M E →

1. The author wants to thank Joel Hamkins and Philip Welch for a very inspiring discussion at the EMU

2008 workshop at New York in which the techniques and results bounding the strength of Infinite Time Register

Machines were suggested and conjectured.

1

A standard Turing computation. Head positions are indicated by shading.

The ordinal numbers

0 < 1 < 2 < 3 <�n < n +1 <�
<ω <ω + 1 <� < ω + n <� < ω + ω = ω · 2 < ω + ω +1 < ω · 2 +1 <�
<ω ·ω = ω2 <� < ω3 <� < ωω <� <ωω2

<�
<ωωω

ω
�

<� < α <α +1 <�
<ℵ1 <ℵ1 +1 <� <ℵ2 <� <ℵ3 <� <ℵω <� <�

were introduced by Georg Cantor to extend the natural numbers N into the
transfinite: ω is the smallest ordinal which follows the natural numbers 0, 1, 2, � ; α + 1
is the immediate successor of α . The class of all ordinals is called Ord.

There are strong analogies between the ordinal structure (Ord, < , + , · , 0, 1) and (N,

< ,+ , · , 0, 1):

− (Ord, <) is a wellorder, i.e., it is a strict linear order and every nonempty subset
has a < -minimal element;

− ordinal addition and multiplication satisfy recursive laws familiar from natural
number arithmetic.

On the other hand the ordinal line contains limit ordinals λ, i.e.,

0< λ∧∀α <λ∃β <λ:α < β.

Examples are given by ω, ω + ω, or ω ·ω and by all infinite cardinals ℵ0,ℵ1,ℵ2,� .

An obvious generalisation from the perspective of transfinite ordinal theory is to
replace the natural numbers in computations by ordinal numbers. For the Turing

machine model this means working on a Turing tape indexed by ordinals along a time
indexed by ordinals . At successor ordinals the ordinal machine behaves much like a
standard finite time and finite space machine. The behaviour at limit ordinals is gov-
erned by specific limit rules . Limit rules are derived from the usual limit operations in
the ordinals: if (αs)s<λ is a sequence of ordinals whose length λ is a limit ordinal, define
its limit and limit inferior by

lim
s→λ

αs =
⋃

s<λ

αs

and

liminf
s→λ

αs =
⋃

s<λ

⋂

s<r<λ

αr .

An ordinal computation can then be visualised like

2 Section 1

 �
↑

 �

λ 0 0 0 0 0 0 0 0 �
O

R β +1 1
D β 0 0 0 0 0 0 1
I

N

 �
A ω +1 0 0 0 0 0 � 0 0 �
L ω 0 0 0 0 0 � 0 1 �

 �

S 4 1 1 1 1 1 � 1 1
P 3 1 1 1 1 1 � 1 1
A 2 0 0 0 1 1 � 1 1
C 1 0 0 1 1 0 � 0 0
E 0 1 0 0 0 0 � 0 0

0 1 2 3 4 � ω ω + 1 � α � κ � � �
O R D I N A L T I M E →

An ordinal computation.

The limit rules will be applied independently of the machine state. Thus an ordinal
algorithm will be given by a standard program for a Turing, register or similar
machine.

More abstractly, ordinal computations have the following “shapes”:

space Ordspace Ord

stop

η

fK (η)

time Ord time Ord

The left diagram represent a halting computation which computes some ordinal
values fK (η) at the halting time η. The right computation does not halt in the available
time and thus diverges.

These diagrams suggest to consider restrictions of the available time and space by
some ordinals α and β, resp. Note that in the common von Neumann formalisation of
ordinals, an ordinal is the set of its predecessors:

α = {ξ |ξ ∈α}= {ξ |ξ <α}.

Ordinal computations 3

An α-β-machine has computation diagrams of the forms:

space βspace β

stop

η

fK (η)

time αtime α

This gives a spectrum of α-β-machines for ω 6 α 6∞ and ω 6 β 6∞ where the ω-ω-
machines should be equal to their standard counterparts. Here we let ∞ = Ord be the
set of all ordinals.

2 Register machines

For a concrete example we give a formal definition of register machines working on ordi-
nals. We base our presentation of infinite time machines on the unlimited register
machines as presented in [1]. Ordinal programs are standard programs.

Definition 1. Fix limit ordinals α and β, ω 6 α 6∞, ω 6 β 6∞. Let P = I0, I1,� , Is−1

be an URM program, i.e., a sequence of instructions as described in (i)-(v) below. Let Z:
β→ 2, which will serve as an oracle. A pair

I : θ→ω,R: θ→ (ωβ)

is an α-β-(register) computation by P if the following hold:

a) θ is an ordinal 6 α; θ is the length of the computation;

b) I(0) =0; the machine starts in state 0;

c) If t < θ and I(t) � s = {0, 1, � , s − 1} then θ = t + 1; the machine stops if the
machine state is not a program state of P;

d) If t < θ and I(t) ∈ state(P) then t + 1 < θ; the next configuration is determined by
the instruction II(t):

i. if II(t) is the instruction reset(Rn) then let I(t + 1) = I(t) + 1 and define

R(t+ 1): ω→Ord by

Rk(t +1) =

{

0, if k =n

Rk(t), if k� n

4 Section 2

ii. if II(t) is the instruction increase(Rn) then let I(t + 1) = I(t) + 1 and

define R(t+1): ω→Ord by

Rk(t+1) =

{

Rk(t) + 1, if k = n

Rk(t), if k � n

iii. if II(t) is the oracle instruction oracle(Rn) then define R(t+ 1): ω→Ord by

Rk(t+ 1) =

{

Z(Rn(t)), if k =n

Rk(t), if k � n

iv. if II(t) is the transfer instruction Rn=Rm then let I(t + 1) = I(t) + 1 and

define R(t+1): ω→Ord by

Rk(t +1) =

{

Rm(t), if k = n

Rk(t), if k� n

v. if II(t) is the jump instruction if Rm=Rn then goto q then let R(t + 1) =

R(t) and

I(t+1) =

{

q, if Rm(t) =Rn(t)
I(t) + 1, if Rm(t)� Rn(t)

e) If t < θ is a limit ordinal, then

∀k ∈ω(Rk(t) =

{

liminfr→t Rk(r) if liminfr→t Rk(r) < β

0 if liminfr→t Rk(r) = β

I(t) = liminf
r→t

I(r).

By the second clause in the definition of Rk(t) the register is reset in case
liminfr→t Rk(r)= β.

The register computation is obviously determined recursively by the initial register con-
tents R(0), the oracle Z and the program P. We call it the α-β-register computation by
P with input R(0) and oracle Z. If the computation stops then θ = η + 1 is a successor
ordinal and R(η) is the final register content. In this case we say that P α-β-register
computes R(η)(0) from R(0) and the oracle Z, and we write

P :R(0), Z�α,β R(η)(0).

The interpretation of programs yields associated notions of computability.

Definition 2. An n-ary function F : ωn → ω is α-β-register computable in the oracle Z

if there is a register program P such that for every n-tuple (a0,� , an−1)∈ ωω holds:

P : (a0,� , an−1, 0, 0,�), Z�α,β F (a0,� , an−1).

We then denote F by P Z. F is α-β-register computable if F is α-β-computable in the
empty oracle ∅.

Obviously any standard recursive function is α-β-computable.

Definition 3. A subset A ⊆ P(β) is α-β-register computable if there is a register pro-
gram P, and an oracle Y : β→ 2 such that for all Z ⊆ω:

P Y ×Z(0) = χA(Z)

Register machines 5

where Y × Z is some appropriate pairing of Y and Z and χA is the characteristic func-
tion of A.

In sections 4 and 5 we shall determine the computational strength of ∞-ω-register
machines. Earlier the author studied a weaker non-resetting type of infinitary register
machine, which was there called “Infinite Time Register Machine” [4]. Those machines
exactly corresponded to hyperarithmetic definitions. Since the ∞-β-machines introduced
above are in closer analogy with the established Infinite Time Turing Machines
(ITTM) of [2] we use the term Infinite Time Register Machine for the new concept. The
machines of [4] could be called Non-Resetting Infinite Time Register Machines .

Definition 4. Call an ∞-ω-register machine an Infinite Time Register Machine
(ITRM). Correspondingly we use the terms “ ITRM-computation” and “ ITRM-com-
putable” for “∞-ω-register computation” and “∞-ω-register computable”.

3 Strengths of ordinal machines

An obvious task is determine the class of α-β-computable functions and sets for varying
α and β. For register machines as defined above one obtains the following table. Note
that one should naturally have at least as much time available as there is space (α > β),
to be able to reach all possible register contents. There are still open positions (“?”) and
ongoing research. References behind the strength statements are to the bibliography.

Ordinal register computability

Register machines space ω space admissible α space Ord

time ω standard register
machine
computable = ∆1

0

- -

time
admissible α

? α register machine
(α recursion theory)
computable =
∆1(Lα) [6]

-

time Ord ITRM
Infinite time register
machine
computable = Lωω

[see sections 4 and 5]

? Ordinal register
machine
computable =
L∩P(Ord)
[7]

For Turing machines we get a nearly identical table with a marked difference
between ITRMs and ITTMs.

Ordinal Turing computability

6 Section 3

Turing space ω space admissible α space Ord
time ω standard Turing

machine
computable = ∆1

0

- -

time
admissible α

? α Turing machine
(α-recursion theory)
computable =
∆1(Lα) [6]

-

time Ord ITTM
∆1

1 (computable
in real parameter

(∆2
1

[2]

? Ordinal Turing

machine
computable =
L∩P(Ord)
[3]

4 Halting times of ITRMs

Determinations of α-β-computability strengths typically involve the combination of
techniques from recursion theory, admissibility theory, descriptive set theory, and set
theoretic constructibility theory. As an example and a new result we prove the estimate
for ITRMs in detail. One can view the proofs as an analysis of the computable power
of “resetting registers” at infinite liminf’s: a resetting register basically corresponds to
one hyperjump.

Let ω0
CK, ω1

CK, � , ωω
CK, � be the monotone enumeration of the admissible ordinals

and their limits. We shall prove:

Theorem 5. A real number a∈ ω2 is computable by an ITRM iff a∈Lω
ω

CK .

The implication from left to right, i.e., the upper bound for the set of ITRM-com-
putable reals, follows from bounding the halting times, i.e., the lengths of halting com-

putations, of ITRMs below ωω
CK.

Theorem 6. Consider an ITRM with register program P. Then there is some n < ω

such that for arbitrary inputs i < ω: if the ITRM-computation according to P with input i

and empty oracle halts then it halts before ωn
CK.

For the proof fix an infinite time register computation C

I: θ→ω, R: θ→ ωω

by P with some input (R0(0), R1(0),�) and oracle ∅. Assume that P only mentions reg-
isters among R0,� , Rl−1 .

Lemma 7. Let τ < θ be of the form τ = τ0 + δ where α is admissible >ω. Assume that

∀k < lRk(τ) = liminf
t<τ

Rk(t).

Then θ =∞.

Proof. Since computations can be composed by concatenation, we may assume that
τ0 =0 and τ = δ . Let I(δ) = n and

R(δ)= (n0,� , nl−1, 0, 0,�)

Halting times of ITRMs 7

where R0, � , Rl−1 includes all the registers mentioned in the program P . Since the con-
stellation at δ is determined by liminf’s there is some γ < δ such that

− ∀t∈ (γ, δ) I(t) > n and {t∈ (γ, δ)|I(t)= n} is closed unbounded in δ ;

− for all k < l: ∀t ∈ (γ, δ) Rk(t) > nk and {t∈ (γ, δ)|Rk(t) = nk} is closed unbounded
in δ .

These closed unbounded sets are ∆1-definable over the set Lδ . By the admissibility of
Lδ their intersection is closed unbounded in δ of ordertype δ . In particular one can
choose δ̄ ∈ (γ, δ) such that (I(δ̄), R0(δ̄),� , Rl−1(δ̄))= (I(δ), R0(δ),� , Rl−1(δ)) and

∀t∈ [δ̄ , δ](I(δ̄) 6 I(t)∧R0(δ̄) 6R0(t)∧� ∧Rl−1(δ̄) 6Rl−1(t)).

Then one can easily show by induction, using the liminf rules: If σ > δ̄ is of the form
σ = δ̄ + δ · ξ + η with η < δ then

(I(σ), R0(σ),� , Rl−1(σ)) = (I(δ̄ + η), R0(δ̄ + η),� , Rl−1(δ̄ + η)).

In particular the computation does not stop. �

Lemma 8. Let n < ω. Let τ < θ be of the form τ = τ̄ +ωn+1
CK and

card{k < l |Rk(τ) = 0}6n.

Then θ =∞.

Proof. Set N = {k < l |Rk(τ) = 0}. We prove the Lemma by induction on n. If n = 0
then ∀k < lRk(τ)= liminft<τ Rk(t). By Lemma 7, θ =∞.

Now consider n = m + 1 where the claim holds for m. Assume that θ < ∞. By
Lemma 5, there must be some k0 < l such that Rk0(τ) � liminft<τ Rk0(t). By the limit
rule, Rk0(τ) = 0 and liminft<τ Rk0(t) =ω. Take δ < τ such that

∀η ∈ (δ, τ)∀i∈ (l \N)∪{k0}:Ri(η)� 0.

Take τ0∈ (δ, τ) of the form τ0 = τ0̄ +ωn
CK = τ0̄ +ωm+1

CK . Then

card{k < l |Rk(τ0) = 0}6n− 1 =m.

But then by the induction hypothesis, θ =∞, contradiction. �

We get the following corollaries:

Theorem 9. Assume that θ > ωl+1
CK + 1 , where l is the number of registers mentioned in

the program P. Then θ =∞.

Theorem 10. If a real number a∈ ω2 is computable by an ITRM then a∈Lω
ω

CK .

Proof. The computations of a(n) for n < ω have lengths < ωl+1
CK + 1 for some fixed l <

ω. They can thus carried out absolutely inside the structure (Lω
ω

CK , ∈). Hence a ∈
Lω

ω

CK . �

5 Hyperjumps

The lower bound for the strengths of ITRM computability uses the characterization of

the reals in Lω
ω

CK by the finite hyperjumps 0, 0+, 0++, � , 0(k+1) = (0(k))+, � of constant

function 0.

8 Section 5

Assume a fixed recursive enumeration P0, P1, � of all register programs and let Pn
Z:

ω ⇀ ω be the partial function given by P with oracle Z. The hyperjump Z+ ∈ ω2 of Z ∈
ω2 is defined by:

Z+(n) = 1 iff {(i, j)∈ω ×ω |Pn
Z(2i · 3j)= 1} is a wellfounded relation.

The hyperjump can be computed by the following result from [5].

Theorem 11. The set WO= {Z ∈ ω2|Z codes a wellorder } is computable by an ITRM.

Proof. The following program P on an ITRM outputs yes/no depending on whether
the oracle Z codes a wellfounded relation. The program is a backtracking algorithm
which searches for a “leftmost” infinite descending chain in Z. A stack is used to
organise the backtracking. We code a stack (r0,� , rm−1) of natural numbers by r = 2r0 ·

3r1� pm−1
rm−1+1

. We present the program in pseudo-code and assume that it is translated
into a register program according to Definition 1 so that the order of commands is kept.
Also the stack commands like push are understood as macros which are inserted into
the code with appropriate renaming of variables and statement numbers.

push 1; %% marker to make stack non-empty

push 0; %% try 0 as first element of descending sequence

FLAG=1; %% flag that fresh element is put on stack

Loop: Case1: if FLAG=0 and stack=0 %% inf descending seq found

then begin; output ’no’; stop; end;

Case2: if FLAG=0 and stack=1 %% inf descending seq not found

then begin; output ’yes’; stop; end;

Case3: if FLAG=0 and length-stack > 1

%% top element cannot be continued infinitely descendingly

then begin; %% try next

pop N;

push N+1;

FLAG:=1; %% flag that fresh element is put on stack

goto Loop;

end;

Case4: if FLAG=1 and stack-is-decreasing

then begin;

push 0; %% try to continue sequence with 0

FLAG:=0; FLAG:=1; %% flash the flag

goto Loop;

end;

Case5: if FLAG=1 and not stack-is-decreasing

then begin;

pop N;

push N+1; %% try next

FLAG:=0; FLAG:=1; %% flash the flag

goto Loop;

end;

The correctness of this program is proved in [5]. �

From [8], Corollary VII.1.10 and the Notes for §VII.5 we obtain:

Proposition 12. A real a ∈ ω2 is an element of Lω
ω

CK iff a is standard Turing com-
putable from some 0(n) with n < ω.

Hyperjumps 9

By Theorem 11 the collection of ITRM-computable reals is closed with respect to the
hyperjump. It is also closed with respect to standard Turing computation. Proposition
12 then implies the converse direction of Theorem 5.

Theorem 13. Every real number a∈ ω2∩Lω
ω

CK is computable by an ITRM.

6 Conclusions and further considerations

Ordinal computability is able to characterise important classes of sets from higher recur-
sion theory, descriptive set theory, and constructibility theory. It remains to be seen
whether ordinal computability will have some further applications besides its unifying
role. Several cases of the strengths of α-β-computability still need to be determined and
are the subject of current research.

Concerning the specific result on ITRMs we plan to refine the above analysis to a
level-by-level correspondence between numbers of registers, numbers of the admissible
ordinals used to bound halting computations, and numbers of iterations of the hyper-
jump. One register should correspond to one admissible, and to one application of the
hyperjump. Further registers will be required for auxiliary classical computations and
bookkeeping.

Bibliography

[1] Nigel J. Cutland. Computability: An introduction to Recursive Function Theory . Perspectives in
Mathematical Logic. Cambridge University Press, 1980.

[2] Joel David Hamkins and Andy Lewis. Infinite Time Turing Machines. J. Symbolic Logic,
65(2):567–604, 2000.

[3] Peter Koepke. Turing computations on ordinals. Bull. Symbolic Logic, 11(3):377–397, 2005.

[4] Peter Koepke. Infinite Time Register Machines. In A. Beckmann et al, editor, Logical

Approaches to Computational Barriers , volume 3988 of Lecture Notes in Computer Science ,
pages 257–266. Springer Verlag, 2006.

[5] Peter Koepke and Russell Miller. An Enhanced Theory of Infinite Time Register Machines. In
A. Beckmann et al, editor, Logic and theory of Algorithms , volume 5028 of Lecture Notes in

Computer Science , pages 306–315. Springer Verlag, 2008.

[6] Peter Koepke and Benjamin Seyfferth. Ordinal machines and admissible recursion theory.
Annals of Mathematical Logic, to appear, 2009.

[7] Peter Koepke and Ryan Siders. Register Computations on Ordinals. Archive for Mathematical
Logic, 47:529–548, 2008.

[8] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathematical
Logic. Springer-Verlag, 1999.

10 Section

