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‡Équipe de Logique Mathématique, UFR de Mathématiques, Université Denis-Diderot Paris 7,

2 place Jussieu, 75251 Paris Cedex 05, France

Email: koerwien@logique.jussieu.fr

Received 20 September 2005; revised 28 December 2005 and 23 January 2006

The notion of ordinal computability is defined by generalising standard Turing computability

on tapes of length ω to computations on tapes of arbitrary ordinal length. The fundamental

theorem on ordinal computability states that a set x of ordinals is ordinal computable from

ordinal parameters if and only if x is an element of the constructible universe L. In this

paper we present a new proof of this theorem that makes use of a theory SO axiomatising

the class of sets of ordinals in a model of set theory. The theory SO and the standard

Zermelo–Fraenkel axiom system ZFC can be canonically interpreted in each other. The

proof of the fundamental theorem is based on showing that the class of sets that are ordinal

computable from ordinal parameters forms a model of SO.

1. Introduction

In Koepke (2005), the first author defined ordinal Turing machines and the associated

notion of ordinal computability . The main result of Koepke (2005) asserts that ordinal

computability is an absolute and stable notion.

Theorem 1. A set x of ordinals is ordinal computable from a finite set of ordinal

parameters if and only if it is an element of the constructible universe L.

In the present paper we give a new proof of the theorem that does not depend on coding

the elements of L into an ordinal Turing machine. To connect ordinal computability and

constructibility, the proof introduces two notions that might be of further interest:

— a recursive truth function T : Ord → 2 ;

— a theory SO satisfied by the class of sets of ordinals in a model of ZFC.

In Section 2 we recall the basic definitions of ordinal computability. The theory SO

and some consequences are presented in Section 3. In Section 4 we define a structure

(�,≡,�) for the language of set theory within SO. We show in Section 5 that (�,≡,�)

is actually a model of ZFC. Section 6 defines the recursive truth function T , which is

ordinal computable. The function T codes so much information that one can read off a
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Fig. 1. A standard Turing computation. Head positions are indicated by boxes.

model of SO from T (Section 7). All the components are put together in Section 8 to

prove the main theorem.

Our work was inspired by the infinite time Turing machines introduced by Joel D.

Hamkins, Jeff Kidder and Andy Lewis (Hamkins and Lewis 2000). The theory SO was

studied in the the second author’s diploma thesis (Koerwien 2001).

2. Ordinal Turing machines

One can visualise a standard Turing computation as a time-like sequence of elementary

read-write-move operations carried out by one or more ‘heads’ on ‘tapes’. The sequence of

actions is determined by the initial tape contents and by a finite Turing program . We may

assume that Turing machines act on tapes whose cells are indexed by the set ω (= �) of

natural numbers 0, 1, . . . and contain 0’s or 1’s. A standard Turing computation is depicted

in Figure 1.

An obvious generalisation from the perspective of transfinite ordinal theory is to extend

such calculations to tapes whose cells are indexed by the class Ord of all ordinal numbers .

At limit ordinals the tape contents, program states and head positions are defined as

inferior limits . This is depicted in Figure 2.

Such ordinal Turing machines are formalised by the following definitions.

Definition 1.

(a) A command is a 5-tuple C = (s, c, c′, m, s′) where s, s′ ∈ ω and c, c′, m ∈ {0, 1}; the

natural number s is the state of the command C . The effect of the command C is

that if the machine is in state s and reads the symbol c under its read-write head, it

then writes the symbol c′, moves the head left if m = 0 or right if m = 1, and goes

into state s′. States correspond to the ‘line numbers’ or labels of some programming

languages.
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Fig. 2. An ordinal computation. Head positions are indicated by boxes.

(b) A program is a finite set P of commands satisfying the following structural condi-

tions:

(i) If (s, c, c′, m, s′) ∈ P , there is (s, d, d′, n, t′) ∈ P with c �= d; thus, in state s the

machine can react to reading a ‘0’ as well as to reading a ‘1’.

(ii) If (s, c, c′, m, s′) ∈ P and (s, c, c′′, m′, s′′) ∈ P , then c′ = c′′, m = m′, s′ = s′′; this means

that the course of the computation is completely determined by the sequence of

program states and the initial cell contents.

(c) For a program P , let

states(P ) = {s | ∃c, c′, m, s′ : (s, c, c′, m, s′) ∈ P }

be the set of program states .

The intended semantics of a program is to modify the contents of the transfinite Turing

tape according to the program commands. At a given time, zeros and ones on the tape

can be described as a function c : Ord → 2. In our applications the content function c

will always have a bounded carrier, that is, {ξ ∈ Ord | c(ξ) �= 0} is a set. This allows us

to code the collection of all (relevant) tape contents as one definable class �. We could,

for example, define

� = {d | ∃ϑ ∈ Ord d : ϑ → 2} =<Ord 2.

In the following we shall, however, treat tape contents as if they were defined for all

ordinals.
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Definition 2. Let P be a program. A triple

S : ϑ → ω,H : ϑ → Ord, T : ϑ → �

is an ordinal computation by P if the following hold:

(a) ϑ is a successor ordinal or ϑ = Ord; ϑ is the length of the computation.

(b) S(0) = H(0) = 0; the machine starts in state 0 with head position 0.

(c) If t < ϑ and S(t) �∈ state(P ), then ϑ = t+ 1; the machine stops if the machine state is

not a program state of P .

(d) If t < ϑ and S(t) ∈ state(P ), then t+1 < ϑ; choose the unique command (s, c, c′, m, s′) ∈
P with S(t) = s and T (t)H(t) = c. This command is executed as follows:

T (t+ 1)ξ =

{

c′, if ξ = H(t)

T (t)ξ , otherwise

S(t+ 1) = s′

H(t+ 1) =







H(t) + 1, if m = 1

H(t) − 1, if m = 0 and H(t) is a successor ordinal

0, otherwise.

(e) If t < ϑ is a limit ordinal, the machine constellation at t is determined by taking

inferior limits:

∀ξ ∈ OrdT (t)ξ = lim inf
r→t

T (r)ξ

S(t) = lim inf
r→t

S(r)

H(t) = lim inf
s→t,S (s)=S (t)

H(s).

The computation is obviously recursively determined by the initial tape contents T (0) and

the program P . We call it the ordinal computation by P with input T (0). If the computation

stops, ϑ = β + 1 is a successor ordinal and T (β) is the final tape content. In this case we

say that P computes T (β) from T (0) and write P : T (0) 	→ T (β).

Definition 3. A partial function F : � ⇀ � is ordinal computable if there is a program P

such that P : T 	→ F(T ) for every T ∈ dom(F).

By coding, the notion of ordinal computability can be extended to other domains. We

can, for example, code an ordinal δ ∈ Ord by the characteristic function χ{δ} : Ord → 2,

χ{δ}(ξ) = 1 iff ξ = δ, and give the following definition.

Definition 4. A partial function F : Ord ⇀ Ord is ordinal computable if the function

χ{δ} 	→ χ{F(δ)} is ordinal computable.

Definition 5. A subset x ⊆ Ord is ordinal computable from a finite set of ordinal parameters

if there is a finite subset z ⊆ Ord and a program P such that P : χz 	→ χx.

Obviously, ordinal computability extends standard Turing computability. Standard

methods, such as coding several ordinal tapes in one ordinal tape, can also be implemented
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in ordinal Turing machines. A number of concrete ordinal programs are given in

Koepke (2005); as usual, algorithms are defined in intuitive pseudo-code.

As an example, consider the Gödel pairing function for ordinals, which will be used

later to code syntactical notions. It is defined recursively by

G(α, β) = {G(α′, β′) | max(α′, β′) < max(α, β) or

(max(α′, β′) = max(α, β) and α′ < α) or

(max(α′, β′) = max(α, β) and α′ = α and β′ < β)}.

We sketch an algorithm for computing γ = G(α, β) that can be implemented straightfor-

wardly on a Turing machine with several tapes, each holding one of the variables. We

represent the ordinal α by its characteristic function χα, that is, by a tape starting with α

ones, having value zero otherwise.

Goedel_Pairing:

0 alpha’:=0

1 beta’:=0

2 eta:=0

3 flag:=0

4 gamma:=0

5 if alpha=alpha’ and beta=beta’ then print gamma, stop fi

6 if alpha’=eta and and beta’=eta and flag=0 then

alpha’=:0, flag:=1, go to 5 fi

7 if alpha’=eta and and beta’=eta and flag=1 then

eta:=eta+1, alpha’:=eta, beta’:=0, gamma:=gamma+1, go to 5 fi

8 if beta’<eta and flag=0 then

beta’:=beta’+1, gamma:=gamma+1, go to 5 fi

9 if alpha’<eta and flag=1 then

alpha’:=alpha’+1, gamma:=gamma+1, go to 5 fi

Observe that by the computation rules in Definition 2 (e) this algorithm will always

cycle to Command 5 at limit times. The inverse functions G0 and G1 satisfying

∀γγ = G(G0(γ), G1(γ))

are also ordinal computable. To compute G0(γ), compute G(α, β) for α, β � γ until you

find α, β with G(α, β) = γ, then set G0(γ) = α.

3. The theory SO of sets of ordinals

Ordinal Turing computations do not directly produce highly hierarchical sets but ordinals

and sets of ordinals. It is well known that a model of Zermelo–Fraenkel set theory with

the axiom of choice (ZFC) is determined by its sets of ordinals (Jech 2003, Theorem

13.28). This motivates the formulation of a theory SO that axiomatises the sets of ordinals

in a model of ZFC. The theory SO is two-sorted, where the intended interpretations are

ordinals and sets of ordinals. Let LSO be the language

LSO := {On, SOn, <,=,∈, g}



P. Koepke and M. Koerwien 6

where On and SOn are unary predicate symbols, <, = and ∈ are binary predicate symbols,

and g is a two-place function. The intended standard interpretation of g is given by the

Gödel pairing function G. To simplify the notation, we use lower-case Greek letters to

range over elements of On and lower case Roman letters to range over elements of

SOn.

Definition 6. The theory SO is formulated in the first-order language LSO and consists of

the following axioms:

1 Well-ordering axiom (WO):

∀α, β, γ(¬α < α ∧ (α < β ∧ β < γ → α < γ) ∧ (α < β ∨ α = β ∨ β < α))∧
∀a(∃α(α ∈ a) → ∃α(α ∈ a ∧ ∀β(β < α → ¬β ∈ a))).

2 Axiom of infinity (INF – existence of a limit ordinal):

∃α(∃β(β < α) ∧ ∀β(β < α → ∃γ(β < γ ∧ γ < α))).

3 Axiom of extensionality (EXT):

∀a, b(∀α(α ∈ a ↔ α ∈ b) → a = b).

4 Initial segment axiom (INI):

∀α∃a∀β(β < α ↔ β ∈ a).

5 Boundedness axiom (BOU):

∀a∃α∀β(β ∈ a → β < α).

6 Pairing axiom (GPF – Gödel Pairing Function):

∀α, β, γ(g(β, γ) � α ↔ ∀δ, ε((δ, ε) <∗ (β, γ) → g(δ, ε) < α)).

Here (α, β) <∗ (γ, δ) stands for

∃η, ϑ(η = max(α, β) ∧ ϑ = max(γ, δ)∧
(η < ϑ ∨ (η = ϑ ∧ α < γ) ∨ (η = ϑ ∧ α = γ ∧ β < δ))),

where γ = max(α, β) abbreviates (α > β ∧ γ = α) ∨ (α � β ∧ γ = β).

7 Surjectivity of pairing (SUR):

∀α∃β, γ(α = g(β, γ)).

8 Axiom schema of separation (SEP):

For all LSO-formulae ϕ(α, P1, . . . , Pn), where P1, . . . , Pn are variables for ordinals or sets

of ordinals, postulate:

∀P1, . . . , Pn∀a∃b∀α(α ∈ b ↔ α ∈ a ∧ ϕ(α, P1, . . . , Pn)).

9 Axiom schema of replacement (REP):

For all LSO-formulae ϕ(α, β, P1, . . . , Pn), where P1, . . . , Pn are variables for ordinals or

sets of ordinals, postulate:

∀P1, . . . , Pn(∀ξ, ζ1, ζ2(ϕ(ξ, ζ1, P1, . . . , Pn) ∧ ϕ(ξ, ζ2, P1, . . . , Pn) → ζ1 = ζ2) →
∀a∃b∀ζ(ζ ∈ b ↔ ∃ξ ∈ aϕ(ξ, ζ, P1, . . . , Pn))).

10 Powerset axiom (POW):

∀a∃b(∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ a) → ∃ξ∀β(β ∈ z ↔ g(β, ξ) ∈ b))).

In a model of ZFC, the class of sets of ordinals together with the standard relations

<, = and ∈, and the Gödel pairing function G constitutes a model of SO. Note that the

powerset axiom of SO requires the axiom of choice since it stipulates the existence of

well-ordered powersets. Thus, we have the following theorem.
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Theorem 2. The theory SO can be interpreted in the theory ZFC.

For the converse direction, which will be proved in the two subsequent sections, we

first indicate that all basic mathematical notions can be reasonably formalised within the

system SO. Beyond the specific requirements of the present paper, this also shows that

the theory SO might have some wider interest as a foundational theory.

For the formalisation of mathematics within SO we make use of the familiar class term

notation A = {α | ϕ(α)} to denote classes of ordinals. If A = {α | ϕ(α)} is a non-empty

class of ordinals, that is, ∀α ∈ AOn(α), let min(A) denote the minimal element of A. The

existence of a unique minimum follows from the axioms INI, SEP and WO. BOU ensures

the existence of an upper bound for each set a, the least of which will be denoted lub(a).

By INI, the classes ια := {β | β < α} are sets. Using SEP and INI, one sees that the union

and intersection of two sets are again sets. Finite sets are denoted by {α0, α1, . . . , αn−1}.
Their existence is implied by INI and SEP. We write POW(b, a) for b being a set satisfying

POW for a; note that in SO the set b is not uniquely determined by a. ω denotes the

least element of the class of limit numbers, which by INF is not empty. Finally, let

0 := min({α | On(α)}), 1 := lub({0}), and so on.

The inverse functions G1, G2 of G are defined via the properties α = G1(β) ↔ ∃γ(β =

G(α, γ)) and α = G2(β) ↔ ∃γ(β = G(γ, α)). The axioms GPF and SUR imply the well-

known properties of the Gödel pairing function and its projections, such as the bijectivity

and monotonicity properties. To simplify the notation, we write (α, β) := G(α, β). Every

set can be regarded as a set of pairs a = {(α, β) | (α, β) ∈ a}, or more generally as a set of

n-tuples. In this way, n-ary relations and functions on ordinals can be represented by sets.

We now define some further notions connected with relations and functions.

Definition 7. For sets or classes R,X, Y , f, we define the following notions in SO:

� := ι0

dom(R) := {α | ∃β((α, β) ∈ R)}

ran(R) := {β | ∃α((α, β) ∈ R)}

fun(f) := ∀α, β1, β2((α, β1) ∈ f ∧ (α, β2) ∈ f → β1 = β2)

f : X → Y := fun(f) ∧ dom(f) = X ∧ ran(f) ⊂ Y

α = f(β) := (α, β) ∈ f

αRβ := (α, β) ∈ R

X × Y := {γ | G1(γ) ∈ X ∧ G2(γ) ∈ Y }

X � Y := {(α, β) ∈ X | α ∈ Y }.

The axioms of SO imply that these notions have their usual basic properties. We can

now prove transfinite induction and recursion in SO.

Theorem 3 (SO). Let ϕ(α,X1, . . . , Xn) be an LSO-formula. Then for all X1, . . . , Xn,

∀α((∀β < αϕ(β,X1, . . . , Xn)) → ϕ(α,X1, . . . , Xn))
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implies

∀αϕ(α,X1, . . . , Xn).

Proof. If the statement were not true, by WO, there would be a minimal counterexample

α, contradicting the assumption.

Theorem 4 (SO). Let R : On × SOn → On be a function defined by some formula

ϕ(α, f, β, X1, . . . , Xn). Then there exists a unique function F : On → On defined by a

formula ψ(α, β, X1, . . . , Xn) such that

∀α(F(α) = R(α, F � ια)). (∗)

Proof. The proof is similar to the proof of the recursion theorem in ZF: we define

the notion of approximation functions, which are set-functions defined on proper initial

segments of Ord, satisfying (∗) on their domain. Then we obtain F as the union of all of

these approximation functions.

As in ZF, this result can be generalised from the relation < to arbitrary set-like

well-founded relations. One could now develop further mathematical notions – numbers,

spaces, first-order syntax and semantics – in SO in much the same way as one does in

standard set theory.

4. Assembling sets along well-founded relations

In standard set theory, a set z can be represented as a point in a well-founded relation:

consider the ∈-relation on the transitive closure TC({z}) with the distinguished element

z ∈ TC({z}). By the Mostowski isomorphism theorem, z is uniquely determined by the

isomorphism type of the pair (z,∈� TC({z})). So one may represent z by some pair (x, Rx)

such that Rx is a well-founded relation on ordinals and (x, Rx) ∼= (z,∈� TC({z})).
Working in the theory SO, we can assume that the relation Rx is a set of ordinals and

that the point (x, Rx) is coded as a set of ordinals by defining the ordered pair of an

ordinal and a set of ordinals as

(x, Rx) = {G(x, α) | α ∈ Rx}.

So we assume SO for the following construction . We shall eventually define a model of

ZFC within SO. Constructions of set-theoretic structures from collections of well-founded

relations are common in higher-order recursion theory, such as, for example, in the

construction of the admissible set LωCK
1

from the hyperarithmetic reals (Sacks 1990).

Definition 8. An ordered pair x = (x, Rx) is a point if Rx is a well-founded relation on

ordinals and x ∈ dom(Rx). Let � be the class of all points. Unless specified otherwise, we

use Rx to denote the well-founded relation of the point x.

Note that, according to our previous considerations, one can reasonably define the class

� in SO as well as in ZFC. In ZFC, (x,∈� TC({x})) is a point, and any point x = (x, Rx)

can be interpreted as a standard set I(x): define recursively

Ix : dom(Rx) → V , by Ix(u) = {Ix(v) | vRxu}.
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Then let I(x) = Ix(x) be the interpretation of x. Note that for points x and y

Ix(u) = Iy(v) iff {Ix(u
′) | u′Rxu} = {Ix(v

′) | v′Ryv}

iff (∀u′Rxu∃v′RyvIx(u
′) = Iy(v

′)) ∧ (∀v′Ryv∃u
′RxuIx(u

′) = Iy(v
′)).

This means that the relation Ix(u) = Iy(v) in the variables u and v can be defined recursively

without actually forming the interpretations Ix(u) and Ix(v). Hence this relation can be

defined in SO.

Definition 9. With Rx and Ry well-founded relations on ordinals, define a relation ≡ on

points (u, Rx), (v, Ry) by induction on the product well-order Rx × Ry:

(u, Rx) ≡ (v, Ry) iff ∀u′Rxu∃v′Ryv(u
′, Rx)

≡ (v′, Ry) ∧ ∀v′Ryv∃u
′Rxu(u

′, Rx)

≡ (v′, Ry).

Lemma 1 (SO). ≡ is an equivalence relation on �.

Proof.

Reflexivity: Consider a point x = (x, Rx). We show by induction on Rx that for all

u ∈ dom(Rx) we have (u, Rx) ≡ (u, Rx). Assume that the claim holds for all vRxu.

Consider some vRxu. By the induction assumption, (v, Rx) ≡ (v, Rx). This implies

∀vRxu∃wRxu(v, Rx) ≡ (w,Rx).

By symmetry, we also have

∀wRxu∃vRxu(v, Rx) ≡ (w,Rx).

Together these imply (u, Rx) ≡ (u, Rx).

In particular, x = (x, Rx) ≡ (x, Rx) = x.

Symmetry: Consider points x = (x, Rx) and y = (y, Ry). We show by induction on the

well-founded relation Rx × Ry that

(u, Rx) ≡ (v, Ry) iff (v, Ry) ≡ (u, Rx).

Assume that the claim holds for all (u′, v′) with u′Rxu and v′Ryv. Assume that (u, Rx) ≡
(v, Ry). To show that (v, Ry) ≡ (u, Rx), consider v′Ryv. By assumption, take u′Rxu such

that (u′, Rx) ≡ (v′, Ry). By the induction assumption on symmetry, (v′, Ry) ≡ (u′, Rx).

Hence

∀v′Ryv∃u
′Rxu(v

′, Ry) ≡ (u′, Rx).

Similarly,

∀u′Rxu∃v′Ryv(v
′, Ry) ≡ (u′, Rx),

and thus (v, Ry) ≡ (u, Rx). This shows

(u, Rx) ≡ (v, Ry) → (v, Ry) ≡ (u, Rx).

By the symmetry of the situation, the implication from right to left also holds and

(u, Rx) ≡ (v, Ry) ↔ (v, Ry) ≡ (u, Rx).



P. Koepke and M. Koerwien 10

In particular, for x = (x, Rx) and y = (y, Ry)

x ≡ y ↔ y ≡ x.

Transitivity: Consider points x = (x, Rx), y = (y, Ry) and z = (z, Rz). We show by induction

on the well-founded relation Rx × Ry × Rz that

(u, Rx) ≡ (v, Ry) ∧ (v, Ry) ≡ (w,Rz) → (u, Rx) ≡ (w,Rz).

Assume that the claim holds for all (u′, v′, w′) with u′Rxu, v
′Ryv and w′Rzw. Assume

also that

(u, Rx) ≡ (v, Ry) ∧ (v, Ry) ≡ (w,Rz).

To show that (u, Rx) ≡ (w,Rz), consider u′Rxu. By (u, Rx) ≡ (v, Ry), take v′Ryv such

that (u′, Rx) ≡ (v′, Ry). By (v, Ry) ≡ (w,Rz), take w′Rzw such that (v′, Ry) ≡ (w′, Rz).

By the inductive assumption, (u′, Rx) ≡ (v′, Ry) and (v′, Ry) ≡ (w′, Rz) imply that

(u′, Rx) ≡ (w′, Rz). Thus,

∀u′Rxu∃w′Rzw(u′, Rx) ≡ (w′, Rz).

Similarly,

∀w′Rzw∃u′Rxu(u
′, Rx) ≡ (w′, Rz).

So, (u, Rx) ≡ (w,Rz). In particular, for x = (x, Rx), y = (y, Ry) and z = (z, Rz)

x ≡ y ∧ y ≡ z → x ≡ z.

We now define a membership relation for points.

Definition 10. Let x = (x, Rx) and y = (y, Ry) be points. Then set

x � y iff ∃vRyyx ≡ (v, Ry).

Lemma 2 (SO). The equivalence relation ≡ is a congruence relation with respect to �,

that is,

x � y ∧ x ≡ x′ ∧ y ≡ y′ → x′ � y′.

Proof. Let x � y ∧ x ≡ x′ ∧ y ≡ y′ → x′ � y′. Take vRyy such that x ≡ (v, Ry). By

y ≡ y′, take v′Ry′y′ such that (v, Ry) ≡ (v′, Ry′ ). Since ≡ is an equivalence relation, the

equivalences x ≡ x′, x ≡ (v, Ry) and (v, Ry) ≡ (v′, Ry′ ) imply x′ ≡ (v′, Ry′ ). Hence x′ � y′.

5. The class of points satisfies ZFC

We show that the class � of points with the relations ≡ and � satisfies the axioms ZFC

of Zermelo–Fraenkel set theory with the axiom of choice. For the existence axioms of

ZFC we prove a lemma about combining points into a single point.

Lemma 3 (SO). Let (xi | i ∈ A) be a set-sized definable sequence of points, that is, A is a

set of ordinals and the function i 	→ xi ∈ � is definable. Then there is a point y = (y, Ry)
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such that for all points x

x � y iff ∃i ∈ Ax ≡ xi.

Proof. For i ∈ A let xi = (xi, Ri). Define points x′
i = (x′

i, R
′
i) by ‘colouring’ every element

of dom(Ri) by the ‘colour’ i:

x′
i = (i, xi) and R′

i = {((i, α), (i, β)) | (α, β) ∈ Ri}.

The points (x′
i, R

′
i) and (xi, Ri) are isomorphic, so (x′

i, R
′
i) ≡ (xi, Ri). We may thus assume

that the domains of the well-founded relations Ri are pairwise disjoint. Take some

y �∈
⋃

i∈A dom(Ri) and define the point y = (y, Ry) by

Ry =
⋃

i∈A

Ri ∪ {(xi, y) | i ∈ A}.

Consider i ∈ A. If x ∈ dom(Ri), the iterated Ri-predecessors of x are equal to the iterated

Ry-predecessors of x. Hence (x, Ri) ≡ (x, Ry).

Assume now that x � y. Take vRyy such that x ≡ (v, Ry). Take i ∈ A such that v = xi.

By the previous remark,

x ≡ (v, Ry) = (xi, Ry) ≡ (xi, Ri) = xi.

Conversely, consider i ∈ A and x ≡ xi. Then x ≡ xi = (xi, Ri) ≡ (xi, Ry) and xiRyy. This

implies x � y.

We are now able to canonically interpret the theory ZFC within SO.

Theorem 5 (SO). � = (�,≡,�) is a model of ZFC.

Proof.

Extensionality: We need to show the axiom of extensionality holds in �:

∀x∀y(∀z(z � x ↔ z � y) → x ≡ y).

Consider points x and y such that ∀z(z � x ↔ z � y), and consider uRxx. Then

(u, Rx) � (x, Rx) = x. By assumption, (u, Rx) � (y, Ry). By definition, take vRyy such

that (u, Rx) ≡ (v, Ry). Thus

∀uRxx∃vRyy(u, Rx) ≡ (v, Ry).

By exchanging x and y, we also get

∀vRyy∃uRxx(u, Rx) ≡ (v, Ry).

Hence x ≡ y.

Pairing: We need to show the axiom of pairing holds in �:

∀x∀y∃z∀w(w � z ↔ (w ≡ x ∨ w ≡ y)).

Consider points x = (x, Rx) and y = (y, Ry). By the comprehension lemma, Lemma 3,

there is a point z = (z, Rz) such that for all points w

w � z ↔ (w ≡ x ∨ w ≡ y).
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Unions: We need to show the axiom of unions holds in �:

∀x∃y∀z(z � y ↔ ∃w(w � x ∧ z � w)).

Consider a point x = (x, Rx). Let

A = {i ∈ dom(Rx) | ∃u ∈ dom(Rx)iRxuRxx}.

For i ∈ A define the point xi = (i, Rx). By the comprehension lemma, Lemma 3, there

is a point y = (y, Ry) such that for all points z

z � y ↔ ∃i ∈ Az ≡ xi.

To show the axiom, consider some z � y. Take i ∈ A such that z ≡ xi. Take

u ∈ dom(Rx) such that iRxuRxx. Then z ≡ xi = (i, Rx) � (u, Rx) � (x, Rx) = x, that is,

∃w(z � w � x).

Conversely, assume that ∃w(z � w � x) and take w such that z � w � x. Take uRxx

such that w ≡ (u, Rx). Then z � (u, Rx). Take iRxu such that z ≡ (i, Rx) = xi. Then

z � y.

Replacement schema: We need to show the replacement schema holds in �, that is, for

every first-order formula ϕ(u, v) in the language of ≡ and � the following is true

in �:

∀u, v, v′((ϕ(u, v) ∧ ϕ(u, v′)) → v ≡ v′) → ∀x∃y∀z(z � y ↔ ∃u(u � x ∧ ϕ(u, z))).

Note that the formula ϕ may contain further free parameters, which we do not

mention for the sake of simplicity. Assume that ∀u, v, v′((ϕ(u, v) ∧ ϕ(u, v′)) → v ≡ v′)

and let x = (x, Rx) be a point. Let A = {i | iRxx}. For each i ∈ A we have the

point (i, Rx) � (x, Rx) = x. Using replacement and choice in SO, we can pick for each

i ∈ A a point zi = (zi, Rzi ) such that ϕ((i, Rx), zi) holds if such a point exists. By the

comprehension lemma, Lemma 3, there is a point y = (y, Ry) such that for all points z

z � y ↔ ∃i ∈ Az ≡ zi.

To show the instance of the replacement schema under consideration, assume that

z � y. Take i ∈ A such that z ≡ zi. Then (i, Rx) � (x, Rx) = x, ϕ((i, Rx), zi) and

ϕ((i, Rx), z). Hence ∃u(u � x ∧ ϕ(u, z)).

Conversely, assume that ∃u(u � x ∧ ϕ(u, z)). Take u � x such that ϕ(u, z). Take

iRxx, i ∈ A such that u ≡ (i, Rx). Then ϕ((i, Rx), z). By the definition of zi, we have

ϕ((i, Rx), zi). The functionality of the formula ϕ implies z ≡ zi. Hence ∃i ∈ Az ≡ zi and

z � y.

Separation schema: The replacement schema also implies the separation schema.

Powersets: We need to show the axiom of powersets holds in �:

∀x∃y∀z(z � y ↔ ∀w(w � z → w � x)).

By the separation schema, it suffices to show that

∀x∃y∀c(∀w(w � c → w � x) → c � y).
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Consider a point x = (x, Rx). Let F = dom(Rx) ∪ ran(Rx) be the field of Rx. By the

powerset axiom of SO, choose some set P such that Pow(P , F):

∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ F) → ∃ξ∀β(β ∈ z ↔ (β, ξ) ∈ P )).

Choose two large ordinals δ and y such that

∀α ∈ Fα < δ and ∀ξ(ξ ∈ ran(P ) → (δ, ξ) < y).

Define a point y = (y, Ry) by

Ry = Rx ∪ {(β, (δ, ξ)) | (β, ξ) ∈ P } ∪ {((δ, ξ), y) | ξ ∈ ran(P )}.

To show the axiom, consider some point c = (c, Rc) such that ∀w(w � c → w � x).

Define a corresponding subset z of F by

z = {β ∈ F | ∃vRcc(v, Rc) ≡ (β, Rx)}.

We may assume for simplicity that z �= �. By the powerset axiom of SO, choose

ξ ∈ ran(P ) such that

∀β(β ∈ z ↔ (β, ξ) ∈ P ).

We claim that ((δ, ξ), Ry) ≡ c and thus c � y.

Consider βRy(δ, ξ). By the definition of Ry , we have (β, ξ) ∈ P , so β ∈ z. By the

definition of z, choose vRcc such that (v, Rc) ≡ (β, Rx) ≡ (β, Ry).

Conversely, consider vRcc. Then (v, Rc) � (c, Rc) = c. The subset property implies

(v, Rc) � (x, Rx) = x. Take βRxx such that (v, Rc) ≡ (β, Rx) ≡ (β, Ry). But, by definition,

β ∈ z, (β, ξ) ∈ P and βRy(δ, x).

Axiom of choice: We need to show the axiom of choice holds in �:

∀x((∀y, z((y � x ∧ z � x) → (∃uu � y ∧ (¬y ≡ z → ¬∃u(u � y ∧ u � z))))) →
∃w∀y(y � x → ∃u((u � w ∧ u � y) ∧ ∀v((v � w ∧ v � y) → u ≡ v)))).

Let x = (x, Rx) ∈ � be a point such that

∀y, z((y � x ∧ z � x) → (∃uu � y ∧ (¬y ≡ z → ¬∃u(u � y ∧ u � z)))).

Choose an ordinal α ∈ dom(Rx) and define the point w = (α, Rw) by letting its

‘elements’ be least ordinals in the ‘elements’ of x:

Rw = Rx ∪ {(ξ, α) | ∃ζ(ξRxζRxx ∧ (∀ξ′ < ξ∀ζ ′((ζ, Rx) ≡ (ζ ′, Rx) → ¬(ξRxξ
′Rxζ))))}.

To show that w witnesses the axiom of choice for x, consider a point y with y � x.

We may assume that y is of the form y = (ζ, Rx) where ζRxx. By the assumption on

x, there exists u � y. Take some ξ such that (ξ, Rx) ≡ u. We may assume that ζ and ξ

with these properties are chosen so that ξ is minimal in the ordinals. Then

ξRxζRxx ∧ (∀ξ′ < ξ∀ζ ′((ζ, Rx) ≡ (ζ ′, Rx) → ¬(ξRxξ
′Rxζ))), (+)

so ξRwα. Thus u � w. To show the uniqueness of this u with u � w ∧ u � y, consider

some v with v � w ∧ v � y. We may assume that v is of the form v = (ξ′, Rw) with

ξ′Rwα. By the definition of Rw , we choose some ζ ′ such that

ξ′Rxζ
′Rxx ∧ (∀ξ′′ < ξ′∀ζ ′′((ζ ′, Rx) ≡ (ζ ′′, Rx) → ¬(ξ′Rxξ

′′Rxζ
′))). (×)
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Now

v � y � x and v = (ξ′, Rw) � (ζ ′, Rw) � (x, Rx) = x.

Since the ‘elements’ of x are ‘pairwise disjoint’, we have y ≡ (ζ ′, Rw). Since y ≡ (ζ, Rx),

the conditions (+) and (×) become equivalent and define the same ordinal ξ = ξ′.

Hence

u ≡ (ξ, Rx) ≡ (ξ′, Rw) ≡ v.

Foundation schema: We need to show the foundation schema holds in �, that is, for every

first-order formula ϕ(u) in the language of ≡ and � the following is true in �:

∃uϕ(u) → ∃y(ϕ(y) ∧ ∀z(z � y → ¬ϕ(z)).

Note that the formula ϕmay contain further free parameters, which we do not mention

for the sake of simplicity. Assume that ∃uϕ(u). Take a point x = (x, Rx) such that

ϕ(x). Since Rx is well-founded, we may take an Rx-minimal y ∈ dom(Rx) such that

ϕ((y, Rx)). Letting y also denote the point (y, Rx), we have ϕ(y). To prove the axiom,

consider some point z � y . Take vRxy such that z ≡ (v, Rx). By the Rx-minimal choice

of y, we have ¬ϕ((v, Rx)). Hence ¬ϕ(z).

Infinity: We need to show the axiom of infinity holds in �, that is,

∃x((∃yy � x) ∧ (∀y(y � x → ∃z(z � x ∧ ∀u(u � z ↔ (u � y ∨ u ≡ y)))))).

In SO, let ω be the smallest limit ordinal. We show that

x = (ω,<� (ω + 1)2)

witnesses the axiom. Since (0, <� (ω + 1)2) � (ω,<� (ω + 1)2), we have ∃yy � x.

Consider some y � x. We may assume that y = (n,<� (ω + 1)2) for some n < ω. Set

z = (n+ 1, <� (ω + 1)2).

It is easy to check that

z � x ∧ ∀u(u � z ↔ (u � y ∨ u ≡ y)).

Theorem 6. In the set theoretical universe V , consider a class S ⊆ {x | x ⊆ Ord} such

that S = (Ord,S, <,=,∈, G) is a model of the theory SO. Then there is a unique inner

model (M,∈) of ZFC such that S = {v ∈ M | v ⊆ Ord}.

Proof. Define the model � = (�,≡,�) from (Ord,S, <,=,∈, G) as above. Consider a

point x = (x, Rx) ∈ �. Then x is also an ordinal in the sense of V . In S, apply the

recursion theorem to the well-founded relation Rx and obtain an order-preserving map

σ : (dom(Rx), Rx) → (Ord, <).

Transfer the map σ to V by defining

σ̃ = {(α, β) | S � σ(α) = β} : dom(Rx) → Ord .

This map is order-preserving and witnesses the fact that Rx is well-founded in V . So

(x, Rx) is a point in the sense of V . In V , define the interpretation function I : � → V
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recursively by

Ix : dom(Rx) → V , by Ix(u) = {Ix(v) | vRxu} and I(x) = Ix(x).

Set

M = {I(x) | x ∈ �}.

Transitivity:

Consider y ∈ I(x) ∈ M. Choose vRxx such that y = Ix(v). Then (v, Rx) ∈ � and

y = Ix(v) = I((v, Rx)) ∈ M.

So M is transitive.

Surjectivity:

The above definitions imply that the function I : � → M is surjective and preserves

≡ and =, and � and ∈:

∀x, y ∈ � : ((x ≡ y ↔ I(x) = I(y)) ∧ (x � y ↔ I(x) ∈ I(y))).

Inner model:

The above imply that M is a transitive ∈-model of the ZFC-axioms, that is, M is an

inner model.

S = {v ∈ M | v ⊆ Ord}:
Let v ∈ S. We build a point that will be interpreted as v. Choose an ordinal α such

that v ⊆ α. Define a well-founded relation Rx on α+ 1 by

ξRxζ iff (ξ < ζ < α or (ζ = α ∧ ξ ∈ v)).

Then x = (α, Rx) is a point. Let Ix(u) = {Ix(v) | vRxu} be the recursive interpretation

function for x. For ζ < α we have Ix(ζ) = ζ since we have inductively

Ix(ζ) = {Ix(ξ) | ξRxζ} = {ξ | ξ < ζ} = ζ.

Therefore,

I(x) = Ix(α) = {Ix(ξ) | ξRxα} = {ξ | ξ ∈ v} = v.

Hence, v = I(x) ∈ M.

The previous argument also shows that one may canonically represent an ordinal ξ

by the point (ξ,<� (ξ + 1)2):

I((ξ,<� (ξ + 1)2)) = ξ.

For the converse inclusion, consider some v ∈ M, v ⊆ α ∈ Ord. Choose a point x ∈ �

such that I(x) = v. Since S satisfies the separation schema,

v = {ξ < α | ξ ∈ v} = {ξ < α | S � (ξ,<� (ξ + 1)2) � x} ∈ S.

The model M is unique since it is determined by its sets of ordinals (see Jech (2003,

Theorem 13.28).
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6. A recursive truth predicate

The Gödel pairing function G allows us to code a finite sequence α0, . . . , αn−1 of ordinals

as a single ordinal:

α = G(. . . G(G(α0, α1), α2) . . . ).

The usual operations on finite sequences, such as concatenation, cutting at a certain length

and substitution, are ordinal computable using the Gödel functions G,G0, G1. This means

we can code terms and formulae of a first-order language by single ordinals in an ordinal

computable way.

We introduce a language LT suitable for structures of the form

(α,<,G ∩ α3, f),

where G ∩ α3 is viewed as a ternary relation and f : α → α is a unary function. The

language has variables vn = G(0, n) for n < ω and constant symbols cξ = G(1, ξ) for

ξ ∈ Ord; the symbol cξ will be interpreted as the ordinal ξ. Terms are defined recursively:

variables and constant symbols are terms; if t is a term, then G(2, t) is a term as well,

which stands for f(t). Atomic formulae are of the form:

— G(3, G(t1, t2)) where t1, t2 are terms – this stands for the equality t1 = t2.

— G(4, G(t1, t2)) where t1, t2 are terms – this stands for the inequality t1 < t2.

— G(5, G(G(t1, t2), t3)) where t1, t2, t3 are terms – this stands for the relation t3 = G(t1, t2).

LT -Formulae are defined recursively. Atomic formulae are formulae, and if ϕ and ψ are

formulae, then the following are formulae as well:

— G(6, ϕ) – this stands for the negation ¬ϕ.

— G(7, G(ϕ,ψ)) – this stands for the conjunction (ϕ ∧ ψ).

— G(8, G(vn, ϕ)) where vn is a variable – this stands for the existential quantification ∃vnϕ.

Then the satisfaction relation

(α,<,G ∩ α3, f) � ϕ[b]

for ϕ an LT -formula and b an assignment of values in α can be defined as usual. If the

function f is ordinal computable, this property is ordinal computable, since the recursive

Tarski truth definition can be carried out by an ordinal Turing machine.

We define the truth predicate T : Ord → {0, 1} recursively by

T (α) = 1 iff (α,<,G ∩ α3, T � α) � G0(α)[G1(α)].

The assignments α 	→ T (α) can be enumerated successively by an ordinal Turing machine.

Hence T is ordinal computable.

7. T codes a model of SO

The truth predicate T contains information about a large class of sets of ordinals.

Definition 11. For ordinals µ and α, define

T (µ, α) = {β < µ | T (G(α, β)) = 1}.
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Set

S = {T (µ, α) | µ, α ∈ Ord}.

Theorem 7. (Ord,S, <,=,∈, G) is a model of the theory SO.

Proof. Axioms 1 to 7 are obvious. The proofs of Axiom schemas 8 and 9 rest on a

Levy-type reflection principle. For ϑ ∈ Ord, define

Sϑ = {T (µ, α) | µ, α ∈ ϑ}.

Then, for any LSO-formula ϕ(v0, . . . , vn−1) and η ∈ Ord, there is some limit ordinal ϑ > η

such that

∀ξ0, . . . , ξn−1 ∈ ϑ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1]

iff (ϑ,Sϑ, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1]).

Since all elements of Sϑ can be defined from the truth function T and ordinals < ϑ,

the right-hand side can be evaluated in the structure (ϑ,<,G ∩ ϑ3, T ) by an LT -formula

ϕ∗ that can be recursively computed from ϕ. Hence,

∀ξ0, . . . , ξn−1 ∈ ϑ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1]

iff (ϑ,<,G ∩ ϑ3, T ) � ϕ∗[ξ0, . . . , ξn−1]).

So sets witnessing Axioms 8 and 9 can be defined over (ϑ,<,G ∩ ϑ3, T ), and are thus

elements of S.

The powerset axiom, Axiom 10, can be shown by a similar reflection argument.

8. Ordinal computability corresponds to constructibility

Before proving the fundamental theorem on ordinal computability, recall the definition of

Gödel’s model L of constructible sets . It is defined as the union of a hierarchy of levels

Lα:

L =
⋃

α∈Ord

Lα

where the levels are defined recursively by L0 = �, Lδ =
⋃

α<δ Lα for limit ordinals δ,

and Lα+1 is the set of all sets that are first-order definable in the structure (Lα,∈). The

model L is the ⊆-smallest inner model of set theory. An inner model is a transitive proper

class satisfying the usual Zermelo–Fraenkel axioms ZFC. The standard reference for the

theory of the model L is the monograph Devlin (1984).

We can now prove our main theorem.

Theorem 8. A set x of ordinals is ordinal computable from a finite set of ordinal

parameters if and only if it is an element of the constructible universe L.

Proof. Let x ⊆ Ord be ordinal computable by the program P from the finite set

{α0, . . . , αk−1} of ordinal parameters: P : χ{α0 , . . . , αk−1} 	→ χx. By the simple nature of the
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computation procedure, the same computation can be carried out inside the inner model

L:

(L,∈) � P : χ{α0 , . . . , αk−1} 	→ χx.

Hence, χX ∈ L and x ∈ L.

Conversely, consider x ∈ L. Since (Ord,S, <,=,∈, G) is a model of the theory SO, there

is an inner model M of set theory such that

S = {z ⊆ Ord | z ∈ M}.

Since L is the ⊆-smallest inner model, L ⊆ M. Hence x ∈ M and x ∈ S. Let x = T (µ, α).

By the computability of the truth predicate, x is ordinal computable from the parameters

µ and α.
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