Almost Ramsey cardinals IMST 2007

Arthur W. Apter and Peter Koepke

Bonn, May 17, 2007

A set $X \subseteq \delta$ is homogeneous for a partition $F:[\delta]^{<\omega} \rightarrow 2$ iff $\forall n\left|F\left[[X]^{n}\right]\right|=1$;
the partition property $\delta \rightarrow(\alpha)_{2}^{<\omega}$ is defined as $\forall F:[\delta]^{<\omega} \rightarrow 2 \exists X \subseteq \kappa(\operatorname{otp}(X) \geqslant \alpha \wedge X$ is homogeneous for $F)$.

An infinite cardinal κ is α-ERDÖS iff $\kappa \rightarrow(\alpha){ }_{2}^{<\omega}$, it is RAMsEY iff $\kappa \rightarrow(\kappa)_{2}^{<\omega}$.

Definition 1. An infinite cardinal κ is almost RAMSEY iff $\forall \alpha<\kappa \kappa \rightarrow(\alpha)_{2}^{<\omega}$.

For any uncountable almost Ramsey cardinal κ the following substructure property holds: if $\lambda, \kappa^{\prime}, \lambda^{\prime}$ are infinite cardinals satisfying $\lambda \leqslant \kappa, \lambda^{\prime} \leqslant \kappa^{\prime}<\kappa$, and $\lambda^{\prime} \leqslant \lambda$ then $(\kappa, \lambda) \Rightarrow\left(\kappa^{\prime}, \lambda^{\prime}\right)$, which means that every first-order structure (κ, λ, \ldots) with a countable language has an elementary substructure $X \prec(\kappa, \lambda, \ldots)$ with $|X|=\kappa^{\prime}$ and $|X \cap \lambda|=$ λ^{\prime}.

Theorem 2. Con $(Z F C+$ There exist cardinals $\kappa<\lambda$ such that κ is 2^{λ} supercompact where λ is the least regular almost Ramsey cardinal greater than κ) implies Con $\left(Z F+\neg \mathrm{AC}_{\omega}+\right.$ Every successor cardinal is regular + Every (well-ordered) uncountable cardinal is almost Ramsey).

Theorem 3. Assume ZF and that every infinite cardinal is almost Ramsey. Then there exists an inner model with a strong cardinal.

Theorem 4. The following theories are equiconsistent
a) ZFC + There is a proper class of regular almost Ramsey cardinals;
b) $\mathrm{ZF}+$ All infinite cardinals except possibly successors of singular limit cardinals are almost Ramsey.

Definition 5. For $\alpha \in$ Ord let $\kappa(\alpha)$ be the least κ such that $\kappa \rightarrow$ $(\alpha)_{2}^{<\omega}$, if such $a \kappa$ exists.

Proposition 6. (ZF) An infinite cardinal κ is almost RAMSEY iff $\kappa(\alpha)$ is defined for all $\alpha<\kappa$ and $\kappa=\bigcup_{\alpha<\kappa} \kappa(\alpha)$.

Proposition 7. (ZFC) Assume κ is almost RAmsey. Then
a) $\forall \alpha<\kappa \kappa(\alpha)<\kappa$;
b) κ is a strong limit cardinal.

Proposition 8. Let M be a transitive model of " $\mathrm{ZFC}+\kappa$ is almost RAMSEY". Let $N \supseteq M$ be a transitive model of ZFC such that $\forall \delta<$ $\kappa \mathcal{P}(\delta) \cap M=\mathcal{P}(\delta) \cap N$. Then κ is almost RAMSEY in N.

Proof. Let $\alpha<\kappa$. By Proposition 7, $\kappa(\alpha)^{M}<\kappa$. $\mathcal{P}\left(\kappa(\alpha)^{M}\right) \cap M=$ $\mathcal{P}\left(\kappa(\alpha)^{M}\right) \cap N$ implies that $\kappa(\alpha)^{N}=\kappa(\alpha)^{M}$. Hence $\kappa=\bigcup_{\alpha<\kappa} \kappa(\alpha)^{N}$ and κ is almost Ramsey in N.

Proposition 9. (ZFC)
a) Assume λ is a RAmSEY cardinal. Then the class of almost RAMSEY cardinals is closed unbounded below λ and the class of regular almost RAMSEY cardinals is stationary below λ.
b) Assume κ is an uncountable regular almost RAMSEY cardinal. Then the class of almost RAMSEY cardinals is closed unbounded below λ.

Proposition 10. $\mathrm{ZFC}+$ There exists an uncountable regular almost RAMSEY cardinal \vdash Con(ZFC + There exists a proper class of (singular) almost RAMSEY cardinal.

Proposition 11. (ZF) For infinite ordinals α the partition property $\kappa \rightarrow(\alpha)_{2}^{<\omega}$ is equivalent to: for any first-order structure $\mathcal{M}=(M, \ldots)$ in a countable language S with $\kappa \subseteq M$ there is a set $X \subseteq \kappa$, otp $(X) \geqslant$ α of indiscernibles, i.e., for all S-formulas $\varphi\left(v_{0}, \ldots, v_{n-1}\right), x_{0}, \ldots$, $x_{n-1} \in X, x_{0}<\ldots<x_{n-1}, y_{0}, \ldots, y_{n-1} \in X, y_{0}<\ldots<y_{n-1}$ holds

$$
\mathcal{M} \vDash \varphi\left(x_{0}, \ldots, x_{n-1}\right) \text { iff } \mathcal{M} \vDash \varphi\left(y_{0}, \ldots, y_{n-1}\right) .
$$

Proposition 12. (ZF) Assume $\kappa \rightarrow(\alpha)_{2}^{<\omega}$ where α is a limit ordinal. Then for any first-order structure $\mathcal{M}=(M, \ldots)$ in a countable language S with $\kappa \subseteq M$ there is a set $X \subseteq \kappa$, otp $(X) \geqslant \alpha$ of good indiscernibles, i.e., for all S-formulas $\varphi\left(v_{0}, \ldots, v_{m-1}, w_{0}, \ldots, w_{n-1}\right), x_{0}, \ldots$, $x_{n-1} \in X, x_{0}<\ldots<x_{n-1}, y_{0}, \ldots, y_{n-1} \in X, y_{0}<\ldots<y_{n-1}$, and $a_{0}<\ldots<$ $a_{m-1}<\min \left(x_{0}, y_{0}\right)$ holds
$\mathcal{M} \vDash \varphi\left(a_{0}, \ldots, a_{m-1}, x_{0}, \ldots, x_{n-1}\right)$ iff $\mathcal{M} \vDash \varphi\left(a_{0}, \ldots, a_{m-1}, y_{0}, \ldots, y_{n-1}\right)$.

Proof. We may assume that the structure \mathcal{M} contains a unary predicate Ord for the ordinals in $M(=\kappa)$ and a collection of Skolem functions for ordinal-valued existential statements, i.e., for every S formula $\varphi(v, \vec{w})$ there is a function f of M such that

$$
M \vDash \forall \vec{w}(\exists v(\operatorname{Ord}(v) \wedge \varphi(v, \vec{w})) \rightarrow \varphi(f(\vec{w}), \vec{w})) .
$$

Choose a set $X \subseteq \kappa, \operatorname{otp}(X) \geqslant \alpha$ of indiscernibles for M such that the minimum min (X) is minimal for all such sets of indiscernibles. Assume for a contradiction that X is not good. Then there is an S formula $\varphi\left(v_{0}, \ldots, v_{n-1}\right), x_{0}, \ldots, x_{n-1} \in X, x_{0}<\ldots<x_{n-1}, y_{0}, \ldots, y_{n-1} \in$ $X, y_{0}<\ldots<y_{n-1}$ and $a_{0}<\ldots<a_{m-1}<\min \left(x_{0}, y_{0}\right)$ such that

$$
M \vDash \varphi\left(a_{0}, \ldots, a_{m-1}, x_{0}, \ldots, x_{n-1}\right) \text { and } M \vDash \neg \varphi\left(a_{0}, \ldots, a_{m-1}, y_{0}, \ldots, y_{n-1}\right) .
$$

Since α is a limit ordinal we can take $z_{0}, \ldots, z_{n-1} \in X, z_{0}<\ldots<z_{n-1}$ such that $x_{n-1}<z_{0}$ and $y_{n-1}<z_{0}$. In case $M \vDash \varphi\left(a_{0}, \ldots, a_{m-1}, z_{0}, \ldots\right.$, z_{n-1}), one has

$$
M \vDash \neg \varphi\left(a_{0}, \ldots, a_{m-1}, y_{0}, \ldots, y_{n-1}\right) \text { and } M \vDash \varphi\left(a_{0}, \ldots, a_{m-1}, z_{0}, \ldots, z_{n-1}\right)
$$

where $y_{0}<\ldots<y_{n-1}<z_{0}<\ldots<z_{n-1}$.
In case $M \vDash \neg \varphi\left(a_{0}, \ldots, a_{m-1}, z_{0}, \ldots, z_{n-1}\right)$, one has

$$
M \vDash \varphi\left(a_{0}, \ldots, a_{m-1}, x_{0}, \ldots, x_{n-1}\right) \text { and } M \vDash \neg \varphi\left(a_{0}, \ldots, a_{m-1}, z_{0}, \ldots, z_{n-1}\right)
$$

where $x_{0}<\ldots<x_{n-1}<z_{0}<\ldots<z_{n-1}$. So in both cases we have an ascending $2 n$-tuble of indiscernibles, such that the first half behaves differently from the second half with respect to the formula φ and the parameters a_{0}, \ldots, a_{m-1}. So without loss of generality we may assume that $x_{0}<\ldots<x_{n-1}<y_{0}<\ldots<y_{n-1}$ and

$$
M \vDash \varphi\left(a_{0}, \ldots, a_{m-1}, x_{0}, \ldots, x_{n-1}\right) \text { and } M \vDash \neg \varphi\left(a_{0}, \ldots, a_{m-1}, y_{0}, \ldots, y_{n-1}\right) .
$$

Write $\vec{x}=x_{0}, \ldots, x_{n-1}$ and $\vec{y}=y_{0}, \ldots, y_{n-1}$. Since M contains SKOLEM functions there are functions f_{0}, \ldots, f_{m-1} of M which compute parameters like a_{0}, \ldots, a_{m-1} :
$M \vDash \exists v_{1}<x_{0} \exists v_{2}<x_{1} \ldots \exists v_{m-1}<x_{0}\left(f_{0}(\vec{x}, \vec{y})<x_{0} \wedge \varphi\left(f_{0}(\vec{x}, \vec{y}), v_{1}, \ldots\right.\right.$, $\left.\left.v_{m-1}, \vec{x}\right) \wedge \neg \varphi\left(f_{0}(\vec{x}, \vec{y}), v_{1}, \ldots, v_{m-1}, \vec{y}\right)\right)$
$M \vDash \exists v_{2}<x_{0} \ldots \exists v_{m-1}<x_{0}\left(f_{0}(\vec{x}, \vec{y})<x_{0} \wedge f_{1}(\vec{x}, \vec{y})<x_{0} \wedge \varphi\left(f_{0}(\vec{x}\right.\right.$, $\left.\left.\vec{y}), f_{1}(\vec{x}, \vec{y}), \ldots, v_{m-1}, \vec{x}\right) \wedge \neg \varphi\left(f_{0}(\vec{x}, \vec{y}), f_{1}(\vec{x}, \vec{y}), \ldots, v_{m-1}, \vec{y}\right)\right)$
\vdots
$M \vDash f_{0}(\vec{x}, \vec{y})<x_{0} \wedge \ldots \wedge f_{m-1}(\vec{x}, \vec{y})<x_{0} \wedge \varphi\left(f_{0}(\vec{x}, \vec{y}), f_{1}(\vec{x}, \vec{y}), \ldots\right.$, $\left.f_{m-1}(\vec{x}, \vec{y}), \vec{x}\right) \wedge \neg \varphi\left(f_{0}(\vec{x}, \vec{y}), f_{1}(\vec{x}, \vec{y}), \ldots, f_{m-1}(\vec{x}, \vec{y}), \vec{y}\right)$

Now consider $\vec{z}=z_{0}, \ldots, z_{n-1} \in X, z_{0}<\ldots<z_{n-1}$ such that $y_{n-1}<$ z_{0}.
(1) There is $k<m$ such that $f_{k}(\vec{x}, \vec{y}) \neq f_{k}(\vec{y}, \vec{z})$.

Proof. Assume not. Set $\xi_{0}=f_{0}(\vec{x}, \vec{y}), \ldots, \xi_{m-1}=f_{m-1}(\vec{x}, \vec{y})$. Then

$$
M \vDash \varphi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{m-1}, \vec{x}\right) \wedge \neg \varphi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{m-1}, \vec{y}\right)
$$

and

$$
M \vDash \varphi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{m-1}, \vec{y}\right) \wedge \neg \varphi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{m-1}, \vec{z}\right)
$$

In particular

$$
M \vDash \varphi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{m-1}, \vec{y}\right) \wedge \neg \varphi\left(\xi_{0}, \xi_{1}, \ldots, \xi_{m-1}, \vec{y}\right)
$$

which is a contradiction.
So take $k<m$ such that
(2) $f_{k}(\vec{x}, \vec{y}) \neq f_{k}(\vec{y}, \vec{z})$.

Let $\left(\nu_{i} \mid i<\alpha\right)$ be a strictly increasing enumeration of the set X of indiscernibles, and let $\left(\vec{x}^{(i)} \mid i<\alpha\right)$ with

$$
\vec{x}^{(i)}=\nu_{n \cdot i}, \nu_{n \cdot i+1}, \ldots, \nu_{n \cdot i+n-1}
$$

be a partition of X into ascending sequences of length n.
(3) $f_{k}\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)<f_{k}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$.

Proof. By indiscernibility, (2) implies that $f_{k}\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right) \neq f_{k}\left(\vec{x}^{(1)}\right.$, $\left.\vec{x}^{(2)}\right)$. Assume for a contradiction that $f_{k}\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)>f_{k}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$. Then again by indiscernibility we would obtain a decreasing \in sequence

$$
f_{k}\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)>f_{k}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)>f_{k}\left(\vec{x}^{(2)}, \vec{x}^{(3)}\right)>\ldots,
$$

contradiction.
But then

$$
f_{k}\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)<f_{k}\left(\vec{x}^{(2)}, \vec{x}^{(3)}\right)<f_{k}\left(\vec{x}^{(4)}, \vec{x}^{(5)}\right)<\ldots
$$

is an ascending α-sequence of indiscernibles for M with smallest element $f_{k}\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)<\nu_{0}$ which contradicts the minimal choice of min (X).

Lemma 13. (ZF) Let κ^{+}be almost Ramsey. Then $\left(\kappa^{+}\right)^{\mathrm{HOD}}<\kappa^{+}$.
Proof. Assume for a contradiction that $\left(\kappa^{+}\right)^{\mathrm{HOD}}=\kappa^{+}$. For $\gamma \in\left[\kappa, \kappa^{+}\right)$ choose the $<_{\text {HOD }}$-least bijection $f_{\gamma}: \gamma \leftrightarrow \kappa$. Define $F:[\kappa]^{3} \rightarrow 2$ by

$$
F(\{\alpha, \beta, \gamma\})=\left\{\begin{array}{l}
0 \text { iff } f_{\gamma}(\alpha)<f_{\gamma}(\beta) \\
1 \text { iff } f_{\gamma}(\alpha)>f_{\gamma}(\beta)
\end{array}, \text { for } \alpha<\beta<\gamma\right.
$$

Take $X \subseteq \kappa^{+}$homogeneous for F with $\operatorname{otp}(X)=\kappa+2$. Let $\gamma=\max$ (X). Then define $h: \kappa+1 \rightarrow \kappa$ by $h(\xi)=f_{\gamma}\left(\alpha_{\xi}\right)$ where α_{ξ} is the ξ-th element of X. Case 1: $\forall x \in[X]^{3} F(x)=0$. Then for $\xi<\zeta<\kappa+1$ we have: $\alpha_{\xi}<\alpha_{\zeta}<\gamma,\left\{\alpha_{\xi}, \alpha_{\zeta}, \gamma\right\} \in[X]^{3}, F\left(\left\{\alpha_{\xi}, \alpha_{\zeta}, \gamma\right\}\right)=0$, and so

$$
h(\xi)=f_{\gamma}\left(\alpha_{\xi}\right)<f_{\gamma}\left(\alpha_{\zeta}\right)=h(\zeta) .
$$

Thus $h: \kappa+1 \rightarrow \kappa$ is order preserving, which is impossible.
Case 2: $\forall x \in[X]^{3} F(x)=1$. Then for $\xi<\zeta<\kappa+1$ we have: $\alpha_{\xi}<$ $\alpha_{\zeta}<\gamma,\left\{\alpha_{\xi}, \alpha_{\zeta}, \gamma\right\} \in[X]^{3}, F\left(\left\{\alpha_{\xi}, \alpha_{\zeta}, \gamma\right\}\right)=1$, and so

$$
h(\xi)=f_{\gamma}\left(\alpha_{\xi}\right)>f_{\gamma}\left(\alpha_{\zeta}\right)=h(\zeta) .
$$

Thus $h: \kappa+1 \rightarrow \kappa$ is a strictly descending $\kappa+1$ chain in the ordinals, contradiction.

Let $K^{\text {DJ }}$ be the canonical term for the Dodd-Jensen core model.
Proposition 14. (ZF) Let $a \subseteq$ HOD be a set. Then
a) $\mathrm{HOD}[a]$ is a set-generic extension of HOD , so $\mathrm{HOD}[a] \vDash \mathrm{ZFC}$.
b) $\left(K^{\mathrm{DJ}}\right)^{\mathrm{HOD}}=\left(K^{\mathrm{DJ}}\right)^{\mathrm{HOD}[a]}$; moreover this equality holds for every level of the hierarchy, i.e., $\left(K_{\alpha}^{\mathrm{DJ}}\right)^{\mathrm{HOD}}=\left(K_{\alpha}^{\mathrm{DJ}}\right)^{\mathrm{HOD}[a]}$ for every $\alpha \in$ Ord.

By the proposition we may define $K^{\mathrm{DJ}}=\left(K^{\mathrm{DJ}}\right)^{\mathrm{HOD}}$ in models without choice.

Proposition 15. Let κ be an infinite cardinal and suppose $A \in K^{\mathrm{DJ}} \cap$ $\mathcal{P}\left(K_{\kappa}^{\mathrm{DJ}}\right)$, and that there is I, an infinite good set of indiscernibles for $\mathcal{A}=\left(K_{\kappa}^{\mathrm{DJ}}, A\right)$ and that $\operatorname{cof}(\operatorname{otp}(I))>\omega$. Then there is $I^{\prime} \in K^{\mathrm{DJ}}, I^{\prime} \supseteq I$ a set of good indiscernibles for \mathcal{A}.

Lemma 16. (ZF) Let $\kappa>\aleph_{1}$ be almost Ramsey. Then κ is almost Ramsey in $K^{\text {DJ }}$.

Proof. Let $F:[\kappa]^{<\omega} \rightarrow 2, F \in K^{\text {DJ }}$ be a partition. Let $\alpha<\kappa$. Then $\alpha+\aleph_{1}<\kappa$. By Proposition 12, Take a set $X \subseteq \kappa$ of good indiscernibles for the structure $M=\left(K_{\kappa}^{\text {DJ }}, F\right)$ with $\operatorname{otp}(X) \geqslant \alpha+\aleph_{1}$. Let X^{\prime} be the initial segment of X of order type $\left(\alpha+\aleph_{1}\right)^{\operatorname{HOD}(X)}$. In the model $\operatorname{HOD}(X), X^{\prime}$ is a good set of indiscernibles for M such that $\operatorname{cof}\left(\operatorname{otp}\left(X^{\prime}\right)\right)>\omega$. By the indiscernibles lemma applied inside $\operatorname{HOD}(X)$ there is a set $Y \supseteq X^{\prime}, Y \in K$ which is a good set of indiscernibles for M. Then Y is also homogeneous for the partition F of ordertype \geqslant α.

We are now able to prove the inner model direction of Theorem 4:
Lemma 17. Con(ZF + All infinite cardinals except possibly successors of singular limit cardinals are almost Ramsey) implies Con(ZFC + There is a proper class of regular almost Ramsey cardinals).

Proof. Assume Con(ZF + All infinite cardinals except possibly successors of singular limit cardinals are almost Ramsey). If there is a proper class of regular almost Ramsey cardinals, we are done. So assume that this is not the case, and let the cardinal θ be an upper bound for the set of regular almost Ramsey cardinals. Then θ^{++}and θ^{+++}are not successors of limit cardinals. By assumption, θ^{++}and θ^{+++}are almost Ramsey. By the definition of θ, θ^{++}and θ^{+++}must be singular. By [Sc99], this implies consistency strength far above Ramsey cardinals.

In the following we apply the core model below a strong cardinal, denoted by the class term K. As for the Dodd-Jensen core model we get:

Proposition 18. (ZF) Let $a \subseteq \mathrm{HOD}$ be a set. Then $K^{\mathrm{HOD}}=K^{\mathrm{HOD}[a]}$.
If there is no inner model with a strong cardinal and the axiom of choice holds then the core model K satisfies the weak covering theorem, i.e., for sufficiently large singular cardinals κ we have $\kappa^{+}=$ $\left(\kappa^{+}\right)^{K}$.

Lemma 19. (ZF) Let κ^{+}be almost Ramsey where κ is a singular cardinal $\geqslant \aleph_{2}$. Then there is an inner model with a strong cardinal.

Proof. Assume that there is no inner model with a strong cardinal. By Lemma $13,\left(\kappa^{+}\right)^{\mathrm{HOD}}<\kappa^{+}$. Since $K \subseteq \mathrm{HOD},\left(\kappa^{+}\right)^{K}<\kappa^{+}$. Choose a bijection $f: \kappa \leftrightarrow\left(\kappa^{+}\right)^{K}$ and a cofinal subset $Z \subseteq \kappa$ such that $\operatorname{otp}(Z)<$ κ. The class $\operatorname{HOD}(f, Z)$ is a model of ZFC and it satisfies that κ is a singular cardinal such that $\left(\kappa^{+}\right)^{K}<\kappa^{+}$. But this contradicts the covering theorem below $0^{\text {pistol }}$ inside the model $\operatorname{HOD}(f, Z)$.

Lemma 20. Assume ZF and that every infinite cardinal is almost Ramsey. Then there exists an inner model with a strong cardinal.

Proof. By assumption, $\aleph_{\omega+1}$ is almost Ramsey and the successor of the singular cardinal $\aleph_{\omega} \geqslant \aleph_{2}$. Now use Lemma 19.

