Almost Ramsey cardinals IMST 2007

ARTHUR W. APTER AND PETER KOEPKE

Bonn, May 17, 2007

A set $X \subseteq \delta$ is homogeneous for a partition $F: [\delta]^{<\omega} \to 2$ iff $\forall n | F[[X]^n] | = 1;$

the partition property $\delta \rightarrow (\alpha)_2^{<\omega}$ is defined as

 $\forall F: [\delta]^{<\omega} \to 2 \exists X \subseteq \kappa(\operatorname{otp}(X) \geqslant \alpha \wedge X \text{ is homogeneous for } F).$

An infinite cardinal κ is α -ERDÖS iff $\kappa \to (\alpha)_2^{<\omega}$, it is RAMSEY iff $\kappa \to (\kappa)_2^{<\omega}$.

Definition 1. An infinite cardinal κ is almost RAMSEY iff $\forall \alpha < \kappa \, \kappa \rightarrow (\alpha)_2^{<\omega}$.

For any uncountable almost RAMSEY cardinal κ the following substructure property holds: if λ , κ' , λ' are infinite cardinals satisfying $\lambda \leq \kappa, \ \lambda' \leq \kappa' < \kappa$, and $\lambda' \leq \lambda$ then $(\kappa, \lambda) \Rightarrow (\kappa', \lambda')$, which means that every first-order structure $(\kappa, \lambda, ...)$ with a countable language has an elementary substructure $X \prec (\kappa, \lambda, ...)$ with $|X| = \kappa'$ and $|X \cap \lambda| = \lambda'$.

Theorem 2. $Con(ZFC + There exist cardinals \kappa < \lambda such that \kappa is <math>2^{\lambda}$ supercompact where λ is the least regular almost RAMSEY cardinal greater than κ) implies $Con(ZF + \neg AC_{\omega} + Every successor cardinal is regular + Every (well-ordered) uncountable cardinal is almost RAMSEY).$

Theorem 3. Assume ZF and that every infinite cardinal is almost RAMSEY. Then there exists an inner model with a strong cardinal.

Theorem 4. The following theories are equiconsistent

- a) ZFC + There is a proper class of regular almost RAMSEY cardinals;
- b) ZF + All infinite cardinals except possibly successors of singular limit cardinals are almost RAMSEY.

Definition 5. For $\alpha \in \text{Ord let } \kappa(\alpha)$ be the least κ such that $\kappa \to (\alpha)_2^{<\omega}$, if such a κ exists.

Proposition 6. (ZF) An infinite cardinal κ is almost RAMSEY iff $\kappa(\alpha)$ is defined for all $\alpha < \kappa$ and $\kappa = \bigcup_{\alpha < \kappa} \kappa(\alpha)$.

Proposition 7. (ZFC) Assume κ is almost RAMSEY. Then

- a) $\forall \alpha < \kappa \ \kappa(\alpha) < \kappa;$
- b) κ is a strong limit cardinal.

Proposition 8. Let M be a transitive model of "ZFC + κ is almost RAMSEY". Let $N \supseteq M$ be a transitive model of ZFC such that $\forall \delta < \kappa \mathcal{P}(\delta) \cap M = \mathcal{P}(\delta) \cap N$. Then κ is almost RAMSEY in N.

Proof. Let $\alpha < \kappa$. By Proposition 7, $\kappa(\alpha)^M < \kappa$. $\mathcal{P}(\kappa(\alpha)^M) \cap M = \mathcal{P}(\kappa(\alpha)^M) \cap N$ implies that $\kappa(\alpha)^N = \kappa(\alpha)^M$. Hence $\kappa = \bigcup_{\alpha < \kappa} \kappa(\alpha)^N$ and κ is almost RAMSEY in N.

Proposition 9. (ZFC)

- a) Assume λ is a RAMSEY cardinal. Then the class of almost RAMSEY cardinals is closed unbounded below λ and the class of regular almost RAMSEY cardinals is stationary below λ .
- b) Assume κ is an uncountable regular almost RAMSEY cardinal. Then the class of almost RAMSEY cardinals is closed unbounded below λ .

Proposition 10. ZFC + There exists an uncountable regular almost RAMSEY cardinal \vdash Con(ZFC + There exists a proper class of (singular) almost RAMSEY cardinal. **Proposition 11.** (ZF) For infinite ordinals α the partition property $\kappa \to (\alpha)_2^{<\omega}$ is equivalent to: for any first-order structure $\mathcal{M} = (M, ...)$ in a countable language S with $\kappa \subseteq M$ there is a set $X \subseteq \kappa$, $\operatorname{otp}(X) \geq \alpha$ of indiscernibles, i.e., for all S-formulas $\varphi(v_0, ..., v_{n-1}), x_0, ..., x_{n-1} \in X, x_0 < ... < x_{n-1}, y_0, ..., y_{n-1} \in X, y_0 < ... < y_{n-1}$ holds

$$\mathcal{M} \vDash \varphi(x_0, \dots, x_{n-1})$$
 iff $\mathcal{M} \vDash \varphi(y_0, \dots, y_{n-1})$.

Proposition 12. (ZF) Assume $\kappa \to (\alpha)_2^{<\omega}$ where α is a limit ordinal. Then for any first-order structure $\mathcal{M} = (M, ...)$ in a countable language S with $\kappa \subseteq M$ there is a set $X \subseteq \kappa$, $\operatorname{otp}(X) \ge \alpha$ of good indiscernibles, i.e., for all S-formulas $\varphi(v_0, ..., v_{m-1}, w_0, ..., w_{n-1})$, $x_0, ..., x_{n-1} \in X$, $x_0 < ... < x_{n-1}$, $y_0, ..., y_{n-1} \in X$, $y_0 < ... < y_{n-1}$, and $a_0 < ... < a_{m-1} < \min(x_0, y_0)$ holds

$$\mathcal{M} \vDash \varphi(a_0, ..., a_{m-1}, x_0, ..., x_{n-1}) \text{ iff } \mathcal{M} \vDash \varphi(a_0, ..., a_{m-1}, y_0, ..., y_{n-1}).$$

Proof. We may assume that the structure \mathcal{M} contains a unary predicate Ord for the ordinals in M ($=\kappa$) and a collection of SKOLEM functions for ordinal-valued existential statements, i.e., for every *S*formula $\varphi(v, \vec{w})$ there is a function f of M such that

$$M \vDash \forall \vec{w} (\exists v (\operatorname{Ord}(v) \land \varphi(v, \vec{w})) \to \varphi(f(\vec{w}), \vec{w}))$$

Choose a set $X \subseteq \kappa$, $\operatorname{otp}(X) \geq \alpha$ of indiscernibles for M such that the minimum min (X) is minimal for all such sets of indiscernibles. Assume for a contradiction that X is not good. Then there is an S-formula $\varphi(v_0, \ldots, v_{n-1}), x_0, \ldots, x_{n-1} \in X, x_0 < \ldots < x_{n-1}, y_0, \ldots, y_{n-1} \in X, y_0 < \ldots < y_{n-1}$ and $a_0 < \ldots < a_{m-1} < \min(x_0, y_0)$ such that

$$M \vDash \varphi(a_0, ..., a_{m-1}, x_0, ..., x_{n-1})$$
 and $M \vDash \neg \varphi(a_0, ..., a_{m-1}, y_0, ..., y_{n-1}).$

Since α is a limit ordinal we can take $z_0, \ldots, z_{n-1} \in X, z_0 < \ldots < z_{n-1}$ such that $x_{n-1} < z_0$ and $y_{n-1} < z_0$. In case $M \models \varphi(a_0, \ldots, a_{m-1}, z_0, \ldots, z_{n-1})$, one has

$$M \vDash \neg \varphi(a_0, ..., a_{m-1}, y_0, ..., y_{n-1})$$
 and $M \vDash \varphi(a_0, ..., a_{m-1}, z_0, ..., z_{n-1})$

where $y_0 < \ldots < y_{n-1} < z_0 < \ldots < z_{n-1}$.

In case $M \vDash \neg \varphi(a_0, ..., a_{m-1}, z_0, ..., z_{n-1})$, one has

$$M \vDash \varphi(a_0, ..., a_{m-1}, x_0, ..., x_{n-1})$$
 and $M \vDash \neg \varphi(a_0, ..., a_{m-1}, z_0, ..., z_{n-1})$

where $x_0 < ... < x_{n-1} < z_0 < ... < z_{n-1}$. So in both cases we have an ascending 2*n*-tuble of indiscernibles, such that the first half behaves differently from the second half with respect to the formula φ and the parameters $a_0, ..., a_{m-1}$. So without loss of generality we may assume that $x_0 < ... < x_{n-1} < y_0 < ... < y_{n-1}$ and

$$M \vDash \varphi(a_0, ..., a_{m-1}, x_0, ..., x_{n-1}) \text{ and } M \vDash \neg \varphi(a_0, ..., a_{m-1}, y_0, ..., y_{n-1}).$$

Write $\vec{x} = x_0, ..., x_{n-1}$ and $\vec{y} = y_0, ..., y_{n-1}$. Since M contains SKOLEM functions there are functions $f_0, ..., f_{m-1}$ of M which compute parameters like $a_0, ..., a_{m-1}$:

$$\begin{split} M &\vDash \exists v_1 < x_0 \exists v_2 < x_1 ... \exists v_{m-1} < x_0 (f_0(\vec{x} , \vec{y} \,) < x_0 \land \varphi(f_0(\vec{x} , \vec{y} \,), v_1, ..., v_{m-1}, \vec{x} \,) \land \neg \varphi(f_0(\vec{x} \,, \vec{y} \,), v_1, ..., v_{m-1}, \vec{y} \,)) \end{split}$$

 $M \vDash \exists v_2 < x_0 \dots \exists v_{m-1} < x_0 (f_0(\vec{x}, \vec{y}) < x_0 \land f_1(\vec{x}, \vec{y}) < x_0 \land \varphi(f_0(\vec{x}, \vec{y}), f_1(\vec{x}, \vec{y}), \dots, v_{m-1}, \vec{x}) \land \neg \varphi(f_0(\vec{x}, \vec{y}), f_1(\vec{x}, \vec{y}), \dots, v_{m-1}, \vec{y}))$

:

 $M \vDash f_0(\vec{x}, \vec{y}) < x_0 \land \dots \land f_{m-1}(\vec{x}, \vec{y}) < x_0 \land \varphi(f_0(\vec{x}, \vec{y}), f_1(\vec{x}, \vec{y}), \dots, f_{m-1}(\vec{x}, \vec{y}), \vec{x}) \land \neg \varphi(f_0(\vec{x}, \vec{y}), f_1(\vec{x}, \vec{y}), \dots, f_{m-1}(\vec{x}, \vec{y}), \vec{y})$

Now consider $\vec{z} = z_0, ..., z_{n-1} \in X, z_0 < ... < z_{n-1}$ such that $y_{n-1} < z_0$.

(1) There is k < m such that $f_k(\vec{x}, \vec{y}) \neq f_k(\vec{y}, \vec{z})$.

Proof. Assume not. Set $\xi_0 = f_0(\vec{x}, \vec{y}), ..., \xi_{m-1} = f_{m-1}(\vec{x}, \vec{y})$. Then

$$M \models \varphi(\xi_0, \xi_1, ..., \xi_{m-1}, \vec{x}) \land \neg \varphi(\xi_0, \xi_1, ..., \xi_{m-1}, \vec{y})$$

and

$$M \models \varphi(\xi_0, \xi_1, ..., \xi_{m-1}, \vec{y}) \land \neg \varphi(\xi_0, \xi_1, ..., \xi_{m-1}, \vec{z}).$$

In particular

$$M \models \varphi(\xi_0, \xi_1, ..., \xi_{m-1}, \vec{y}) \land \neg \varphi(\xi_0, \xi_1, ..., \xi_{m-1}, \vec{y}),$$

which is a contradiction.

So take k < m such that

(2) $f_k(\vec{x}, \vec{y}) \neq f_k(\vec{y}, \vec{z}).$

Let $(\nu_i | i < \alpha)$ be a strictly increasing enumeration of the set X of indiscernibles, and let $(\vec{x}^{(i)} | i < \alpha)$ with

$$\vec{x}^{(i)} = \nu_{n \cdot i}, \nu_{n \cdot i+1}, \dots, \nu_{n \cdot i+n-1}$$

be a partition of X into ascending sequences of length n.

(3)
$$f_k(\vec{x}^{(0)}, \vec{x}^{(1)}) < f_k(\vec{x}^{(1)}, \vec{x}^{(2)}).$$

Proof. By indiscernibility, (2) implies that $f_k(\vec{x}^{(0)}, \vec{x}^{(1)}) \neq f_k(\vec{x}^{(1)}, \vec{x}^{(2)})$. Assume for a contradiction that $f_k(\vec{x}^{(0)}, \vec{x}^{(1)}) > f_k(\vec{x}^{(1)}, \vec{x}^{(2)})$. Then again by indiscernibility we would obtain a *decreasing* \in -sequence

$$f_k(\vec{x}^{(0)}, \vec{x}^{(1)}) > f_k(\vec{x}^{(1)}, \vec{x}^{(2)}) > f_k(\vec{x}^{(2)}, \vec{x}^{(3)}) > \dots,$$

contradiction.

But then

$$f_k(\vec{x}^{(0)}, \vec{x}^{(1)}) < f_k(\vec{x}^{(2)}, \vec{x}^{(3)}) < f_k(\vec{x}^{(4)}, \vec{x}^{(5)}) < \dots$$

is an ascending α -sequence of indiscernibles for M with smallest element $f_k(\vec{x}^{(0)}, \vec{x}^{(1)}) < \nu_0$ which contradicts the minimal choice of min (X).

Lemma 13. (ZF) Let κ^+ be almost RAMSEY. Then $(\kappa^+)^{\text{HOD}} < \kappa^+$.

Proof. Assume for a contradiction that $(\kappa^+)^{\text{HOD}} = \kappa^+$. For $\gamma \in [\kappa, \kappa^+)$ choose the $<_{\text{HOD}}$ -least bijection $f_{\gamma}: \gamma \leftrightarrow \kappa$. Define $F: [\kappa]^3 \to 2$ by

$$F(\{\alpha, \beta, \gamma\}) = \begin{cases} 0 \text{ iff } f_{\gamma}(\alpha) < f_{\gamma}(\beta) \\ 1 \text{ iff } f_{\gamma}(\alpha) > f_{\gamma}(\beta) \end{cases}, \text{ for } \alpha < \beta < \gamma.$$

Take $X \subseteq \kappa^+$ homogeneous for F with $\operatorname{otp}(X) = \kappa + 2$. Let $\gamma = \max(X)$. Then define $h: \kappa + 1 \to \kappa$ by $h(\xi) = f_{\gamma}(\alpha_{\xi})$ where α_{ξ} is the ξ -th element of X. Case 1: $\forall x \in [X]^3 F(x) = 0$. Then for $\xi < \zeta < \kappa + 1$ we have: $\alpha_{\xi} < \alpha_{\zeta} < \gamma, \{\alpha_{\xi}, \alpha_{\zeta}, \gamma\} \in [X]^3, F(\{\alpha_{\xi}, \alpha_{\zeta}, \gamma\}) = 0$, and so

$$h(\xi) = f_{\gamma}(\alpha_{\xi}) < f_{\gamma}(\alpha_{\zeta}) = h(\zeta).$$

Thus $h: \kappa + 1 \rightarrow \kappa$ is order preserving, which is impossible.

Case 2: $\forall x \in [X]^3 F(x) = 1$. Then for $\xi < \zeta < \kappa + 1$ we have: $\alpha_{\xi} < \alpha_{\zeta} < \gamma, \{\alpha_{\xi}, \alpha_{\zeta}, \gamma\} \in [X]^3, F(\{\alpha_{\xi}, \alpha_{\zeta}, \gamma\}) = 1$, and so

$$h(\xi) = f_{\gamma}(\alpha_{\xi}) > f_{\gamma}(\alpha_{\zeta}) = h(\zeta).$$

Thus $h: \kappa + 1 \to \kappa$ is a strictly descending $\kappa + 1$ chain in the ordinals, contradiction.

Let K^{DJ} be the canonical term for the DODD-JENSEN core model.

Proposition 14. (ZF) Let $a \subseteq HOD$ be a set. Then

- a) HOD[a] is a set-generic extension of HOD, so HOD[a] \models ZFC.
- b) $(K^{\mathrm{DJ}})^{\mathrm{HOD}} = (K^{\mathrm{DJ}})^{\mathrm{HOD}[a]}$; moreover this equality holds for every level of the hierarchy, i.e., $(K^{\mathrm{DJ}}_{\alpha})^{\mathrm{HOD}} = (K^{\mathrm{DJ}}_{\alpha})^{\mathrm{HOD}[a]}$ for every $\alpha \in \mathrm{Ord}$.

By the proposition we may define $K^{\text{DJ}} = (K^{\text{DJ}})^{\text{HOD}}$ in models without choice.

Proposition 15. Let κ be an infinite cardinal and suppose $A \in K^{\mathrm{DJ}} \cap \mathcal{P}(K^{\mathrm{DJ}}_{\kappa})$, and that there is I, an infinite good set of indiscernibles for $\mathcal{A} = (K^{\mathrm{DJ}}_{\kappa}, A)$ and that $\operatorname{cof}(\operatorname{otp}(I)) > \omega$. Then there is $I' \in K^{\mathrm{DJ}}$, $I' \supseteq I$ a set of good indiscernibles for \mathcal{A} .

Lemma 16. (ZF) Let $\kappa > \aleph_1$ be almost RAMSEY. Then κ is almost RAMSEY in K^{DJ} .

Proof. Let $F: [\kappa]^{<\omega} \to 2, F \in K^{\mathrm{DJ}}$ be a partition. Let $\alpha < \kappa$. Then $\alpha + \aleph_1 < \kappa$. By Proposition 12, Take a set $X \subseteq \kappa$ of good indiscernibles for the structure $M = (K_{\kappa}^{\mathrm{DJ}}, F)$ with $\operatorname{otp}(X) \ge \alpha + \aleph_1$. Let X' be the initial segment of X of order type $(\alpha + \aleph_1)^{\operatorname{HOD}(X)}$. In the model $\operatorname{HOD}(X), X'$ is a good set of indiscernibles for M such that $\operatorname{cof}(\operatorname{otp}(X')) > \omega$. By the indiscernibles lemma applied inside $\operatorname{HOD}(X)$ there is a set $Y \supseteq X', Y \in K$ which is a good set of indiscernibles for M. Then Y is also homogeneous for the partition F of ordertype $\ge \alpha$.

We are now able to prove the inner model direction of Theorem 4:

Lemma 17. Con(ZF + All infinite cardinals except possibly successors of singular limit cardinals are almost RAMSEY) implies <math>Con(ZFC + There is a proper class of regular almost RAMSEY cardinals).

Proof. Assume $\operatorname{Con}(\operatorname{ZF} + \operatorname{All}$ infinite cardinals except possibly successors of singular limit cardinals are almost RAMSEY). If there is a proper class of *regular* almost RAMSEY cardinals, we are done. So assume that this is not the case, and let the cardinal θ be an upper bound for the set of regular almost RAMSEY cardinals. Then θ^{++} and θ^{+++} are not successors of limit cardinals. By assumption, θ^{++} and θ^{+++} are almost RAMSEY. By the definition of θ , θ^{++} and θ^{+++} must be singular. By [Sc99], this implies consistency strength far above RAMSEY cardinals.

In the following we apply the core model below a strong cardinal, denoted by the class term K. As for the DODD-JENSEN core model we get:

Proposition 18. (ZF) Let $a \subseteq \text{HOD}$ be a set. Then $K^{\text{HOD}} = K^{\text{HOD}[a]}$.

If there is no inner model with a strong cardinal and the axiom of choice holds then the core model K satisfies the weak covering theorem, i.e., for sufficiently large singular cardinals κ we have $\kappa^+ = (\kappa^+)^K$. **Lemma 19.** (ZF) Let κ^+ be almost RAMSEY where κ is a singular cardinal $\geq \aleph_2$. Then there is an inner model with a strong cardinal.

Proof. Assume that there is no inner model with a strong cardinal. By Lemma 13, $(\kappa^+)^{\text{HOD}} < \kappa^+$. Since $K \subseteq \text{HOD}$, $(\kappa^+)^K < \kappa^+$. Choose a bijection $f: \kappa \leftrightarrow (\kappa^+)^K$ and a cofinal subset $Z \subseteq \kappa$ such that $\operatorname{otp}(Z) < \kappa$. The class $\operatorname{HOD}(f, Z)$ is a model of ZFC and it satisfies that κ is a singular cardinal such that $(\kappa^+)^K < \kappa^+$. But this contradicts the covering theorem below 0^{pistol} inside the model $\operatorname{HOD}(f, Z)$.

Lemma 20. Assume ZF and that every infinite cardinal is almost RAMSEY. Then there exists an inner model with a strong cardinal.

Proof. By assumption, $\aleph_{\omega+1}$ is almost RAMSEY and the successor of the singular cardinal $\aleph_{\omega} \ge \aleph_2$. Now use Lemma 19.