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A set X ⊆ δ is homogeneous for a partition F : [ δ ] < ω → 2 iff
∀n | F [ [X ] n] | = 1 ;

the partition property δ→ (α ) 2
< ω is defined as

∀F : [ δ ] < ω→ 2∃X ⊆ κ (otp(X ) > α ∧ X is homogeneous for F ) .

An infinite cardinal κ is α -Erdös iff κ→ (α ) 2
< ω ,

it is Ramsey iff κ→ (κ ) 2
< ω .

Definition 1 . An infinite cardinal κ is almost Ramsey iff
∀α < κ κ→ (α ) 2

< ω.
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For any uncountable almost Ramsey cardinal κ the following sub-
structure property holds: if λ , κ ′ , λ ′ are infinite cardinals satisfying
λ 6 κ , λ ′ 6 κ ′ < κ , and λ ′ 6 λ then ( κ , λ ) ⇒ (κ ′ , λ ′) , which means that
every first-order structure (κ , λ , � ) with a countable language has an
elementary substructure X ≺ ( κ , λ , � ) with |X | = κ ′ and |X ∩ λ | =
λ ′ .

Theorem 2. Con(ZFC + There exist cardinals κ < λ such that κ is
2λ supercompact where λ is the least regular almost Ramsey cardinal
greater than κ) implies Con(ZF + ¬ACω + Every successor cardinal
is regular + Every (well-ordered) uncountab le cardinal is almost
Ramsey ).

Theorem 3. Assume ZF and that every infinite cardinal is almost
Ramsey . Then there exists an inner model with a strong cardinal.

Theorem 4. The following theories are equiconsistent

a ) ZFC + There is a proper class of regular almost Ramsey car-
dinals;

b ) ZF + All infinite cardinals except possib ly successors of sin-
gular limit cardinals are almost Ramsey .



Definition 5. For α ∈ Ord let κ (α ) be the least κ such that κ →
(α ) 2

< ω, if such a κ exists.

Proposition 6. ( ZF) An infinite cardinal κ is almost Ramsey iff
κ (α ) is defined for all α < κ and κ =

⋃
α< κ κ (α ) .

Proposition 7. ( ZFC) Assume κ is almost Ramsey . Then

a ) ∀α < κ κ (α ) < κ ;

b ) κ is a strong limit cardinal.

Proposition 8. Let M be a transitive model of “ZFC + κ is almost
Ramsey”. Let N ⊇ M be a transitive model of ZFC such that ∀δ <
κ P( δ) ∩M = P( δ) ∩ N. Then κ is almost Ramsey in N.

Proof. Let α < κ . By Proposition 7, κ (α )M < κ . P( κ (α )M) ∩ M =

P(κ (α )M) ∩ N implies that κ (α )N = κ (α )M . Hence κ =
⋃
α< κ κ (α )N

and κ is almost Ramsey in N . �

Proposition 9. ( ZFC)

a ) Assume λ is a Ramsey cardinal. Then the class of almost
Ramsey cardinals is closed unbounded below λ and the class
of regular almost Ramsey cardinals is stationary below λ .

b ) Assume κ is an uncountab le regular almost Ramsey cardinal.
Then the class of almost Ramsey cardinals is closed
unbounded below λ .

Proposition 1 0. ZFC + There exists an uncountab le regular almost
Ramsey cardinal ` Con(ZFC + There exists a proper class of (sin-
gular) almost Ramsey cardinal.



Proposition 1 1 . ( ZF) For infinite ordinals α the partition property
κ → (α ) 2

< ω is equivalent to : for any first-order structure M = (M, � )
in a countab le language S with κ ⊆ M there is a set X ⊆ κ , otp(X ) >
α of indiscernibles , i. e . , for all S-formulas ϕ ( v0 , � , vn− 1 ) , x0 , � ,
xn− 1 ∈ X, x0 < � < xn− 1 , y0 , � , yn− 1 ∈ X, y0 < � < yn− 1 holds

M � ϕ (x0 , � , xn− 1 ) iffM � ϕ ( y0 , � , yn− 1 ) .

Proposition 1 2. ( ZF) Assume κ→ (α ) 2
< ω where α is a limit ordinal.

Then for any first-order structure M = (M, � ) in a countab le lan-
guage S with κ ⊆ M there is a set X ⊆ κ , otp(X ) > α of good indis-
cernibles , i. e . , for all S-formulas ϕ ( v0 , � , vm− 1 , w0 , � , wn− 1 ) , x0 , � ,
xn− 1 ∈ X, x0 < � < xn− 1 , y0 , � , yn− 1 ∈ X, y0 < � < yn− 1 , and a0 < � <
am− 1 < min (x0 , y0) holds

M � ϕ (a0 , � , am− 1 , x0 , � , xn− 1 ) iffM � ϕ (a0 , � , am− 1 , y0 , � , yn− 1 ) .



Proof. We may assume that the structure M contains a unary predi-
cate Ord for the ordinals in M ( = κ ) and a collection of Skolem
functions for ordinal-valued existential statements, i. e. , for every S-
formula ϕ ( v , w

�

) there is a function f of M such that

M � ∀w�

( ∃v (Ord( v ) ∧ ϕ ( v , w
�

) ) → ϕ ( f (w
�

) , w
�

) ) .

Choose a set X ⊆ κ , otp(X ) > α of indiscernibles for M such that the
minimum min (X ) is minimal for all such sets of indiscernibles.
Assume for a contradiction that X is not good. Then there is an S-
formula ϕ ( v0 , � , vn− 1 ) , x0 , � , xn− 1 ∈ X , x0 < � < xn− 1 , y0 , � , yn− 1 ∈
X , y0 < � < yn− 1 and a0 < � < am− 1 < min (x0 , y0) such that

M � ϕ ( a0 , � , am− 1 , x0 , � , xn− 1 ) and M � ¬ϕ (a0 , � , am− 1 , y0 , � , yn− 1 ) .

Since α is a limit ordinal we can take z0 , � , zn− 1 ∈ X , z0 < � < zn− 1

such that xn− 1 < z0 and yn− 1 < z0 . In case M � ϕ ( a0 , � , am− 1 , z0 , � ,
zn− 1 ) , one has

M � ¬ϕ ( a0 , � , am− 1 , y0 , � , yn− 1 )and M � ϕ ( a0 , � , am− 1 , z0 , � , zn− 1 )

where y0 < � < yn− 1 < z0 < � < zn− 1 .
In case M � ¬ϕ (a0 , � , am− 1 , z0 , � , zn− 1 ) , one has

M � ϕ (a0 , � , am− 1 , x0 , � , xn− 1 ) and M � ¬ϕ ( a0 , � , am− 1 , z0 , � , zn− 1 )

where x0 < � < xn− 1 < z0 < � < zn− 1 . So in both cases we have an
ascending 2n-tuble of indiscernibles, such that the first half behaves
differently from the second half with respect to the formula ϕ and the
parameters a0 , � , am− 1 . So without loss of generality we may assume
that x0 < � < xn− 1 < y0 < � < yn− 1 and

M � ϕ ( a0 , � , am− 1 , x0 , � , xn− 1 ) and M � ¬ϕ (a0 , � , am− 1 , y0 , � , yn− 1 ) .



Write x
�

= x0 , � , xn− 1 and y
�

= y0 , � , yn− 1 . Since M contains Skolem
functions there are functions f0 , � , fm− 1 of M which compute param-
eters like a0 , � , am− 1 :

M � ∃v1 < x0∃v2 < x 1 � ∃vm− 1 < x0( f0(x
�

, y
�

) < x0 ∧ ϕ ( f0(x
�

, y
�

) , v1 , � ,
vm− 1 , x

�

) ∧ ¬ϕ ( f0(x
�

, y
�

) , v1 , � , vm− 1 , y
�

) )

M � ∃v2 < x0 � ∃vm− 1 < x0( f0( x
�

, y
�

) < x0 ∧ f1 (x
�

, y
�

) < x0 ∧ ϕ ( f0(x
�

,
y

�

) , f1 (x
�

, y
�

) , � , vm− 1 , x
�

) ∧ ¬ϕ ( f0(x
�

, y
�

) , f1 (x
�

, y
�

) , � , vm− 1 , y
�

) )

�

M � f0( x
�

, y
�

) < x0 ∧ � ∧ fm− 1 (x
�

, y
�

) < x0 ∧ ϕ ( f0( x
�

, y
�

) , f1 (x
�

, y
�

) , � ,
fm− 1 (x

�

, y
�

) , x
�

) ∧ ¬ϕ ( f0( x
�

, y
�

) , f1 (x
�

, y
�

) , � , fm− 1 ( x
�

, y
�

) , y
�

)

Now consider z
�

= z0 , � , zn− 1 ∈ X , z0 < � < zn− 1 such that yn− 1 <
z0 .

( 1 ) There is k < m such that fk( x
�

, y
�

) � fk( y
�

, z
�

) .

Proof. Assume not. Set ξ0 = f0(x
�

, y
�

) , � , ξm− 1 = fm− 1 (x
�

, y
�

) . Then

M � ϕ ( ξ0 , ξ1 , � , ξm− 1 , x
�

) ∧ ¬ϕ ( ξ0 , ξ1 , � , ξm− 1 , y
�

)

and

M � ϕ ( ξ0 , ξ1 , � , ξm− 1 , y
�

) ∧ ¬ϕ ( ξ0 , ξ1 , � , ξm− 1 , z
�

) .

In particular

M � ϕ ( ξ0 , ξ1 , � , ξm− 1 , y
�

) ∧ ¬ϕ ( ξ0 , ξ1 , � , ξm− 1 , y
�

) ,

which is a contradiction. �

So take k < m such that

( 2) fk(x
�

, y
�

) � fk( y
�

, z
�

) .

Let ( νi | i < α ) be a strictly increasing enumeration of the set X of
indiscernibles, and let ( x

� ( i) | i < α ) with

x
� ( i) = νn · i , νn · i+ 1 , � , νn · i+n− 1



be a partition of X into ascending sequences of length n .

( 3) fk(x
� ( 0) , x

� ( 1 ) ) < fk(x
� ( 1 ) , x

� ( 2 ) ) .

Proof. By indiscernibility, ( 2) implies that fk( x
� ( 0 ) , x

� ( 1 ) ) � fk(x
� ( 1 ) ,

x
� ( 2 ) ) . Assume for a contradiction that fk(x

� ( 0 ) , x
� ( 1 ) ) > fk(x

� ( 1 ) , x
� ( 2 ) ) .

Then again by indiscernibility we would obtain a decreasing ∈ -
sequence

fk(x
� ( 0 ) , x

� ( 1 ) ) > fk( x
� ( 1 ) , x

� ( 2 ) ) > fk(x
� ( 2 ) , x

� ( 3) ) > � ,

contradiction. �

But then

fk( x
� ( 0) , x

� ( 1 ) ) < fk(x
� ( 2 ) , x

� ( 3 ) ) < fk( x
� ( 4) , x

� ( 5 ) ) < �

is an ascending α -sequence of indiscernibles for M with smallest ele-
ment fk(x

� ( 0 ) , x
� ( 1 ) ) < ν0 which contradicts the minimal choice of min

(X ) . �

Lemma 13. ( ZF) Let κ+ be almost Ramsey . Then (κ+ )HOD < κ+ .

Proof. Assume for a contradiction that (κ+ )HOD = κ+ . For γ ∈ [κ , κ+ )
choose the < HOD -least bijection fγ : γ↔ κ . Define F : [κ ] 3→ 2 by

F ( {α , β , γ} ) =

{
0 iff fγ(α ) < fγ( β)

1 iff fγ(α ) > fγ( β)
, for α < β < γ.



Take X ⊆ κ+ homogeneous for F with otp(X ) = κ + 2 . Let γ = max
(X ) . Then define h : κ + 1 → κ by h ( ξ) = fγ(α ξ) where α ξ is the ξ-th
element of X . Case 1 : ∀x ∈ [X ] 3F ( x) = 0 . Then for ξ < ζ < κ + 1 we
have: α ξ < α ζ < γ , {α ξ , α ζ , γ } ∈ [X ] 3 , F ( {α ξ , α ζ , γ} ) = 0 , and so

h ( ξ) = fγ(α ξ) < fγ(α ζ) = h ( ζ ) .

Thus h : κ + 1 → κ is order preserving, which is impossible.
Case 2: ∀x ∈ [X ] 3F (x ) = 1 . Then for ξ < ζ < κ + 1 we have: α ξ <

α ζ < γ , {α ξ , α ζ , γ} ∈ [X ] 3 , F ( {α ξ , α ζ , γ } ) = 1 , and so

h ( ξ) = fγ(α ξ) > fγ(α ζ) = h ( ζ ) .

Thus h : κ + 1 → κ is a strictly descending κ + 1 chain in the ordinals,
contradiction. �

Let KDJ be the canonical term for the Dodd-Jensen core model.

Proposition 14. ( ZF) Let a ⊆ HOD be a set. Then

a ) HOD[a ] is a set-generic extension of HOD , so HOD[a ] � ZFC .
b ) (KDJ)HOD = (KDJ)HOD[ a ] ; moreover this equality holds for every

level of the hierarchy, i. e . , (Kα
DJ)HOD = (Kα

DJ)HOD [a ] for every
α ∈ Ord.

By the proposition we may define KDJ = (KDJ)HOD in models without
choice.

Proposition 1 5. Let κ be an infinite cardinal and suppose A ∈ KDJ ∩
P(Kκ

DJ) , and that there is I, an infinite good set of indiscernib les for
A = (Kκ

DJ , A) and that cof(otp( I) ) > ω . Then there is I ′ ∈ KDJ , I ′ ⊇ I
a set of good indiscernibles for A.



Lemma 16. ( ZF) Let κ > ℵ 1 be almost Ramsey . Then κ is almost
Ramsey in KDJ .

Proof. Let F : [κ ] < ω → 2 , F ∈ KDJ be a partition. Let α < κ . Then
α + ℵ 1 < κ . By Proposition 1 2, Take a set X ⊆ κ of good indiscernibles
for the structure M = (Kκ

DJ , F ) with otp(X ) > α + ℵ 1 . Let X ′ be the
initial segment of X of order type (α + ℵ 1 )

HOD(X ) . In the model
HOD(X ) , X ′ is a good set of indiscernibles for M such that
cof(otp(X ′) ) > ω . By the indiscernibles lemma applied inside HOD(X )
there is a set Y ⊇ X ′, Y ∈ K which is a good set of indiscernibles for
M . Then Y is also homogeneous for the partition F of ordertype >
α . �

We are now able to prove the inner model direction of Theorem 4:

Lemma 17. Con(ZF + All infinite cardinals except possib ly succes-
sors of singular limit cardinals are almost Ramsey) implies
Con(ZFC + There is a proper class of regular almost Ramsey cardi-
nals ) .



Proof. Assume Con( ZF + All infinite cardinals except possibly suc-
cessors of singular limit cardinals are almost Ramsey) . If there is a
proper class of regular almost Ramsey cardinals, we are done. So
assume that this is not the case, and let the cardinal θ be an upper
bound for the set of regular almost Ramsey cardinals. Then θ+ + and
θ+ + + are not successors of limit cardinals. By assumption, θ+ + and
θ+ + + are almost Ramsey . By the definition of θ , θ+ + and θ+ + + must
be singular. By [ Sc99] , this implies consistency strength far above
Ramsey cardinals. �

In the following we apply the core model below a strong cardinal,
denoted by the class term K . As for the Dodd-Jensen core model
we get:

Proposition 1 8. ( ZF) Let a ⊆ HOD be a set. Then KHOD = KHOD[ a ] .

If there is no inner model with a strong cardinal and the axiom of
choice holds then the core model K satisfies the weak covering the-
orem, i. e. , for sufficiently large singular cardinals κ we have κ+ =

(κ+ )K .



Lemma 19. ( ZF) Let κ+ be almost Ramsey where κ is a singular
cardinal > ℵ 2 . Then there is an inner model with a strong cardinal.

Proof. Assume that there is no inner model with a strong cardinal.
By Lemma 1 3, ( κ+ )HOD < κ+ . Since K ⊆ HOD, (κ+ )K < κ+ . Choose a
bijection f : κ ↔ ( κ+ )K and a cofinal subset Z ⊆ κ such that otp(Z ) <
κ . The class HOD( f , Z ) is a model of ZFC and it satisfies that κ is a
singular cardinal such that (κ+ )K < κ+ . But this contradicts the cov-
ering theorem below 0pistol inside the model HOD( f , Z ) . �

Lemma 20. Assume ZF and that every infinite cardinal is almost
Ramsey . Then there exists an inner model with a strong cardinal.

Proof. By assumption, ℵω+ 1 is almost Ramsey and the successor of
the singular cardinal ℵω > ℵ 2 . Now use Lemma 1 9. �


