Building the Dodd-Jensen Core Model with a Simplified Fine Hierarchy

Peter Koepke, University of Bonn

The Dodd-Jensen core model is of the form $K=L^{E}$ where E is a sequence of measures. We structure the model L^{E} by a continuous fine hierarchy $\left(\mathcal{F}_{\alpha}^{E}\right)_{\alpha \in \text { Ord }}$. Each \mathcal{F}_{α}^{E} is a structure of the form $\mathcal{F}_{\alpha}^{E}=\left(F_{\alpha}^{E}, \in, E, S^{E}, \ldots\right)$, which contains a Skolem function S^{E} and other basic constructible operations. The next level $F_{\alpha+1}^{E}$ is the collection of all subsets of F_{α}^{E} which are definable over the structure \mathcal{F}_{α}^{E} by quantifier-free formulas. The hierarchy satisfies condensation theorems and other finestructural laws.
The sequence E consists of measures E_{α} which are represented as elementary maps (extenders) E_{α} : $\mathcal{F}_{\delta}^{E} \rightarrow \mathcal{F}_{\alpha}^{E}$. Core model theory can be developed with the fine hierarchy. One can canonically define finestructural ultrapowers of levels \mathcal{F}_{γ}^{E} by measures in E. If all proper initial segments of \mathcal{F}_{γ}^{E} are finestructurally sound then this is inherited by finestructural ultrapowers. Iterated finestructural extensions can be used to compare structures \mathcal{F}_{γ}^{E} and $\mathcal{F}_{\gamma^{\prime}}^{E^{\prime}}$. The unique predicate E defining K consists of measures for which the formation of finestructural ultrapowers can be iterated arbitrarily (iterability).
The use of the fine hierarchy instead of standard fine structure theory circumvents the complications of iterated projecta and reducts and simplifies the construction of finestructural ultrapowers.

Stanford Logic Seminar, March 25, 2008, 16:15-17:30

Contents

- GöDEL's constructible universe
- Measures and extenders
- Ultrapowers and iterated ultrapowers
$-0^{\#}, 0^{\# \#}, \ldots$
- The Dodd-Jensen core model K
- Hierarchies and hulls
- The fine hierarchy for L^{E}
- \forall_{1}-characterization of fine levels, condensation
- Fine ultrapowers and fine iterations
- A definition of K

GÖDEL's constructible universe
$-\quad L_{0}=\emptyset$
$-\quad L_{\alpha+1}=\operatorname{Def}\left(L_{\alpha}\right)$
$-\quad L_{\lambda}=\bigcup_{\alpha<\lambda} L_{\alpha}$ for limit ordinals λ

- $L=\bigcup_{\alpha \in \operatorname{Ord}} L_{\alpha}$ is the constructible universe
$\operatorname{Def}(X)$ is the "definable powerset" of X :
$\operatorname{Def}(X)=\{a \subseteq X \mid$ there are a first-order formula $\varphi(v, \vec{w})$ and parameters $\vec{p} \in X$ such that $a=\{x \in X \mid(X, \in) \vDash \varphi(x, \vec{p})\}\}$.
(L, \in) is a model of Zermelo-Fraenkel set theory ZF, of the axiom of choice AC , and of the generalized continuum hypothesis GCH.

How close is L to the set theoretic universe V ?

A Corollary of Jensen's covering theorem:
Let ν be a singular cardinal in V. Then
$\left(\nu^{+}\right)^{L}<\nu^{+}$iff there is a nontrivial elementary embedding $e:(L, \in) \rightarrow(L, \in)$.
To approximate V one should incorporate such an e into the approximation.

Coding class-sized elementary embeddings by sets

Let $e \upharpoonright \kappa=\operatorname{id}$ and $e(\kappa)>\kappa, \gamma=\left(\kappa^{+}\right)^{L}, \delta=e(\gamma)$.
$e \upharpoonright L_{\gamma}:\left(L_{\gamma}, \in\right) \rightarrow\left(L_{\delta}, \in\right)$ is elementary.
$E_{\delta}=e \upharpoonright L_{\gamma}$ is/can be chosen to be a measure (extender) on L :
$-\quad \operatorname{dom}\left(E_{\delta}\right)=L_{\gamma}$ for some $\gamma<\delta$

- $E_{\delta} \upharpoonright \kappa=\mathrm{id}$ and $E_{\delta}(\kappa)>\kappa$ for some critical point $\kappa<\gamma$
- $\quad L_{\gamma}=\left(H_{\leqslant k}\right)^{L} \vDash \mathrm{ZFC}^{-}$
- $\quad E_{\delta}:\left(L_{\gamma}, \epsilon\right) \rightarrow\left(L_{\delta}, \epsilon\right)$ is elementary
$-\quad L_{\delta}=\operatorname{Hull}(\kappa \cup\{\kappa\})$ and $E_{\delta}:\left(L_{\gamma}, \in\right) \rightarrow\left(L_{\delta}, \in\right)$ is cofinal
- $\left(L_{\delta}, E_{\delta}\right)$ is amenable, i.e., $\forall x \in L_{\delta} x \cap E_{\delta} \in L_{\delta}$

Let $\operatorname{Tr}(X)$ denote the Mostowski transitivization of (X, \in). Let $p \subseteq q$ range over finite subsets of L.

The ultrapower map $\pi_{E_{\delta}}:(L, \in) \rightarrow\left(\operatorname{Ult}\left(L, E_{\delta}\right), \in^{*}\right)$ extends $E_{\delta}: \pi_{E_{\delta}} \supseteq E_{\delta}$.
The elementarity of $\pi_{E_{\delta}}$ depends on the elementarity of the hulls.
For "algebraic" hulls, $\pi_{E_{\delta}}$ is \forall_{1}-elementary in the appropriate language.

Iterated ultrapowers

If $\left(\operatorname{Ult}\left(L, E_{\delta}\right), \in^{*}\right)=(L, \in)$ then say that L is extendable by E_{δ}.
Then the image $E^{*}=\bigcup\left\{\pi_{E_{\delta}}(x) \mid x \in L \wedge x \subseteq E_{\delta}\right\}$ is an extender on $\operatorname{Ult}\left(L, E_{\delta}\right)$.
L is iterable by E_{δ} iff the formation of ultrapowers by E_{δ} and its images can be iterated transfinitely, taking direct limits at limit ordinals:
$-M_{0}=L, \pi_{00}=\mathrm{id}, E^{(0)}=E_{\delta}$
$-\quad \begin{aligned} & M_{\alpha+1}=\operatorname{Ult}\left(M_{\alpha}, E^{(\alpha)}\right), \pi_{\alpha, \alpha+1}=\pi_{E^{(\alpha)}}, E^{(\alpha+1)}=\bigcup\left\{\pi_{\alpha, \alpha+1}(x) \mid x \in M_{\alpha} \wedge x \subseteq\right. \\ & \left.E^{(\alpha)}\right\}\end{aligned}$

- $M_{\lambda},\left(\pi_{\alpha, \lambda}\right)_{\alpha<\lambda}$ is the transitive direct limit of $\left(M_{\alpha}\right)_{\alpha<\lambda},\left(\pi_{\alpha, \beta}\right)_{\alpha \leqslant \beta<\lambda}, E^{(\lambda)}=\bigcup$ $\left\{\pi_{0, \lambda}(x) \mid x \in M_{0} \wedge x \subseteq E^{(0)}\right\}$

The theory of iterated ultrapowers (KUNEN)

Iterated ultrapowers make structures uniform and comparable:
if $\left(M_{\alpha}, E^{(\alpha)}\right)_{\alpha \in \operatorname{Ord}},\left(\pi_{\alpha, \beta}\right)_{\alpha \leqslant \beta \in \operatorname{Ord}}$ and $\left(M_{\alpha}^{\prime}, E^{\prime(\alpha)}\right)_{\alpha \in \operatorname{Ord}},\left(\pi_{\alpha, \beta}^{\prime}\right)_{\alpha \leqslant \beta \in \operatorname{Ord}}$ are two iterations of L then $E^{(\alpha)}=E^{(\alpha)}$ for sufficiently high α.

This implies that under the assumption of a nontrivial elementary embedding of L there is exactly one iterable extender $E_{\delta}:\left(L_{\gamma}, \in\right) \rightarrow\left(L_{\delta}, \in\right)$ on L_{δ} (and on L) such that L_{δ} is the hull of \emptyset (using the function E_{δ} in the formation of the hull).

This E_{δ} is called 0\#.

Iterated sharps
$0,0^{\#}, 0^{\# \#}, \ldots$.

Generalizing sharps: E_{δ} is a measure (extender) on L_{δ}^{E} :

- $\quad E_{\delta}:\left(L_{\gamma}^{E}, \epsilon\right) \rightarrow\left(L_{\delta}^{E}, \epsilon\right)$ is elementary and cofinal for some $\gamma<\delta$
- $\quad E_{\delta} \upharpoonright \kappa=\mathrm{id}$ and $E_{\delta}(\kappa)>\kappa$ for some critical point $\kappa<\gamma$
$-\quad L_{\gamma}^{E}=\left(H_{\leqslant \kappa}\right)^{L_{\delta}^{E}} \vDash \mathrm{ZFC}^{-}$
$-\quad L_{\delta}^{E}=\operatorname{Hull}(\kappa \cup\{\kappa\})$
- $\left(L_{\delta}^{E}, E_{\delta}\right)$ is amenable, i.e., $\forall x \in L_{\delta}^{E} x \cap E_{\delta} \in L_{\delta}^{E}$
$-\quad K=L^{E}$
- $E_{\delta} \neq 0$ implies that E_{δ} is an iterable extender on L_{δ}^{E}
- $\quad E_{\delta}$ is not an iterable measure on L^{E}
- $\quad E_{\delta}: L_{\gamma}^{E} \rightarrow L_{\delta}^{E}$ with critical point κ implies that there is a maximal α such that $\mathcal{P}(\kappa) \cap L_{\alpha}^{E} \subseteq L_{\gamma}^{E}$; then E_{δ} is an iterable extender on L_{α}^{E}
E is defined recursively. If $E \upharpoonright \delta$ is defined and there is such an $E_{\delta} \neq 0$ pick it for the sequence. Otherwise set $E_{\delta}=0$.
K is a model of $\mathrm{ZFC}+\mathrm{GCH}$.

$$
\frac{\exists \kappa \kappa \text { measurable }}{K}=\frac{0^{\#} \text { exists }}{L}
$$

In particular:

- rigidity: if there is nontrivial elementary embedding $\sigma:(K, \in) \rightarrow(K, \in)$ then there is an inner model with a measurable cardinal
- if there is no inner model with a measurable cardinal then K covers V, e.g., for every singular cardinal ν holds $\left(\nu^{+}\right)^{K}=\nu^{+}$

GÖDEL's 1939 hulls

GÖDEL's proof of $2^{\omega_{\mu}}=\omega_{\mu+1}$ in Consistency proof for the generalized continuum hypothesis, Proceedings of the National Academy of Sciences forms a hull of $M_{\omega_{\mu}} \cup$ $\{m\}$, where $m \subseteq M_{\omega_{\mu}}$; the hull uses definability for all formulas of the language of set theory.
"Define a set K of constructible sets, a set O of ordinals and a set F of Skolem functions by the following postulates I-VII:
I. $M_{\omega_{\mu}} \subseteq K$ and $m \in K$.
II. If $x \in K$, the order of x belongs to O.
III. If $x \in K$, all constants occuring in the definition of x belong to K.
IV. If $\alpha \in O$ and $\phi_{\alpha}(x)$ is a propositional function over M_{α} all of whose constants belong to K, then:

1. The subset of M_{α} defined by ϕ_{α} belongs to K.
2. For any $y \in K \cdot M_{\alpha}$ the designated Skolem functions for ϕ_{α} and y or \sim ϕ_{α} and y (according as $\phi_{\alpha}(y)$ or $\sim \phi_{\alpha}(y)$) belong to F.
V. If $f \in F, x_{1}, \ldots, x_{n} \in K$ and $\left(x_{1}, \ldots, x_{n}\right)$ belongs to the domain of definition of f, then $f\left(x_{1}, \ldots, x_{n}\right) \in K$.
VI. If $x, y \in K$ and $x-y \neq \Lambda$ the first element of $x-y$ belongs to K.
VII. No proper subsets of K, O, F satisfy I-VI.

Theorem 5. There exists a one-to-one mapping x^{\prime} of K on M_{η} such that $x \in y \equiv x^{\prime} \in$ y^{\prime} for $x, y \in K$ and $x^{\prime}=x$ for $x \in M_{\omega_{\mu}}$.

Proof: The mapping $x^{\prime}(\ldots$.$) is defined by transfinite induction on the order,"$

Theorem 5 is the fundamental condensation property: hulls are isomorphic to levels of the hierarchy.

- GöDEL: L_{α}-hierarchy, and Σ_{ω}-hulls with respect to the \in-language
- Jensen: J_{α}^{E}-hierarchy with Σ_{n} truth predicates, and Σ_{1}-hulls with respect to the \in-language enriched by truth predicates
- Here: \mathcal{F}_{α}^{E}-hierarchy built with quantifier-free definability, structures enriched by certain constructible operations, algebraic hulls with respect to those operations

The fine hierarchy for L^{E}
The fine hierarchy $\left(\mathcal{F}_{\alpha}^{E}\right)_{\alpha \in \operatorname{Ord}}$ is defined by

$$
\mathcal{F}_{\alpha}^{E}=\left(F_{\alpha}^{E}, \in, E,<^{E}, I^{E}, S^{E}, R^{E}, D^{E}, P^{E}\right)
$$

- $F_{0}^{E}=\emptyset$
- Assume \mathcal{F}_{α}^{E} is defined. For quantifier-free $\varphi\left(v_{0}, \ldots, v_{n-1}, v_{n}\right), \vec{p} \in F_{\alpha}^{E}$ define the interpretation

$$
\begin{equation*}
I^{E}\left(F_{\alpha}^{E}, \varphi, \vec{p}\right)=\left\{v_{n} \in F_{\alpha}^{E} \mid \mathcal{F}_{\alpha}^{E} \vDash \varphi\left(\vec{p}, v_{n}\right)\right\} \tag{1}
\end{equation*}
$$

Let

$$
F_{\alpha+1}^{E}=\left\{I^{E}\left(F_{\alpha}^{E}, \varphi, \vec{p}\right) \mid \varphi\left(v_{0}, \ldots, v_{n-1}, v_{n}\right) \in \mathcal{L}_{0}, \vec{p} \in F_{\alpha}^{E}\right\}
$$

Define $I^{E} \upharpoonright F_{\alpha+1}^{E}$ to extend $I^{E} \upharpoonright F_{\alpha}^{E}$ and the assignments made in (1); in all other cases set $I^{E}(\vec{x})=\perp$.
The rank function: $R^{E} \upharpoonright F_{\alpha+1}^{E} \supseteq R^{E} \upharpoonright F_{\alpha}^{E}$, and for $y \in F_{\alpha+1}^{E} \backslash F_{\alpha}^{E}$ set

$$
R^{E}(y)=F_{\alpha}^{E} .
$$

The definition function: $D^{E} \upharpoonright F_{\alpha+1}^{E} \supseteq D^{E} \upharpoonright F_{\alpha}^{E}$, and for $y \in F_{\alpha+1}^{E} \backslash F_{\alpha}^{E}, D^{E}(y)$ is the $<_{\mathcal{L}}$-least $\varphi \in \mathcal{L}_{0}$ such that

$$
y=I^{E}\left(F_{\alpha}^{E}, \varphi, \vec{p}\right)
$$

for some $\vec{p} \in F_{\alpha}^{E}$;
then let the parameter function $P^{E}(y)$ be the least such \vec{p} in the lexicographical wellordering induced by $<^{E} \upharpoonright F_{\alpha}^{E}$.

The constructible wellorder: $<^{E} \upharpoonright F_{\alpha+1}^{E}$ endextends $<^{E} \upharpoonright F_{\alpha}^{E}$ and for $y, y^{\prime} \in F_{\alpha+1}^{E} \backslash F_{\alpha}^{E}$

$$
\begin{aligned}
y<^{E} y^{\prime} \text { iff } & D^{E}(y)<{ }_{\mathcal{L}} D^{E}\left(y^{\prime}\right) \text {, or } D^{E}(y)=D^{E}\left(y^{\prime}\right) \text { and } \\
& P^{E}(y) \text { is }<^{E} \text {-lexicographically smaller than } P^{E}\left(y^{\prime}\right) .
\end{aligned}
$$

The Skolem function: $S^{E} \upharpoonright F_{\alpha+1}^{E} \supseteq S^{E} \upharpoonright F_{\alpha}^{E}$ and for $\varphi\left(v_{0}, \ldots, v_{n-1}\right) \in \mathcal{L}_{0}$ and $\vec{p} \in F_{\alpha}^{E}$

$$
S^{E}\left(F_{\alpha}^{E}, \varphi, \vec{p}\right)=\left\{\begin{array}{c}
\text { the }<^{E} \text {-lexicographically minimal } \vec{q} \in F_{\alpha}^{E} \text { such that } \\
\quad \mathcal{F}_{\alpha}^{E} \models \varphi(\vec{p}, \vec{q}), \text { if this exists; } \\
\perp, \text { else. }
\end{array}\right.
$$

For all other arguments $\vec{x} \in F_{\alpha+1}^{E} \backslash F_{\alpha}^{E}$ set $S^{E}(\vec{x})=\perp$.

For limit $\lambda \leqslant \infty$ take a union of structures

$$
\mathcal{F}_{\lambda}^{E}=\bigcup_{\alpha<\lambda} \mathcal{F}_{\alpha}^{E}
$$

a) $\alpha \leqslant \gamma \rightarrow F_{\alpha}^{E} \subseteq F_{\gamma}^{E}$
b) $\alpha<\gamma \rightarrow F_{\alpha}^{E} \in F_{\gamma}^{E}$
c) F_{γ}^{E} is transitive
d) $F_{\gamma}^{E} \cap \mathrm{Ord}=\gamma$
e) $\bigcup_{\alpha \in \operatorname{Ord}} F_{\alpha}^{E}=L^{E}$

Theorem 1. There is a theory $T^{\mathcal{F}}$ consisting of Π_{1}-sentences of the form $\forall \vec{x} \varphi$ where φ is quantifier-free, with the property: if $\mathcal{M}=\left(M, \in, E,<^{M}, I^{M}, S^{M}, R^{M}\right.$, $\left.D^{M}, P^{M}\right)$ is a transitive \mathcal{L}-structure then $\mathcal{M} \vDash T^{\mathcal{F}}$ iff $\mathcal{M}=\mathcal{F}_{\alpha}^{E}$ for some $\alpha \leqslant \infty$.

Proof. The abbreviation $F(z)$ for $z=I\left(z, v_{0}=v_{0}, \emptyset\right)$ expresses that z is a level of the fine hierarchy. Let $T^{\mathcal{F}}$ consist of

1. Transitivity: $x \dot{\in} y \wedge y \dot{\in} z \wedge F(z) \rightarrow x \dot{\in} z$
2. Linearity: $F(x) \wedge F(y) \rightarrow x \dot{\in} y \vee x=y \vee y \dot{\in} x$
3. $F(R(x)) \wedge \neg x \dot{\in} R(x)$
4. $R(x) \dot{\in} z \wedge F(z) \rightarrow x \dot{\in} z$
5. Interpretation: $F(x) \wedge \vec{y} \dot{\in} x \rightarrow(z \in I(x, \varphi, \vec{y}) \leftrightarrow z \dot{\in} x \wedge \varphi(\vec{y}, z))$
6. $\neg F(x) \vee \neg \vec{p} \dot{\in} x \rightarrow S(x, \varphi, \vec{p})=\perp$

Definition 2. A set or class $Z \subseteq L^{E}$ is E-closed if $F_{\omega} \subseteq Z$ and Z is closed with respect to the operations $I^{E}, S^{E}, R^{E}, D^{E}$ and P^{E}. For $X \subseteq L^{E}$ let $\mathcal{F}^{E}(X)$ be the hull of X in L^{E}, i.e., the \subseteq-smallest superset of X which is E-closed. Note that all fine levels F_{α}^{E} are E-closed.

Theorem 3. (Condensation Theorem) Let $E \subseteq V$ be a predicate and let $Z \subseteq L^{E}$ be E-closed. Then there are unique $\alpha \in \operatorname{Ord}$, and $D \subseteq V$, and a unique fine isomorphism

$$
\sigma: \mathcal{F}_{\alpha}^{D} \cong\left(Z, \in, E,<^{E}, I^{E}, S^{E}, R^{E}, D^{E}, P^{E}\right)
$$

with $D \subseteq F_{\alpha}^{D}$.

Proof. Let $\sigma:(M, \in) \cong(Z, \in)$ be the Mostowski transitivization. Since Π_{1}-theories transfer downwards, (M, \in, \ldots) is a model of $T^{\mathcal{F}}$ and hence of the form \mathcal{F}_{α}^{D}.

Fine ultrapowers
Let $E_{\delta}:\left(F_{\gamma}^{E}, \in\right) \rightarrow\left(F_{\delta}^{E}, \in\right)$ with critical point κ be a measure on \mathcal{F}_{α}^{E}, i.e.,

$$
\forall p \subseteq F_{\alpha}^{E}, p \text { finite: } \operatorname{Tr}\left(\mathcal{F}^{E}(\kappa \cup p)\right) \in F_{\gamma}^{E}
$$

Let $p \subseteq q$ range over finite subsets of F_{α}^{E}.

$\underline{\text { Fine ultrapowers }}$
$-\quad \pi_{E_{\delta}}: \mathcal{F}_{\alpha}^{E} \rightarrow \operatorname{Ult}\left(\mathcal{F}_{\alpha}^{E}, E_{\delta}\right)$ is \forall_{1}-elementary
$-\quad$ if \mathcal{F}_{α}^{E} is extendable by E_{δ}, i.e., $\operatorname{Ult}\left(\mathcal{F}_{\alpha}^{E}, E_{\delta}\right)$ is wellfounded, then $\operatorname{Ult}\left(\mathcal{F}_{\alpha}^{E}, E_{\delta}\right)=$ $\mathcal{F}_{\alpha^{*}}^{E^{*}}$ and $\pi_{E_{\delta}}: \mathcal{F}_{\alpha}^{E} \rightarrow \mathcal{F}_{\alpha^{*}}^{E^{*}}$
$-\quad \pi_{E_{\delta}} \supseteq E_{\delta}, E^{*} \upharpoonright \delta+1=E \upharpoonright \delta$
$-\quad \pi_{E_{\delta}}: \mathcal{F}_{\alpha}^{E} \rightarrow \mathcal{F}_{\alpha^{*}}^{E^{*}}$ can be lifted to $\pi_{E_{\delta}}^{+}: \mathcal{F}_{\alpha+1}^{E} \rightarrow \mathcal{F}_{\alpha^{*}+1}^{E^{*}}$

Fine iterations

A commutative system $\left(\mathcal{F}_{\alpha^{(i)}}^{E^{(i)}}, \pi_{i j}\right)_{i \leqslant j<\theta}$ is a fine iteration of \mathcal{F}_{α}^{E} if
$-\mathcal{F}_{\alpha^{(0)}}^{E^{(0)}}=\mathcal{F}_{\alpha}^{E}$
$-\pi_{i, i+1}: \mathcal{F}_{\tau^{(i)}}^{E^{(i)}} \rightarrow \mathcal{F}_{\alpha^{(i+1)}}^{E^{(i+1)}}$ is a fine ultrapower by some $E_{\delta}^{(i)}$, where $\tau^{(i)} \leqslant \alpha^{(i)}$ is maximal such that $E_{\delta}^{(i)}$ is a measure on $\mathcal{F}_{\tau^{(i)}}^{E^{(i)}}$; if $\tau^{(i)}<\alpha^{(i)}$ we say that there is a truncation at i

- if $\lambda<\theta$ is a limit ordinal then $\mathcal{F}_{\alpha^{(\lambda)}}^{E^{(\lambda)}},\left(\pi_{i j}\right)_{i \leqslant j<\lambda}$ is the transitive directed limit of $\left(\mathcal{F}_{\alpha^{(i)}}^{E^{(i)}}, \pi_{i j}\right)_{i \leqslant j<\lambda}$
\mathcal{F}_{α}^{E} is (finely) iterable if every fine iteration of \mathcal{F}_{α}^{E} can be freely continued.
Countable completeness of measures implies iterability.

Defining K

$K=L^{E}=\bigcup_{\alpha} \mathcal{F}_{\alpha}^{E}$ is iterable, i.e., every \mathcal{F}_{α}^{E} is iterable.
E is defined recursively. If $E \upharpoonright \delta$ is given, choose E_{δ} such that there is some $\alpha \geqslant \delta$ with

- E_{δ} is an extender on $\mathcal{F}_{\alpha}^{E \uparrow \delta+E_{\delta}}$ with measurable κ but not an extender on $\mathcal{F}_{\alpha+1}^{E \backslash \delta+E_{\delta}}$
$-\mathcal{F}_{\alpha}^{E\left\lceil\delta+E_{\delta}\right.}$ is finely iterable
$-\mathcal{F}_{\alpha}^{E\left\lceil\delta+E_{\delta}\right.}=\mathcal{F}^{E\left\lceil\delta+E_{\delta}\right.}(\kappa \cup p)$ for some finite $p \subseteq F_{\alpha}^{E\left\lceil\delta+E_{\delta}\right.}$

If this is not possible, set $E_{\delta}=\emptyset$.

Uniqueness

Theorem 4. There is at most one such E_{δ}.

Proof. Otherwise coiterate $\mathcal{F}_{\alpha}^{E\left\lceil\delta+E_{\delta}\right.}$ and $\mathcal{F}_{\alpha^{\prime}}^{E\left\lceil\delta+E_{\delta}^{\prime}\right.}$: let $\left(\mathcal{F}_{\alpha^{(i)}}^{E^{(i)}}, \pi_{i j}\right)_{i \leqslant j<\theta}$ and $\left(\mathcal{F}_{\alpha^{\prime}(i)}^{E^{(i)}}\right.$, $\left.\pi_{i j}^{\prime}\right)_{i \leqslant j<\theta}$ be fine iterations of $\mathcal{F}_{\alpha}^{E\left\lceil\delta+E_{\delta}\right.}$ and $\mathcal{F}_{\alpha^{\prime}}^{E \mid \delta+E_{\delta}^{\prime}}$ respectively such that for all $i+$ $1<\theta$

$$
\pi_{i, i+1}: \mathcal{F}_{\tau^{(i)}}^{E^{(i)}} \rightarrow \mathcal{F}_{\alpha^{(i+1)}}^{E^{(i+1)}} \text { and } \pi_{i, i+1}^{\prime}: \mathcal{F}_{\tau^{\prime}(i)}^{E^{\prime(i)}} \rightarrow \mathcal{F}_{\alpha^{\prime}(i+1)}^{E^{\prime(i+1)}}
$$

are fine extension by some $E_{\delta}^{(i)}$ and $E_{\delta}^{\prime(i)}$ respectively where

$$
E^{(i)} \upharpoonright \delta=E^{\prime(i)} \upharpoonright \delta \text { and } E_{\delta}^{(i)} \neq E_{\delta}^{\prime(i)}, \text { if possible. }
$$

This coiteration stops at some $\mathcal{F}_{\alpha^{(\theta-1)}}^{E^{(\theta-1)}}, \mathcal{F}_{\alpha^{(\theta-1)}}^{E^{(\theta-1)}}$.

If $\alpha^{(\theta-1)}<\alpha^{\prime(\theta-1)}$ then there is $a \subseteq \kappa$ such that $a \in \mathcal{F}_{\alpha^{\prime}}^{E^{(\theta-1)}} \backslash \mathcal{F}_{\alpha^{(\theta-1)}}^{E^{(\theta-1)}}$. But this contradicts

$$
\mathcal{P}(\kappa) \cap \mathcal{F}_{\alpha^{(\theta-1)}}^{E^{(\theta-1)}}=\mathcal{P}(\kappa) \cap \mathcal{F}_{\alpha}^{E\left\lceil\delta+E_{\delta}\right.}=\mathcal{P}(\kappa) \cap \mathcal{F}_{\alpha^{\prime}}^{E \mid \delta+E_{\delta}^{\prime}}=\mathcal{P}(\kappa) \cap \mathcal{F}_{\alpha^{\prime}(\theta-1)}^{E^{(\theta-1)}} .
$$

Hence $\mathcal{F}_{\alpha^{(\theta-1)}}^{E^{(\theta-1)}}=\mathcal{F}_{\alpha^{\prime(\theta-1)}}^{E^{\prime(\theta-1)}}$ and like in KunEN's theory this implies $\mathcal{F}_{\alpha}^{E\left\lceil\delta+E_{\delta}\right.}=\mathcal{F}_{\alpha^{\prime}}^{E \mid \delta+E_{\delta}^{\prime}}$. Contradiction.

