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Building the Dodd-Jensen Core Model
with a Simplified Fine Hierarchy

Peter Koepke, University of Bonn

The Dodd-Jensen core model is of the form K = LE where E is a sequence of measures. We structure the model LE by a con-
tinuous fine hierarchy (FαE ) α ∈ Ord . Each FαE is a structure of the form FαE = (Fα

E , ∈ , E , SE , � ) , which contains a Skolem func-
tion SE and other basic constructible operations. The next level Fα+ 1

E is the collection of all subsets of FαE which are definable
over the structure FαE by quantifier-free formulas. The hierarchy satisfies condensation theorems and other finestructural laws.

The sequence E consists of measures Eα which are represented as elementary maps ( extenders ) Eα : FδE → FαE . Core model
theory can be developed with the fine hierarchy. One can canonically define finestructural ultrapowers of levels FγE by measures
in E . If all proper initial segments of FγE are finestructurally sound then this is inherited by finestructural ultrapowers. Iterated
finestructural extensions can be used to compare structures FγE and Fγ ′E

′
. The unique predicate E defining K consists of mea-

sures for which the formation of finestructural ultrapowers can be iterated arbitrarily ( iterab ility ) .

The use of the fine hierarchy instead of standard fine structure theory circumvents the complications of iterated projecta and
reducts and simplifies the construction of finestructural ultrapowers.
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Gödel ’ s constructible universe

− L0 = ∅

− Lα+1 = Def(Lα)

− Lλ =
⋃
α< λ Lα for limit ordinals λ

− L =
⋃

α∈Ord Lα is the constructib le universe

Def(X) is the “definable powerset” of X :

Def(X) = {a ⊆ X | there are a first-order formula ϕ ( v , w
�

) and parameters
p

� ∈ X such that a = {x ∈ X | (X, ∈ ) � ϕ ( x , p

�

) }} .

(L , ∈ ) is a model of Zermelo-Fraenkel set theory ZF, of the axiom of choice
AC, and of the generalized continuum hypothesis GCH.
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How close is L to the set theoretic universe V?

A Corollary of Jensen ’ s covering theorem :

Let ν be a singular cardinal in V . Then

( ν+) L < ν+ iff there is a nontrivial elementary embedding e : (L , ∈ ) → (L , ∈ ) .

To approximate V one should incorporate such an e into the approximation.
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Coding class-sized elementary embeddings by sets

Let e � κ = id and e(κ) > κ , γ = (κ+) L, δ = e( γ) .

e � Lγ: (Lγ , ∈ ) → (Lδ , ∈ ) is elementary.

Eδ = e � Lγ is/can be chosen to be a measure (extender) on L :

− dom(Eδ) = Lγ for some γ < δ

− Eδ � κ = id and Eδ(κ) > κ for some critical point κ < γ

− Lγ= (H6 κ)
L � ZFC−

− Eδ : (Lγ , ∈ ) → (Lδ , ∈ ) is elementary

− Lδ = Hull(κ ∪ {κ } ) and Eδ : (Lγ , ∈ ) → (Lδ , ∈ ) is cofinal

− (Lδ , Eδ) is amenable , i . e. , ∀x ∈ Lδ x ∩ Eδ ∈ Lδ
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Ultrapowers via directed systems

Let Tr(X) denote the Mostowski transitivization of (X, ∈ ) . Let p ⊆ q range over
finite subsets of L .

Hull( κ ∪ p) ⊆ Hull( κ ∪ q ) ⊆ ⋃
p Hull( κ ∪ p) = L

l l ‖
L γ 3 Tr(Hull(κ ∪ p) ) �σpq

Tr(Hull(κ ∪ q) ) �σq
dir limpTr(Hull(κ ∪ p) ) = L

Eδ↓ Eδ↓ πEδ↓
Eδ(Tr(Hull(κ ∪ p) ) ) �Eδ (σpq )

Eδ(Tr(Hull(κ ∪ q) ) ) �σq
∗

dir limpEδ(Tr(Hull(κ ∪ p) ) )

‖
Ult(L , Eδ)
‖ ?
L

The ultrapower map πEδ : (L , ∈ ) → (Ult(L , Eδ) , ∈ ∗ ) extends Eδ : πEδ ⊇ Eδ .
The elementarity of πEδ depends on the elementarity of the hulls.

For “algebraic” hulls, πEδ is ∀1 -elementary in the appropriate language.
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Iterated ultrapowers

If (Ult(L , Eδ) , ∈ ∗ ) = (L , ∈ ) then say that L is extendable by Eδ .

Then the image E∗ =
⋃ {πEδ(x) | x ∈ L ∧ x ⊆ Eδ} is an extender on Ult(L , Eδ) .

L is iterable by Eδ iff the formation of ultrapowers by Eδ and its images can
be iterated transfinitely, taking direct limits at limit ordinals:

− M0 = L , π0 0 = id, E ( 0) = Eδ

− Mα+1 = Ult(Mα , E
(α) ) , πα , α+1 = πE(α ) , E (α+1 ) =

⋃ {πα , α+1 (x)
∣∣∣ x ∈ Mα ∧ x ⊆

E (α)}

− Mλ , (πα , λ) α< λ is the transitive direct limit of (Mα) α< λ , (πα , β) α6 β< λ , E (λ ) =
⋃

{π0 , λ( x)
∣∣∣ x ∈M0 ∧ x ⊆ E ( 0)}
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The theory of iterated ultrapowers (Kunen )

Iterated ultrapowers make structures uniform and comparable:

if (Mα , E
(α) ) α∈Ord, (πα , β) α6 β∈Ord and (Mα

′ , E ′
(α)

) α∈Ord, (πα , β
′ ) α6 β∈Ord are two itera-

tions of L then E (α) = E ′
(α) for sufficiently high α .

This implies that under the assumption of a nontrivial elementary embedding of L
there is exactly one iterable extender Eδ : (Lγ , ∈ ) → (Lδ , ∈ ) on Lδ ( and on L) such
that Lδ is the hull of ∅ ( using the function Eδ in the formation of the hull) .

This Eδ is called 0# .
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Iterated sharps

0 , 0# , 0## , � .

Generalizing sharps: Eδ is a measure (extender) on LδE :

− Eδ : (Lγ
E , ∈ ) → (Lδ

E , ∈ ) is elementary and cofinal for some γ < δ

− Eδ � κ = id and Eδ(κ) > κ for some critical point κ < γ

− Lγ
E = (H6 κ)

Lδ
E � ZFC−

− Lδ
E = Hull(κ ∪ {κ } )

− (Lδ
E , Eδ) is amenable , i . e. , ∀x ∈ LδE x ∩ Eδ ∈ LδE

− . . . . .
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The Dodd-Jensen core model

− K = LE

− Eδ

�

0 implies that Eδ is an iterable extender on LδE

− Eδ is not an iterable measure on LE

− Eδ : Lγ
E→ Lδ

E with critical point κ implies that there is a maximal α such that
P(κ) ∩ LαE ⊆ LγE ; then Eδ is an iterable extender on LαE

E is defined recursively. If E � δ is defined and there is such an Eδ
�

0 pick it for the
sequence. Otherwise set Eδ = 0 .

K is a model of ZFC + GCH.
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The Dodd-Jensen core model theory

∃κ κ measurable
K

=
0# exists

L

In particular:

− rigidity: if there is nontrivial elementary embedding σ : (K, ∈ ) → (K, ∈ ) then
there is an inner model with a measurable cardinal

− if there is no inner model with a measurable cardinal then K covers V , e. g. ,
for every singular cardinal ν holds ( ν+)K = ν+
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Gödel ’ s 1 939 hulls

Gödel ’ s proof of 2ωµ = ωµ+1 in Consistency proof for the generalized continuum
hypothesis , Proceedings of the National Academy of Sciences forms a hull of Mωµ ∪
{m} , where m ⊆ Mωµ ; the hull uses definability for all formulas of the language of set
theory.

“Define a set K of constructible sets, a set O of ordinals and a set F of Skolem func-
tions by the following postulates I–VII:

I. Mωµ ⊆ K and m ∈ K .

II. If x ∈ K , the order of x belongs to O .

III. If x ∈ K , all constants occuring in the definition of x belong to K .

IV. If α ∈ O and φα(x) is a propositional function over Mα all of whose constants
belong to K , then:

1 . The subset of Mα defined by φα belongs to K .
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2. For any y ∈ K · Mα the designated Skolem functions for φα and y or ∼
φα and y ( according as φα( y) or ∼ φα( y) ) belong to F .

V. If f ∈ F , x1 , � , xn ∈ K and ( x1 , � , xn) belongs to the domain of definition of
f , then f ( x1 , � , xn) ∈ K .

VI. If x , y ∈ K and x − y �

Λ the first element of x − y belongs to K .

VII. No proper subsets of K, O , F satisfy I–VI.

. . . . . . .

Theorem 5. There exists a one-to-one mapping x ′ ofK on Mη such that x ∈ y ≡ x ′ ∈
y ′ for x , y ∈ K and x ′= x for x ∈Mωµ .

Proof: The mapping x ′ ( . . . . ) is defined by transfinite induction on the order, . . . . ”

Theorem 5 is the fundamental condensation property: hulls are isomorphic to levels of
the hierarchy.
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Hierarchies and hulls

− Gödel : Lα-hierarchy, and Σω-hulls with respect to the ∈ -language

− Jensen : JαE-hierarchy with Σn truth predicates, and Σ 1 -hulls with respect to
the ∈ -language enriched by truth predicates

− Here : FαE-hierarchy built with quantifier-free definability, structures enriched
by certain constructib le operations , algebraic hulls with respect to those oper-
ations
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The fine hierarchy for LE

The fine hierarchy (FαE) α∈Ord is defined by

FαE = (Fα
E , ∈ , E , <E , IE , SE , RE , DE , PE) .

- F0
E = ∅

- Assume FαE is defined. For quantifier-free ϕ ( v0 , � , vn− 1 , vn) , p

� ∈ FαE define the inter-
pretation

IE(Fα
E , ϕ , p

�

) = {vn ∈ FαE | FαE � ϕ ( p

�

, vn) } ( 1 )

Let

Fα+1
E = {IE(Fα

E , ϕ , p

�

) | ϕ ( v0 , � , vn− 1 , vn) ∈ L0 , p

� ∈ FαE} .

1 6



Define IE � Fα+1
E to extend IE � FαE and the assignments made in ( 1 ) ; in all other cases

set IE(x

�

) = ⊥ .

The rank function : RE � Fα+1
E ⊇ RE � FαE , and for y ∈ Fα+1

E \ FαE set

RE( y) = Fα
E .

The definition function : DE � Fα+1
E ⊇ DE � FαE , and for y ∈ Fα+1

E \ FαE, DE( y) is the
< L -least ϕ ∈ L0 such that

y = IE(Fα
E , ϕ , p

�

)

for some p

� ∈ FαE ;
then let the parameter function PE( y) be the least such p

�

in the lexicographical
wellordering induced by <E � FαE .

The constructib le wellorder : <E � Fα+1
E endextends <E � FαE and for y , y ′ ∈ Fα+1

E \ FαE

y <E y ′ iff DE( y) < LDE( y ′) , or DE( y) = DE( y ′) and
PE( y) is <E -lexicographically smaller than PE( y ′) .
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The Skolem function : SE � Fα+1
E ⊇ SE � FαE and for ϕ ( v0 , � , vn− 1 ) ∈ L0 and p

� ∈ FαE

SE(Fα
E , ϕ , p

�

) =





the <E -lexicographically minimal q

� ∈ FαE such that
FαE � ϕ ( p

�

, q

�

) , if this exists;
⊥ , else.

For all other arguments x

� ∈ Fα+1
E \ FαE set SE( x

�

) = ⊥ .

For limit λ 6 ∞ take a union of structures

FλE =
⋃

α< λ

FαE

1 8



Hierarchy properties

a) α 6 γ→ Fα
E ⊆ FγE

b) α < γ→ Fα
E ∈ FγE

c) FγE is transitive

d) FγE ∩ Ord= γ

e)
⋃

α∈Ord Fα
E = LE
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Theorem 1 . There is a theory TF consisting of Π 1 -sentences of the form ∀x �

ϕ
where ϕ is quantifier-free, with the property: ifM = (M, ∈ , E , <M , IM , SM , RM ,

DM , PM) is a transitive L-structure then M � TF iffM = FαE for some α 6 ∞ .

Proof. The abbreviation F( z ) for z = I( z , v0 = v0 , ∅ ) expresses that z is a level of the
fine hierarchy. Let TF consist of

1 . Transitivity: x∈̇ y ∧ y∈̇ z ∧ F( z ) → x∈̇ z

2. Linearity: F( x) ∧ F( y) → x∈̇ y ∨ x = y ∨ y∈̇x

3. F(R( x) ) ∧ ¬x∈̇R(x )

4. R(x) ∈̇ z ∧ F( z ) → x∈̇ z

5. Interpretation: F(x) ∧ y �∈̇x→ ( z ∈ I(x , ϕ , y

�

) ↔ z ∈̇x ∧ ϕ ( y

�

, z ) )

. . . . . . . . . . . . . . . . . . . . .

1 5. ¬F(x ) ∨ ¬p � ∈̇x→ S(x , ϕ , p

�

) = ⊥ �
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Definition 2. A set or class Z ⊆ LE is E-closed if Fω ⊆ Z and Z is closed with
respect to the operations IE, SE, RE, DE and PE. For X ⊆ LE let FE(X) be the hull
ofX in LE, i. e . , the ⊆ -smallest superset ofX which is E-closed. Note that all fine
levels FαE are E-closed.

Theorem 3. (Condensation Theorem) Let E ⊆ V be a predicate and let Z ⊆ LE be
E-closed. Then there are unique α ∈ Ord , and D ⊆ V, and a unique fine isomor-
phism

σ : FαD

�

(Z , ∈ , E , <E , IE , SE , RE , DE , PE)

with D ⊆ FαD .

Proof. Let σ : (M, ∈ )

�

(Z , ∈ ) be the Mostowski transitivization. Since Π 1 -theo-
ries transfer downwards, (M, ∈ , � ) is a model of TF and hence of the form FαD . �
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Fine ultrapowers

Let Eδ : (Fγ
E , ∈ ) → (Fδ

E , ∈ ) with critical point κ be a measure on FαE, i. e. ,

∀p⊆ FαE , p finite: Tr(FE(κ ∪ p) ) ∈ FγE

Let p⊆ q range over finite subsets of FαE.

FE(κ ∪ p) ⊆ FE(κ ∪ q) ⊆ ⋃
p⊆ finFα

E FE(κ ∪ p) = FαE
l l ‖

Fγ
E 3 Tr(FE(κ ∪ p) ) �σpq

Tr(FE(κ ∪ q) ) �σq
dir limpTr(FE(κ ∪ p) ) = FαE

Eδ↓ Eδ↓ πEδ↓
Eδ(Tr(FE(κ ∪ p) ) ) �Eδ(σpq)

Eδ(Tr(FE(κ ∪ q) ) ) �σq
∗

dir limpEδ(Tr(FE(κ ∪ p) ) )
‖

Ult(FαE , Eδ)
‖ ?
Fα∗E

∗

22



Fine ultrapowers

− πEδ : FαE→ Ult(FαE , Eδ) is ∀1 -elementary

− if FαE is extendable by Eδ , i. e. , Ult(FαE , Eδ) is wellfounded, then Ult(FαE , Eδ) =

Fα∗E
∗
and πEδ : FαE→Fα∗E

∗

− πEδ ⊇ Eδ , E∗ � δ + 1 = E � δ

− πEδ : FαE→Fα∗E
∗
can be lifted to πEδ

+ : Fα+1
E →Fα∗+1

E∗
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Fine iterations

A commutative system (Fα ( i)
E( i)

, πi j) i6 j< θ is a fine iteration of FαE if

− Fα ( 0 )
E( 0 )

= FαE

− πi , i+1 : Fτ( i)
E( i)→Fα ( i+ 1 )

E( i+1 )

is a fine ultrapower by some Eδ
( i) , where τ( i) 6 α ( i) is max-

imal such that Eδ
( i) is a measure on Fτ( i)

E( i)

; if τ( i) < α ( i) we say that there is a
truncation at i

− if λ < θ is a limit ordinal then Fα (λ)
E(λ)

, (πi j) i6 j< λ is the transitive directed limit
of (Fα ( i)

E( i)

, πi j) i6 j< λ

FαE is (finely) iterable if every fine iteration of FαE can be freely continued.

Countable completeness of measures implies iterability.
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Defining K

K = LE =
⋃
α FαE is iterable, i. e. , every FαE is iterable.

E is defined recursively. If E � δ is given, choose Eδ such that there is some α > δ
with

− Eδ is an extender on FαE � δ+Eδ with measurable κ but not an extender on
Fα+1
E � δ+Eδ

− FαE � δ+Eδ is finely iterable

− FαE � δ+Eδ = FE � δ+Eδ(κ ∪ p) for some finite p⊆ FαE � δ+Eδ

− . . .

If this is not possible, set Eδ = ∅ .

25



Uniqueness

Theorem 4. There is at most one such Eδ .

Proof. Otherwise coiterate FαE � δ+Eδ and Fα ′E � δ+Eδ
′
: let (Fα ( i)

E( i)

, πi j) i6 j< θ and (F
α ′( i)
E ′

( i)

,

πi j
′ ) i6 j< θ be fine iterations of FαE � δ+Eδ and Fα ′E � δ+Eδ

′
respectively such that for all i +

1 < θ

πi , i+1 : Fτ( i)
E( i)→Fα ( i+ 1 )

E( i+1 )

and πi , i+1
′ : F

τ ′( i)
E ′( i)→F

α ′( i+1 )
E ′( i+1 )

are fine extension by some Eδ
( i) and E ′δ

( i) respectively where

E ( i) � δ = E ′
( i) � δ and Eδ

( i) �

E ′δ
( i) , if possible.

This coiteration stops at some Fα ( θ− 1 )
E( θ− 1 )

, F
α ′( θ− 1 )
E ′( θ− 1 )

.
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If α ( θ− 1 ) < α ′
( θ− 1 ) then there is a ⊆ κ such that a ∈ F

α ′( θ− 1 )
E( θ− 1 ) \ Fα ( θ− 1 )

E( θ− 1 )

. But this contra-
dicts

P(κ) ∩ F
α ( θ− 1 )
E( θ− 1 )

= P( κ) ∩ FαE � δ+Eδ = P(κ) ∩ Fα ′E � δ+Eδ
′
= P(κ) ∩ F

α ′( θ− 1 )
E ′

( θ− 1 )

.

Hence Fα ( θ− 1 )
E( θ− 1 )

= F
α ′( θ− 1 )
E ′

( θ− 1 )

and like in Kunen ’ s theory this implies FαE � δ+Eδ = Fα ′E � δ+Eδ
′
.

Contradiction. �
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