CiE 2005 New Computational Paradigms Universiteit van Amsterdam: ILLC, June 8 – 12, 2005 Peter Koepke, Rheinische Friedrich-Wilhelms-Universität Bonn

Finite numbers, natural numbers, number theory, computability theory:

 $0, 1, 2, \dots, n, n+1, \dots$

Induction and recursion, defining and computing:

 $f(n) \!=\! G(f(0), \ldots, f(n-1)).$

A Standard Turing Computation

Computing a Model of Set Theory

			S	Р	A	С	E				
		0	1	2	3	4	5	6	7	• • •	•••
	0	1	0	0	1	1	1	0	0	0	0
	1	0	0	0	1	1	1	0	0		
Τ	2	0	0	0	1	1	1	0	0		
Ι	3	0	0	1	1	1	1	0	0		
Μ	4	0	1	1	1	1	1	0	0		
E	•										
	n	1	1	1	1	0	1	1	1		
	n+1	1	1	1	1	1	1	1	1		
	•										

A standard Turing computation. Head positions are indicated by shading.

Ordinal Numbers (1)

Ordinal numbers, infinite numbers, set theory, higher recursion theory (?)

 $0 = \emptyset$, the empty set; $1 = \{0\}$, a singleton set; $2 = \{0, 1\}, a pair set;$ $3 = \{0, 1, 2\};$ $n = \{0, 1, 2, \dots, n-1\} = \{m | m < n\};$ $\omega = \{0, 1, 2, \dots, n, \dots\}$, the set of natural numbers; $\omega + 1 = \{0, 1, 2, \dots, \omega\} = \omega \cup \{\omega\}$, the successor of ω, \dots

Ordinal Numbers (2)

$$i \\ \alpha = \{\beta | \beta < \alpha\} \\ \alpha + 1 = \{\beta | \beta < \alpha + 1\} = \alpha \cup \{\alpha\} \\ i \\ \aleph_1 = \text{the first uncountable ordinal / cardinal} \\ i \\ \aleph_2 = \text{the second uncountable cardinal} \\ i \\ \aleph_{\omega} = \bigcup_{n < \omega} \aleph_n \\ \aleph_{\omega} + 1 = \aleph_{\omega} \cup \{\aleph_{\omega}\} \\ i \end{cases}$$

Ordinal Numbers (3)

Transfinite induction: there is no infinite sequence

 $\alpha_0 > \alpha_1 > \alpha_2 > \dots$

of ordinals.

Transfinite recursion:

$$f(\alpha) \!=\! G(f \!\upharpoonright\! \{\beta \!\mid\! \beta \!<\! \alpha\}) \!=\! G(f \!\upharpoonright\! \alpha).$$

Limit ordinals: $\omega, \omega + \omega, ..., \aleph_1, ...$ are not of the form $\alpha + 1$.

Ordinal Turing Computation

		0	r	d	i	n	а	1		S	р	а	С	e	•••	•••	•••
		0	1	2	3	4	5	6	7	•••	•••	ω	•••	α	•••	κ	•••
0	0	1	1	0	1	0	0	1	1	•••	•••	1	•••	1	0	0	0
r	1	0	1	0	1	0	0	1	1			1					
d	2	0	0	0	1	0	0	1	1			1					
i	3	0	0	0	1	0	0	1	1			1					
n	4	0	0	0	0	0	0	1	1			1					
a	:																
1	n	1	1	1	1	0	1	0	1			1					
	n+1	1	1	1	1	1	1	0	1			1					
T	:	••••	•••	•••	•••	•••											
i	ω	0	0	1	0	0	0	1	1	•••	•••	1					
m	$\omega + 1$	0	0	1	0	0	0	1	1			0					
e	•																
:	θ	1	0	0	1	1	1	1	0	•••	•••	•••	•••	0	••••	•••	•••
:	•			:			•			•	•						
:	•																

Use standard Turing programs

Computation rules:

for time t = 0 or successor time $t = \alpha + 1$: use standard computation rules;

If $t < \theta$ is a limit time (ordinal), the machine constellation at t is determined by taking inferior limits:

$$\forall \xi \in \text{Ord } T(t)_{\xi} = \liminf_{\substack{r \to t \\ r \to t}} T(r)_{\xi} \text{ (tape contents)}; \\ S(t) = \liminf_{\substack{r \to t \\ r \to t}} S(r) \text{ (program states)}; \\ H(t) = \liminf_{\substack{s \to t, S(s) = S(t)}} H(s) \text{ (head position)}.$$

The machine may stop or run forever.

Ordinal Computability

If the machine stops, the result is a transfinite 0-1-sequence

 $(T(\theta)_{\xi})_{\xi\in\mathrm{Ord}},$

- i.e. a characteristic function χ_A of a set or class of ordinals.
- A subset $x \subseteq \text{Ord}$ is ordinal computable (from finitely many ordinal parameters) if there a finite subset $z \subseteq \text{Ord}$ and a program P which takes the characteristic function χ_z of z as initial tape content and stops with the tape content χ_x :

$$P: \chi_z \mapsto \chi_x$$

Which sets are ordinal computable?

The Class \mathcal{S}

Let

 $S = \{x \in Ord | x \text{ is ordinal computable} \}.$

- *S* is closed under unions, intersections, relative complements.
- S is closed with respect to definable subsets: if $x, y \in S$ and $\varphi(u, v)$ is an \in -formula then

 $\{u\!\in\!x\,|\,(\mathcal{S},\in)\!\vDash\!\varphi(u,y)\}\!\in\!\mathcal{S}.$

- The proof requires to code all ordinal computations into one universal program so that the quantifiers in φ can be evaluated (an ''ordinal Kleene predicate'').
- $S = M \cap \{x \mid x \in Ord\}$ for some model (M, \in) of set theory.

The Theory SO

Computing a Model of Set Theory

 (S, \in) satisfies an axiom system SO ('Sets of Ordinals') which axiomatizes classes of the form $M \cap \{x | x \subset \text{Ord}\}$ for some model M of set theory.

Gödel's Constructible Universe

Computing a Model of Set Theory

Gödel defined a model L of set theory satisfying

 $L = \bigcap \{M | M \text{ is a transitive model of set theory and } Ord \subseteq M\}.$

- $L_0 = \emptyset$
- $L_{\alpha+1}$ = the set of all definable subsets of L_{α}
- $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for all limit ordinals λ
- $L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}$

- Theorem $\mathcal{S} = L \cap \{x \mid x \in \text{Ord}\}.$
- *Proof.* If $x \in S$ then it can be computed by a program P and some ordinal parameters $\vec{\alpha}$. The same computation can then be carried out inside the model L with the same result. Hence $x \in L$.
- For the converse note that $S = M \cap \{x | x \subset \text{Ord}\}$ for some transitive model M of set theory. Since $L \subseteq M$ we have

 $\mathcal{S} \subseteq L \cap \{x \mid x \in \text{Ord}\}.$

Finally:

- theory of inspired by infinite time Turing machines of Hamkins, Kidder, Lewis
- generalizations of other notions of computability into the transfinite yield same result, e.g. ordinal register machines with Ryan Siders, Helsinki.
- introduction of the computability paradigm into the theory of constructible models of sets theory.
- transfinite analogues of Turing machine notions
- applications: can prove Cantor's continuum hypothesis in *L* with ordinal Turing machines.

Reference

Computing a Model of Set Theory

P. Koepke, Turing Computations on Ordinals, to appear in the Bulletin of Symbolic Logic, 2005; also available at the arxiv.