Effectively Computable Ordinal Functions

Peter Koepke, University of Bonn EMU 2009, CUNY, New York, August 18, 2009

Contents

- Primitive recursive set and ordinal functions
- Recursive set and ordinal functions
- Ordinal TURING machines
- Ordinal register machines
- The constructible model L
- Equivalences of the various computabilities

PRIMITIVE RECURSIVE SET (ORDINAL) FUNC-TIONS (R. JENSEN and C. Karp, R. Gandy)

A function $F: V \to V$ ($F: Ord \to Ord$) is a *primitive recursive set* (*ordinal*) *function* iff it is generated by the following scheme

$$- P_{n,i}(\vec{x}) = x_i, \ 1 \le n \in \omega, \ \vec{x} = (x_1, ..., x_n), \ 1 \le i \le n$$

$$- F(x) = 0$$

 $- F(x, y) = x \cup \{y\} (F(\alpha) = \alpha \cup \{\alpha\} = \alpha + 1)$

$$- \quad C(x, y, u, v) = x \text{ if } u \in v, = y \text{ otherwise}$$

PRIMITIVE RECURSIVE SET (ORDINAL) FUNC-TIONS

$$- F(\vec{x}, \vec{y}) = G(\vec{x}, H(\vec{x}), \vec{y})$$

$$- \quad F(\vec{x}\,,\vec{y}\,) = G(H(\vec{x}\,),\vec{y}\,)$$

– Recursion:

$$F(z,\vec{x}) = G(\bigcup \{F(u,\vec{x}) | u \in z\}, z, \vec{x})$$

SET RECURSION

$$F(z, \vec{x}) = G(\bigcup \{F(u, \vec{x}) | u \in z\}, z, \vec{x})$$

allows course-of-value recursion:

$$\begin{split} F^* \upharpoonright \mathrm{TC}(\{z\}) &= \bigcup \left\{ F^* \upharpoonright \mathrm{TC}(\{u\}) | u \in z \right\} \cup \\ & \cup \left\{ (z, G^*(\bigcup \left\{ F^* \upharpoonright \mathrm{TC}(\{u\}) | u \in z \right\})) \right\} \end{split}$$

ORDINAL RECURSION

$$\begin{array}{ll} F(\alpha,\vec{x}) &=& G(\bigcup \left\{F(\beta,\vec{x}) | \beta \in \alpha\right\}, \alpha, \vec{x}) \\ &=& G(\lim_{\beta < \alpha} F(\beta,\vec{x}), \alpha, \vec{x}) \end{array}$$

appears weaker: how can courses-of-values be coded into single ordinals?

R. Jensen and M. Schröder:

Theorem. Let $F: \text{Ord} \to \text{Ord}$. Then F is primitive ordinal recursive iff F is primitive set recursive.

The **Proof** uses the constructible hierarchy.

THE CONSTRUCTIBLE HIERARCHY (GÖDEL)

 $- L_0 = \emptyset$

- $L_{\alpha+1} = \text{Def}(L_{\alpha}) = \text{the set of all subsets of } L_{\alpha}$ which are first-order definable in the structure (L_{α}, \in) from parameters
- $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$, if λ is a limit ordinal
- $L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}$ is the constructible universe

THE CONSTRUCTIBLE HIERARCHY

THE CONSTRUCTIBLE HIERARCHY

Every element of L is of the form

$$\begin{aligned} x_0 &= \{ u_0 \in L_{\alpha_0} | L_{\alpha_0} \vDash \varphi_0(u_0, x_1, \ldots) \} \\ &= \{ u_0 \in L_{\alpha_0} | L_{\alpha_0} \vDash \varphi_0(u_0, \{ u_1 \in L_{\alpha_1} | L_{\alpha_1} \vDash \varphi_1(u_1, x_2, \ldots) \}, \ldots) \} \\ &= \{ u_0 \in L_{\alpha_0} | L_{\alpha_0} \vDash \varphi_0(u_0, \{ u_1 \in L_{\alpha_1} | L_{\alpha_1} \vDash \varphi_1(u_1, \{ u_2 \in L_{\alpha_2} | L_{\alpha_2} \vDash \varphi_2(u_2, x_3, \ldots) \}, \ldots) \} \\ &= \ldots \end{aligned}$$

and can be "named" by a <u>finite</u> sequence of ordinals like

 $\alpha_0, \varphi_0, \alpha_1, \varphi_1, \alpha_2, \varphi_2, \ldots$

THE CONSTRUCTIBLE HIERARCHY

Finite sequences of ordinals can be coded by single ordinals due to GÖDEL pairing functions: there are primitive recursive ordinal functions G, G_1, G_2 such that

- $\quad G: \operatorname{Ord} \times \operatorname{Ord} \leftrightarrow \operatorname{Ord}$
- $\quad \forall \alpha \, G(G_1(\alpha), G_2(\alpha)) = \alpha$

The basic operations for the (coded) constructible universe are primitive recursive ordinal functions (Takeuti; Jensen, Schröder)

RECURSIVE ORDINAL FUNCTIONS (Jensen, Karp)

A function $F: V \to V$ ($F: Ord \to Ord$) is a set (ordinal) recursive function iff it is generated by the above scheme together with the minimisation rule

-
$$F(\vec{x}) = \min \{\xi | G(\xi, \vec{x}) = 0\}$$
, provided that
 $\forall \vec{x} \exists \xi G(\xi, \vec{x}) = 0$

RECURSIVE ORDINAL FUNCTIONS

Theorem. For $f: \text{Ord} \rightarrow \text{Ord}$ the following are equivalent:

- f is ordinal recursive
- f is set recursive
- $f \text{ is } \Delta_1(L)$

TURING machines

Ordinal TURING machines (OTMs)

Ordinal TURING machines (OTMs)

• successor steps of computations are determined by standard commands:

m: if read=0 (or 1) then write 0 (or 1), go
right (or left), and jump to instruction n

- limit steps λ are determined by liminf's:
 - $\operatorname{command}(\lambda) = \operatorname{liminf}_{\alpha < \lambda} \operatorname{command}(\alpha)$
 - $\operatorname{head}(\lambda) = \operatorname{liminf}_{\alpha < \lambda} \operatorname{head}(\alpha)$
 - $\operatorname{cell}_{\gamma}(\lambda) = \operatorname{liminf}_{\alpha < \lambda} \operatorname{cell}_{\gamma}(\alpha)$

OTM Computability \leftrightarrow constructibility

Theorem (K) A set X of ordinals is OTM computable iff $X \in L$, i.e. if X is *constructible*.

Proof. (\rightarrow) Any OTM computation can be carried out inside the model L, hence $X \in L$.

 (\leftarrow) The following OTM algorithm computes all constructible sets: assume that a structure (X, R) is written on the tape which is (pre-)isomorphic to (L_{α}, \in) . Extend (X, R) to a structure (X',R') (pre-)isomorphic to $(L_{\alpha+1}, \in)$: for each \in -formula $\varphi(v_0,$ $v_1, \ldots, v_m)$ and $x_1, \ldots, x_n \in X$ pick a new point $z \in X' \setminus X$ and for $x_0 \in X$ let

$$x_0 R' z$$
 iff $(X, R) \vDash \varphi[x_0, x_1, \dots, x_m]$

Every constructible set of ordinals occurs in the construction and is hence OTM computable.

Total functions $Ord \rightarrow Ord$

Theorem (K, B. Seyfferth) $f: \operatorname{Ord} \to \operatorname{Ord}$ is OTM computable iff f is $\Delta_1(L)$.

Proof. (\rightarrow) Let f be computable by the program P.

- $f(\alpha)=\beta \ \mbox{iff} \ \mbox{\rm \exists computation} \ C \ \mbox{\rm according to} \ P \ \mbox{\rm with input} \ \alpha \ \mbox{\rm and} \ \ \mbox{\rm output} \ \beta$
 - iff \exists computation $C \in L$ according to P with input α and output β
 - iff \forall computation $C \in L($ if C is according to P with input α then C outputs β

 (\leftarrow) Let $f: \operatorname{Ord} \to \operatorname{Ord}$ be defined in (L, \in) by the Σ_1 -formula $\varphi(x, y)$. Then compute $f(\alpha)$ as follows: enumerate L as described above. In the enumeration search for some structure (X, R) and $x, y \in X$ such that $(X, R) \vDash \varphi(x, y)$ and $\operatorname{otp}_R(x) = \alpha$, $\operatorname{otp}_R(y) = \beta$.

Register machines

Time

			ω
0	1		

Ordinal register machines, (ORMs)

Time

 $\begin{array}{cccc} & & & \\ \hline 0 & 1 & & \omega & \omega + 1 & & \aleph_1 \end{array} \end{array}$ Ord

ORM Computability \leftrightarrow constructibility

Theorem (K, R. Siders) A set X of ordinals is ORM computable iff $X \in L$, i.e. if X is *constructible*.

Proof. (\rightarrow) Any ORM computation can be carried out inside the model L, hence $X \in L$.

ORM Computability \leftrightarrow constructibility

 (\leftarrow) Since L has a canonical wellordering every point $x \in L$ can be "named" by a single ordinal α ; x is the "interpretation" $I(\alpha)$ of the name α . To compute Σ_0 -properties of $I(\alpha)$ one suffices to compute Σ_0 -properties of sets $I(\alpha')$ with $\alpha' < \alpha$. This amounts to a recursion which can be organised by a *stack*. Such stacks can be emulated by ORMs.

A recursion theorem

Let $H: \operatorname{Ord}^3 \to \operatorname{Ord}$ be ORM computable. Define

$$F(\alpha) = \begin{cases} 1 \text{ iff } \exists \nu < \alpha \ H(\alpha, \nu, F(\nu)) = 1 \\ 0 \text{ else} \end{cases}$$

Then $F: \operatorname{Ord} \to \operatorname{Ord}$ is ORM computable.

A recursion theorem

$$F(\alpha) = 1$$
 iff $\exists \beta < \alpha \ H(\alpha, \beta, F(\beta)) = 1$

A recursion theorem

A recursion theorem

Search for a good path using a stack $F(\alpha)$?, $F(\beta)$?, $F(\gamma)$?,...

A recursion theorem

Code the stack $\alpha_0 > \alpha_1 > \ldots > \alpha_{n-1}$ into one register

$$R_m = 3^{\alpha_0} + 3^{\alpha_1} + \ldots + 3^{\alpha_{n-2}} + 3^{\alpha_{n-1}}.$$

Total functions $Ord \rightarrow Ord$

Theorem (K) $f: \operatorname{Ord} \to \operatorname{Ord}$ is ORM computable iff f is $\Delta_1(L)$. **Proof**. (\to) Let f be computable by the program P.

 $f(\alpha) = \beta$ iff \exists computation C according to P with input α and output β

- iff \exists computation $C \in L$ according to P with input α and output β
- iff \forall computation $C \in L($ if C is according to P with input α then C outputs β

 (\leftarrow) Let $f: \operatorname{Ord} \to \operatorname{Ord}$ be defined in (L, \in) by the formula $\exists z \psi(x, y, z)$ where ψ is Σ_0 . Then compute $f(\alpha)$ as follows: compute a "name" $\dot{\alpha}$ for α ; search for ordinals $\dot{\beta}$ and $\dot{\gamma}$ such that $\psi(\alpha, I(\dot{\beta}), I(\dot{\gamma}))$; if such $\dot{\beta}, \dot{\gamma}$ are found, compute and output $\beta = I(\dot{\beta})$.

Theorem. For $f: \text{Ord} \rightarrow \text{Ord}$ the following are equivalent:

- f is recursive à la Jensen and Karp
- $f \text{ is } \Delta_1(L)$
- f is OTM computable
- f is ORM computable

The CHURCH-TURING thesis according to ODIFREDDI

For $f: \omega \to \omega$ the following are equivalent:

- f is recursive
- f is finitely definable
- f is Herbrand-Gödel computable
- $\begin{array}{ccc} & f \text{ is representable in a consistent formal system extending} \\ & \mathcal{R} \end{array}$

The CHURCH-TURING thesis according to ODIFREDDI

For $f: \omega \to \omega$ the following are equivalent:

- f is recursive

- f is flowchart (or "while") computable
- f is λ -computable

Theorem. For $f: \text{Ord} \rightarrow \text{Ord}$ the following are equivalent:

- f is recursive à la Jensen and Karp
- $f \text{ is } \Delta_1(L)$
- f is OTM computable
- f is ORM computable
- f is "while" computable on the ordinals
- f is computable by the methods of KRIPKE, PLATEK, MACHOVER, TAKEUTI

Conclusion

There is a stable and well-characterised notion of effectively computable ordinal function.