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Primitive recursive set (ordinal) func-
tions (R. Jensen and C. Karp, R. Gandy)

A function F : V → V (F : Ord→ Ord) is a primitive recursive set

(ordinal) function iff it is generated by the following scheme

− Pn,i(xK ) = xi , 1 6n∈ω, xK = (x1,� , xn), 1 6 i6n

− F (x) = 0

− F (x, y) = x∪{y} (F (α) = α∪{α}= α+ 1)

− C(x, y, u, v) = x if u∈ v, = y otherwise
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Primitive recursive set (ordinal) func-
tions

− F (xK , yK ) =G(xK ,H (xK ), yK )

− F (xK , yK ) =G(H(xK ), yK )

− Recursion:

F (z, xK ) =G(
⋃

{F (u, xK )|u∈ z}, z , xK )
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Set recursion

F (z, xK ) =G(
⋃

{F (u, xK )|u∈ z}, z , xK )

allows course-of-value recursion:

F ∗ ↾TC({z}) =
⋃

{F ∗ ↾TC({u})|u∈ z}∪

∪{(z,G∗(
⋃

{F ∗ ↾TC({u})|u∈ z}))}
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Ordinal recursion

F (α, xK ) = G(
⋃

{F (β, xK )|β ∈α}, α, xK )

= G( lim
β<α

F (β, xK ), α, xK )

appears weaker: how can courses-of-values be coded into single
ordinals?
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R. Jensen and M. Schröder:

Theorem. Let F : Ord→ Ord. Then F is primitive ordinal recur-
sive iff F is primitive set recursive.

The Proof uses the constructible hierarchy.
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The constructible hierarchy (Gödel)

− L0 = ∅

− Lα+1 = Def(Lα) = the set of all subsets of Lα which are
first-order definable in the structure (Lα, ∈ ) from parame-
ters

− Lλ=
⋃

α<λ
Lα , if λ is a limit ordinal

− L=
⋃

α∈Ord Lα is the constructible universe
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The constructible hierarchy

Lα

Lα+1

L=
⋃

Lα
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The constructible hierarchy

Every element of L is of the form

x0 = {u0∈Lα0
|Lα0

� ϕ0(u0, x1,� )}

= {u0∈Lα0
|Lα0

� ϕ0(u0, {u1∈Lα1
|Lα1

� ϕ1(u1, x2,� )},� )}

= {u0 ∈ Lα0
|Lα0

� ϕ0(u0, {u1 ∈ Lα1
|Lα1

� ϕ1(u1, {u2 ∈

Lα2
|Lα2

� ϕ2(u2, x3,� )},� )},� )}
= �

and can be “named” by a finite sequence of ordinals like

α0, ϕ0, α1, ϕ1, α2, ϕ2,�
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The constructible hierarchy

Finite sequences of ordinals can be coded by single ordinals due to
Gödel pairing functions: there are primitive recursive ordinal
functions G,G1, G2 such that

− G:Ord×Ord↔Ord

− ∀αG(G1(α), G2(α)) = α

The basic operations for the (coded) constructible universe are
primitive recursive ordinal functions (Takeuti; Jensen, Schröder)
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Recursive ordinal functions (Jensen, Karp)

A function F : V → V (F : Ord→ Ord) is a set (ordinal) recursive
function iff it is generated by the above scheme together with the
minimisation rule

− F (xK ) = min{ξ |G(ξ, xK ) = 0}, provided that
∀xK ∃ξG(ξ, xK ) = 0
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Recursive ordinal functions

Theorem. For f :Ord→Ord the following are equivalent:

− f is ordinal recursive

− f is set recursive

− f is ∆1(L)
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Turing machines

0 1 1 0 1 0 1 1 1 �

Turing

Program

Time ω

Tape of length ω

Turing head
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Ordinal Turing machines (OTMs)

0 1 1 0 1 0 1 1 1 �

Turing

Program

Time Ord

Tape of length Ord

Turing head
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Ordinal Turing machines (OTMs)

• successor steps of computations are determined by stan-
dard commands:

m: if read=0 (or 1) then write 0 (or 1), go

right (or left), and jump to instruction n

• limit steps λ are determined by liminf ’s:

• command(λ) = liminfα<λ command(α)

• head(λ) = liminfα<λ head(α)

• cellγ(λ) = liminfα<λ cellγ(α)
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OTM Computability ↔ constructibility

Theorem (K) A set X of ordinals is OTM computable iff X ∈ L,
i.e. if X is constructible.

Proof. (→ ) Any OTM computation can be carried out inside the
model L, hence X ∈L.
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( ← ) The following OTM algorithm computes all constructible
sets: assume that a structure (X, R) is written on the tape which
is (pre-)isomorphic to (Lα,∈ ). Extend (X,R) to a structure (X ′,
R ′) (pre-)isomorphic to (Lα+1, ∈ ): for each ∈ -formula ϕ(v0,

v1,� , vm) and x1,� , xn ∈X pick a new point z ∈X ′ \X and for
x0∈X let

x0R
′ z iff (X,R) � ϕ[x0, x1,� , xm]

Every constructible set of ordinals occurs in the construction and
is hence OTM computable.
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Total functions Ord→Ord

Theorem (K, B. Seyfferth) f : Ord→ Ord is OTM computable iff
f is ∆1(L).

Proof. (→ ) Let f be computable by the program P .

f (α) = β iff ∃computation C according to P with input α and

output β
iff ∃computation C ∈ L according to P with input α

and output β
iff ∀computation C ∈ L(if C is according to P with

input α then C outputs β
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( ← ) Let f : Ord→ Ord be defined in (L, ∈ ) by the Σ1-formula
ϕ(x, y). Then compute f (α) as follows: enumerate L as described
above. In the enumeration search for some structure (X, R) and
x, y ∈X such that (X, R) � ϕ(x, y) and otpR(x) = α, otpR(y) =
β.
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Register machines

R0∈ω

R1∈ω

Control

Program

Rn∈ω

Time

0 1 � ω

States
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Ordinal register machines, (ORMs)

R0∈Ord

R1∈Ord

Control

Program

Rn∈Ord

Time

0 1 ω ω+ 1 ℵ1

Ord

States
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ORM Computability ↔ constructibility

Theorem (K, R. Siders) A set X of ordinals is ORM computable
iff X ∈L, i.e. if X is constructible.

Proof. (→ ) Any ORM computation can be carried out inside the
model L, hence X ∈L.
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ORM Computability ↔ constructibility

(← ) Since L has a canonical wellordering every point x ∈ L can
be “named” by a single ordinal α ; x is the “interpretation” I(α) of
the name α . To compute Σ0-properties of I(α) one suffices to
compute Σ0-properties of sets I(α

′) with α ′<α . This amounts to
a recursion which can be organised by a stack . Such stacks can be
emulated by ORMs.
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A recursion theorem

Let H :Ord3→Ord be ORM computable. Define

F (α) =

{

1 iff ∃ν <α H(α, ν , F (ν)) = 1
0 else

Then F :Ord→Ord is ORM computable.
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A recursion theorem

F (α) = 1 iff ∃β <α H (α, β, F (β)) = 1

F (α)

F (0) F (1)

F (0)

� F (β)

F (0) F (1)

F (0)

� F (γ)

F (δ)
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A recursion theorem

F (α)

F (0) F (1)

F (0)

� F (β)

F (0) F (1)

F (0)

� F (γ)

F (δ)
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A recursion theorem

F (α)

F (0) F (1)

F (0)

� F (β)

F (0) F (1)

F (0)

� F (γ)

F (δ)
 


Search for a good path using a stack F (α)?, F (β)?, F (γ)?,�
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A recursion theorem

Code the stack α0>α1>� >αn−1 into one register

Rm= 3α0 + 3α1 + � + 3αn−2 + 3αn−1.
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The constructible model L

Lα

Lα+1

L=
⋃

Lα
F

α

∃β ?

F (α) = 1

iff ∃β <α H(α, β, F (β)) = 1
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Total functions Ord→Ord

Theorem (K) f :Ord→Ord is ORM computable iff f is ∆1(L).

Proof. (→ ) Let f be computable by the program P .

f (α) = β iff ∃computation C according to P with input α and

output β
iff ∃computation C ∈ L according to P with input α

and output β
iff ∀computation C ∈ L(if C is according to P with

input α then C outputs β
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( ← ) Let f : Ord → Ord be defined in (L, ∈ ) by the formula
∃zψ(x, y, z) where ψ is Σ0 . Then compute f (α) as follows: com-

pute a “name” α̇ for α ; search for ordinals β̇ and γ̇ such that
ψ(α, I( β̇ ), I( γ̇ )); if such β̇ , γ̇ are found, compute and output

β = I( β̇ ).



Peter Koepke, Effectively computable ordinal functions, EMU 2009, CUNY, New York, August 18, 2009

Theorem. For f :Ord→Ord the following are equivalent:

− f is recursive à la Jensen and Karp

− f is ∆1(L)

− f is OTM computable

− f is ORM computable
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The Church-Turing thesis according to
Odifreddi

For f :ω→ω the following are equivalent:

− f is recursive

− f is finitely definable

− f is Herbrand-Gödel computable

− f is representable in a consistent formal system extending
R
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The Church-Turing thesis according to
Odifreddi

For f :ω→ω the following are equivalent:

− f is recursive

− f is flowchart (or “while”) computable

− f is λ-computable



Peter Koepke, Effectively computable ordinal functions, EMU 2009, CUNY, New York, August 18, 2009

Theorem. For f :Ord→Ord the following are equivalent:

− f is recursive à la Jensen and Karp

− f is ∆1(L)

− f is OTM computable

− f is ORM computable

− f is “while” computable on the ordinals

− f is computable by the methods of Kripke, Platek,
Machover, Takeuti
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Conclusion

There is a stable and well-characterised notion of effectively com-
putable ordinal function.


