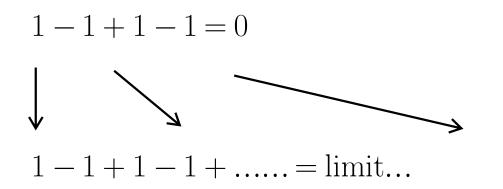
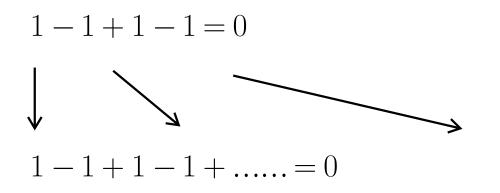
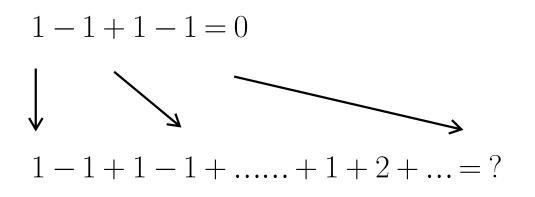
1 - 1 + 1 - 1 = 0

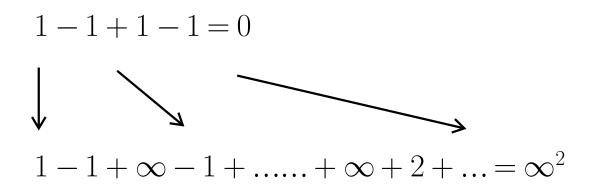
1 - 1 + 1 - 1 = 0

$\leftarrow \infty \longrightarrow ?$









Contents

- Effective computability and the natural numbers
- Ordinal numbers
- Ordinal register machines
- The constructible model L
- α - β -Register machines
- α - β -Turing machines
- Infinite Time Register Machines

Effective computability

- f is recursive
- f is finitely definable
- f is Herbrand-Gödel computable
- f is representable in a consistent formal system $\supseteq \mathcal{R}$
- f is Turing computable
- f is flowchart (or "while") computable
- f is λ -definable

Rôles of natural numbers

- finite number of steps in calculations and deductions
- finite contents of memory in computations
- finite size of programs, recursion schemas, λ -terms, etc.
- algebraic properties: 0, n+1
- order properties: m < n
- induction and recursion

Other algebraic domains or orders

- continuous time \mathbb{R}
- numbers and data from other rings and fields
- ordinal numbers
-

Other algebraic domains or orders

- continuous time \mathbb{R}
- numbers and data from other rings and fields
- <u>ordinal numbers</u>
-

Ordinals

- "counting unboundedly"
- finite ordinals = natural numbers: 0, 1, 2, 3, ..., n, ...
- endextend by limits: $0, 1, 2, 3, ..., n, ..., \infty$
- endextend by successors: $0, 1, 2, 3, ..., n, ..., \infty, \infty + 1$

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$

 ω

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$

 $\omega, \omega + 1$

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$

 $\omega, \omega + 1, \omega + 2$

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$

 $\omega, \omega + 1, \omega + 2, \dots$

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$ $\omega, \omega + 1, \omega + 2, \dots$ $\omega + \omega = \omega \cdot 2$

Ordinals

 $\begin{array}{l} 0,1,2,3,\ldots,n,\ldots\\ \\ \omega,\omega+1,\omega+2,\ldots\\ \\ \omega+\omega=\omega\cdot 2,\omega\cdot 2+1 \end{array}$

Ordinals

 $\begin{array}{l} 0,1,2,3,\ldots,n,\ldots\\ \\ \omega,\omega+1,\omega+2,\ldots\\ \\ \omega+\omega=\omega\cdot 2,\omega\cdot 2+1,\ldots \end{array}$

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$ $\omega, \omega + 1, \omega + 2, \dots$ $\omega + \omega = \omega \cdot 2, \omega \cdot 2 + 1, \dots$ \vdots

Ordinals

 $\begin{array}{l} 0,1,2,3,\ldots,n,\ldots\\ \omega,\omega+1,\omega+2,\ldots\\ \omega+\omega=\omega\cdot 2,\omega\cdot 2+1,\ldots\\ \vdots \end{array}$

 $\omega \cdot \omega, \dots$

Ordinals

 $\begin{array}{l} 0,1,2,3,\ldots,n,\ldots\\ \omega,\omega+1,\omega+2,\ldots\\ \omega+\omega=\omega\cdot 2,\omega\cdot 2+1,\ldots\\ \vdots \end{array}$

 $\omega \cdot \omega, \dots$

- •
- •

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$ $\omega, \omega + 1, \omega + 2, \dots$ $\omega + \omega = \omega \cdot 2, \omega \cdot 2 + 1, \dots$ \vdots $\omega \cdot \omega, \dots$ \vdots $\aleph_1 = \omega_1, \dots$

Ordinals

 $0, 1, 2, 3, \dots, n, \dots$ $\omega, \omega + 1, \omega + 2, \dots$ $\omega + \omega = \omega \cdot 2, \, \omega \cdot 2 + 1, \dots$: $\omega \cdot \omega, \dots$ • $\aleph_1 = \omega_1, \ldots$:

Ordinals

- The ordinals form a *proper class* Ord of objects
- the ordinals are linearly ordered
- the ordinals are closed under the +1 -operation
- there are *limit* ordinals like $\omega, \omega + \omega, ..., \aleph_1, ...$
- the ordinals are wellordered, i.e. there is *no* infinite descending chain $\alpha_0 > \alpha_1 > \alpha_2 > \dots$ of ordinals
- the ordinals are the ordertypes of wellordered sets

Ordinals

- one can do induction and recursion along the ordinals
- ordinal addition is defined by recursion

• initial case:
$$\alpha + 0 = \alpha$$

• successor case:
$$\alpha + (\beta + 1) = (\alpha + \beta) + 1$$

• limit case: if β is a limit ordinal then

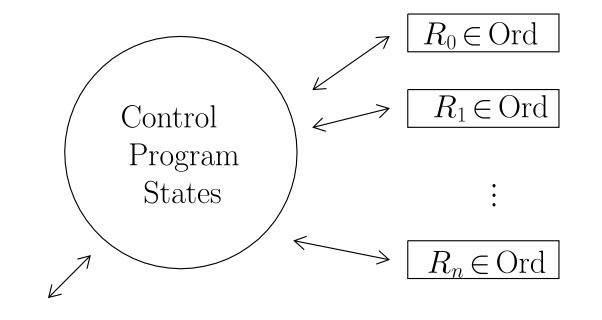
$$\alpha + \beta = \lim_{i < \beta} \left(\alpha + i \right)$$

Ordinal register machines

 $\alpha + \beta$ can be "computed" as follows:

- put α and β in registers R_0 and R_1
- set a register R_2 to 0
- count up registers R_0 and R_2 in parallel
- stop when R_2 reaches R_1 , and output R_0
- at limit "times" let the contents of R_0 and R_2 be the limits of the previous contents

Ordinal register machines



Time

			 Ord
$\overline{0}$ 1	$\omega \ \omega + 1$	\aleph_1	

Ordinal register machines, successor times

A register program is a finite list $P = I_0, I_1, ..., I_{s-1}$ of instructions:

- the zero instruction Z(m) set register R_m to 0
- the successor instruction S(m) increases register R_m by 1
- the transfer instruction T(m, m') sets $R_{m'}$ to the contents of R_m
- the jump instruction J(m, m', q): if $R_m = R_{m'}$, the register machine proceeds to the qth instruction of P; otherwise it proceeds to the next instruction in P
- the machine halts if the "next instruction" is not in P

Ordinal register machines, limit times

- Let $t \in Ord$ be a limit "time"
- $\liminf_{s \to t} R_m(s)$ is the smallest ordinal ρ such that $\{s < t | R_m(s) \leq \rho\}$ is unbounded in t
- at limit times, the machine registers follow the liminf rule

$$R_m(t) = \liminf_{s \to t} R_m(s)$$

• at limit times the program jumps to a specific limit state

ORM computable functions

• $\alpha + \beta$

•
$$\alpha \cdot \beta$$
, where $\alpha \cdot 0 = 0$, $\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha$,
 $\alpha \cdot \gamma = \lim_{\beta < \gamma} (\alpha \cdot \beta)$, for limit ordinals γ

•
$$\alpha^{\beta}$$
, where $\alpha^{0} = 1$, $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$,
 $\alpha^{\gamma} = \lim_{\beta < \gamma} \alpha^{\beta}$, for limit ordinals γ

ORM computability

- what is the class of ORM computable functions?
- what is the class of ORM computable sets, i.e. the class of sets of the form

$$\{\alpha < \beta \, | F(\alpha, \vec{\gamma}) = 1\}$$

where F is ORM computable and $\beta, \vec{\gamma} \in \text{Ord}$?

A recursion theorem

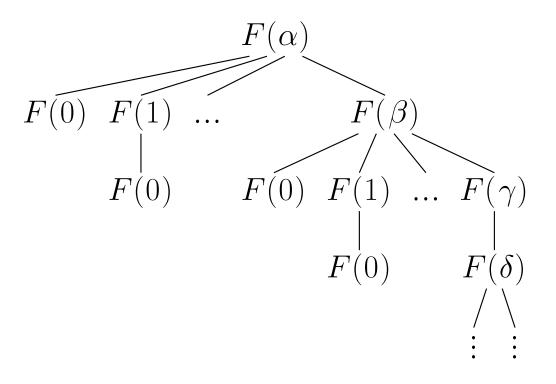
Let $H: \operatorname{Ord}^3 \to \operatorname{Ord}$ be ORM computable. Define

$$F(\alpha) = \begin{cases} 1 \text{ iff } \exists \nu < \alpha \ H(\alpha, \nu, F(\nu)) = 1 \\ 0 \text{ else} \end{cases}$$

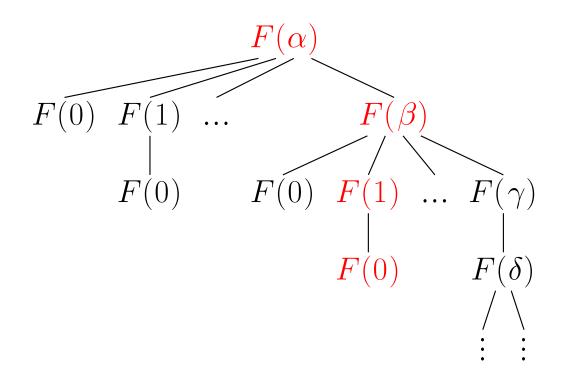
Then $F: \text{Ord} \to \text{Ord}$ is ORM computable.

A recursion theorem

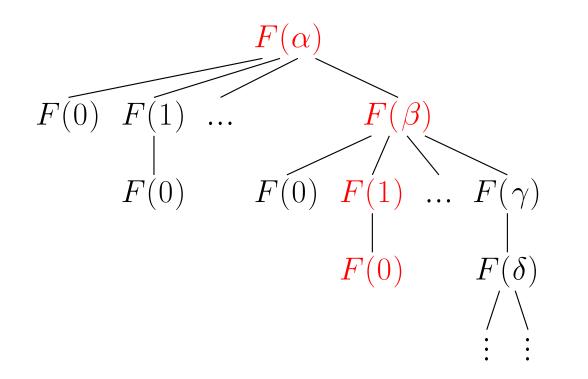
$$F(\alpha) = 1$$
 iff $\exists \beta < \alpha \ H(\alpha, \beta, F(\beta)) = 1$



A recursion theorem



A recursion theorem



Search for a good path using a stack $F(\alpha)$?, $F(\beta)$?, $F(\gamma)$?,...

A recursion theorem

Code the stack $\alpha_0 > \alpha_1 > \ldots > \alpha_{n-1}$ into one register

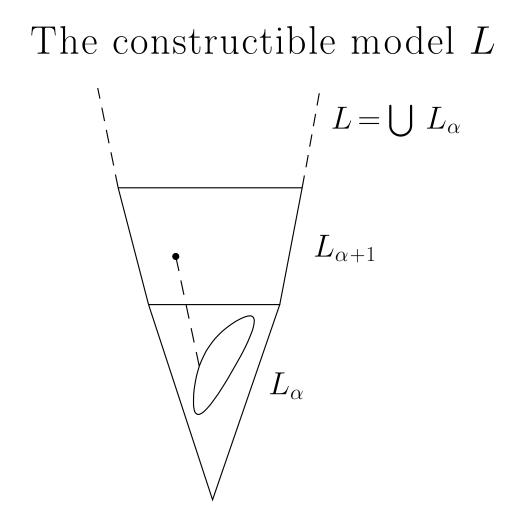
$$R_m = 3^{\alpha_0} + 3^{\alpha_1} + \ldots + 3^{\alpha_{n-2}} + 3^{\alpha_{n-1}}.$$

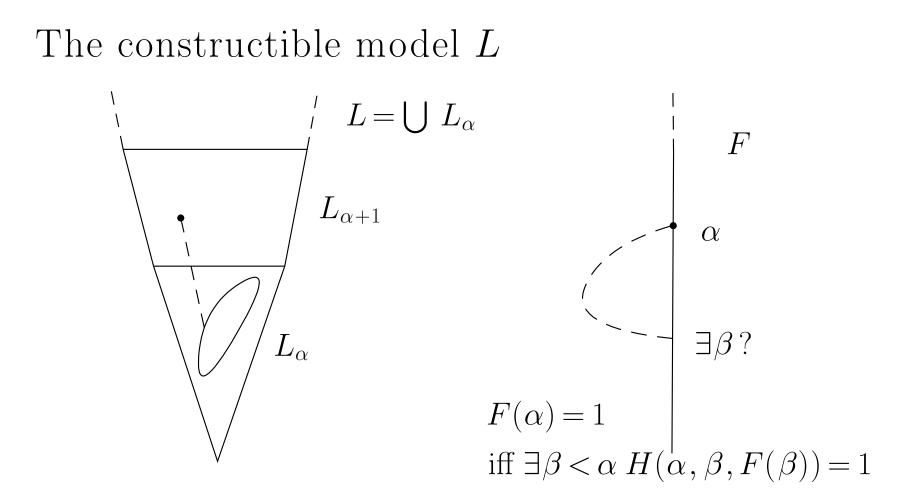
The constructible model L

Kurt Gödel defined the following model of the axioms of set theory

• $L_0 = \emptyset$

- $L_{\alpha+1}$ = the collection of subsets of L_{α} which are first order definable in the structure (L_{α}, \in) with parameters
- $L_{\gamma} = \bigcup_{\alpha < \gamma} L_{\alpha}$ for limit ordinals γ
- $L = \bigcup_{\alpha \in \mathrm{Ord}} L_{\alpha}$





The constructible model L

Theorem (_, Siders) A set X of ordinals is ORM computable iff $X \in L$, i.e. if X is *constructible*.

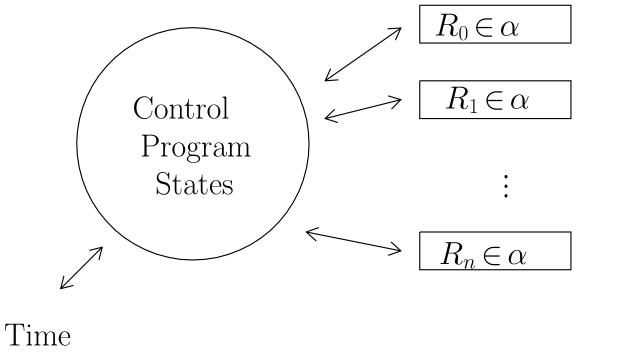
Proof. (\rightarrow) Any ORM computation can be carried out inside the model L, hence $X \in L$.

 (\leftarrow) One can code iterated definability and the L_{α} -hierarchy into the ordinals so that the associated operations become ORM computable. So constructible sets of ordinals are ORM computable.

The constructible model L

- Gödel's Axiom of Constructibility can be reformulated as: every set of ordinals is ORM computable
- One can use the computability perspective to prove the Generalised Continuum Hypothesis and other principles in L
- From a universal ORM one can define a "Silver machine" which allows to prove Jensen's finestructural principles in L

 α - β -Register machines, space α , time β



			$ \beta$
0 1	$\omega \ \omega + 1$	\aleph_1	

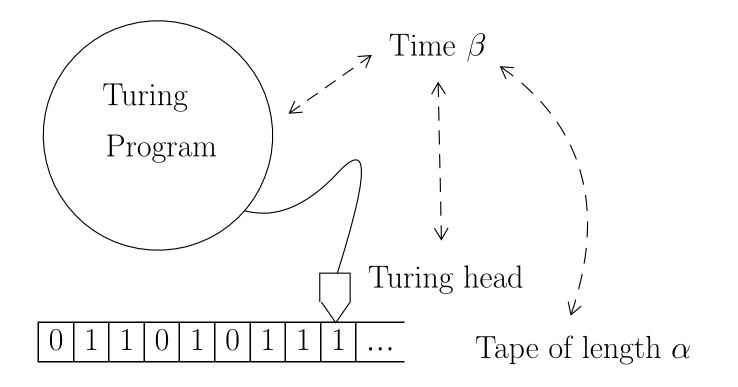
α - β -Register machines

- ω - ω -machines are classical register machines
- ω -Ord-machines are register versions of the Infinite Time Turing Machines (using adequate limit operations)
- for α admissible, α - α -computability corresponds to α -recursion theory (Sacks et al)

α - β -Register machines

Register machines	space ω	space admissible α	space Ord
time ω	standard register	-	-
	machine		
	$ ext{computable} = \Delta_1^0$		
time	?	α register machine	-
admissible α		$(\alpha \text{ recursion theory})$	
admissible α		computable =	
		$\Delta_1(L_{\alpha})$ [_, Seyfferth]	
time Ord	ITRM	?	Ordinal register
	Infinite time register		machine
	machine computable		computable =
	$=L_{\omega_\omega^{ ext{ck}}}\cap \mathcal{P}(\omega)$		$L \cap \mathcal{P}(\mathrm{Ord})$
	[_, CiE 2009]		[_, Siders]

α - β -Turing machines



$\alpha\text{-}\beta\text{-}\mathrm{Turing}$ machines

TURING	space ω	space admissible α	space Ord
time ω	standard TURING	-	-
	machine		
	computable = Δ_1^0		
time	?	α TURING machine	-
admissible α		$(\alpha$ -recursion theory)	
		computable =	
		$\Delta_1(L_{\alpha})$ [_, Seyfferth]	
time Ord	ITTM	?	Ordinal TURING
	$\mathbf{\Delta}_{1}^{1} \subsetneq$ computable		machine
	in real parameter		computable =
	$\subsetneq \mathbf{\Delta}_2^1$		$L \cap \mathcal{P}(\mathrm{Ord})$
	[Hamkins et al]		

α - β -X machines

For a

- (classical) machine model X
- ordinal space α
- ordinal time β

determine the class of computable sets.

α - β -X machines

For a

- (classical) machine model X
- ordinal space α
- ordinal time β

determine the class of computable sets.

This gives a parametrised spectrum from classical computability theory to constructibility theory, i.e. set theory.

Infinite Time Register Machines, ITRM = ω -Ord-register machines

- use "hardware" of classical register machines
- use arbitrary ordinal time
- use limit rule with the proviso that at time t register R_m is "reset" to 0 if $\liminf_{s < t} R_m(s) = \omega$

Infinite Time Register Machines

Theorem (_) A real number $a \in {}^{\omega}2$ is computable by an ITRM iff $a \in L_{\omega_{\omega}^{CK}}$.

Here ω_0^{CK} , ω_1^{CK} , ..., $\omega_{\omega}^{\text{CK}}$ is the monotone enumeration of the first admissible ordinals and their limit.

Infinite Time Register Machines

Theorem (_, Miller) The set WO = $\{Z \in {}^{\omega}2 | Z \text{ codes a wellorder}\}$ is computable by an ITRM.

Infinite Time Register Machines

Look for an infinite branch in Z, keeping the finite attempts in a register R_m ; if there is an infinite branch, the register will overrun and be reset to 0; otherwise it will not overrun and have a finite liminf.

Infinite Time Register Machines

The hyperjump $Z^+ \in {}^{\omega}2$ of $Z \in {}^{\omega}2$ is defined by:

 $Z^+(n) = 1$ iff $\{(i, j) \in \omega \times \omega | P_n^Z(2^i \cdot 3^j) = 1\}$ is a wellfounded relation.

where P_0, P_1, \ldots is a fixed recursive enumeration of all register programs and let $P_n^Z: \omega \to \omega$ be the partial function given by P_n with oracle Z. Then

Theorem. $0, 0^+, 0^{++}, \dots, 0^{(l)}, \dots$ are all ITRM computable.

Infinite Time Register Machines

The

Theorem. $0, 0^+, 0^{++}, \dots, 0^{(l)}, \dots$ are all ITRM computable. implies:

Theorem. Every real in $L_{\omega_{\omega}^{CK}}$ is ITRM computable.

Proof. Because every real in $L_{\omega_{\omega}^{CK}}$ is Turing computable from some finite iterate $0^{(l)}$ of the hyperjump.

Infinite Time Register Machines

Theorem (_) If an ITRM with n registers stops, it will do so before time ω_{n+1}^{CK} .

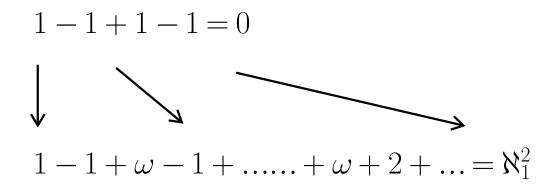
Idea. If an ITRM computation runs for \aleph_1 many steps then by a downward Löwenheim-Skolem argument there is a closed unbounded sets of ordinals $\langle \aleph_1 \rangle$ where the machine configuration is the same as at \aleph_1 . But then the machine will "cycle" after \aleph_1 .

This argument can be refined to work at ω_{n+1}^{CK} instead of \aleph_1 .

So every ITRM computable real a can be computed within $L_{\omega_{\omega}^{\rm CK}}$; $a\in L_{\omega_{\omega}^{\rm CK}}.$

Ordinal Computability

- analyses various classes of sets by atomic Turing or register operations together with limit operations
- connects classical computability theory, higher recursion theory, descriptive set theory, and constructibility theory
- still has many accessible open problems: certain combinations of space α and time β , other machine models
- has participated at CiE since the first conference at Amsterdam



Thank you!