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Effective computability

• f is recursive

• f is finitely definable

• f is Herbrand-Gödel computable

• f is representable in a consistent formal system ⊇R

• f is Turing computable

• f is flowchart (or “while”) computable

• f is λ-definable
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Rôles of natural numbers

• finite number of steps in calculations and deductions

• finite contents of memory in computations

• finite size of programs, recursion schemas, λ-terms, etc.

• algebraic properties: 0, n + 1

• order properties: m < n

• induction and recursion
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Other algebraic domains or orders

• continuous time R

• numbers and data from other rings and fields

• ordinal numbers

• .....
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Ordinals

• ”counting unboundedly”

• finite ordinals = natural numbers: 0, 1, 2, 3,� , n,�

• endextend by limits: 0, 1, 2, 3,� , n,� ,∞

• endextend by successors: 0, 1, 2, 3,� , n,� ,∞,∞+ 1
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Ordinals

• The ordinals form a proper class Ord of objects

• the ordinals are linearly ordered

• the ordinals are closed under the + 1 -operation

• there are limit ordinals like ω, ω + ω,� ,ℵ1,�

• the ordinals are wellordered, i.e. there is no infinite
descending chain α0 > α1 > α2 >� of ordinals

• the ordinals are the ordertypes of wellordered sets
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Ordinals

• one can do induction and recursion along the ordinals

• ordinal addition is defined by recursion

◦ initial case: α + 0 = α

◦ successor case: α + (β + 1) = (α + β) + 1

◦ limit case: if β is a limit ordinal then

α + β = lim
i<β

(α + i)
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Ordinal register machines

α + β can be “computed” as follows:

• put α and β in registers R0 and R1

• set a register R2 to 0

• count up registers R0 and R2 in parallel

• stop when R2 reaches R1 , and output R0

• at limit “times” let the contents of R0 and R2 be the limits
of the previous contents
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Ordinal register machines

R0∈Ord

R1∈Ord

Control

Program

Rn∈Ord

Time

0 1 ω ω + 1 ℵ1

Ord

States
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Ordinal register machines, successor times

A register program is a finite list P = I0, I1,� , Is−1 of instructions:

• the zero instruction Z(m) set register Rm to 0

• the successor instruction S(m) increases register Rm by 1

• the transfer instruction T (m, m ′) sets Rm ′ to the contents
of Rm

• the jump instruction J (m, m ′, q): if Rm = Rm ′, the register
machine proceeds to the qth instruction of P ; otherwise it
proceeds to the next instruction in P

• the machine halts if the “next instruction” is not in P
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Ordinal register machines, limit times

• Let t∈Ord be a limit “time”

• liminfs→t Rm(s) is the smallest ordinal ρ such that
{s < t|Rm(s) 6 ρ} is unbounded in t

• at limit times, the machine registers follow the liminf rule

Rm(t) = liminf
s→t

Rm(s)

• at limit times the program jumps to a specific limit state
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ORM computable functions

• α + β

• α · β, where α · 0 = 0, α · (β + 1) = (α · β) + α,
α · γ = limβ<γ (α · β), for limit ordinals γ

• αβ, where α0 = 1, αβ+1 = αβ ·α,
αγ = limβ<γ αβ, for limit ordinals γ



Peter Koepke, Ordinal Computability, CiE 2009, Heidelberg, July 23, 2009

ORM computability

• what is the class of ORM computable functions?

• what is the class of ORM computable sets, i.e. the class of
sets of the form

{α < β |F (α, γK ) = 1}

where F is ORM computable and β, γK ∈Ord?
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A recursion theorem

Let H :Ord3→Ord be ORM computable. Define

F (α) =

{

1 iff ∃ν < α H(α, ν , F (ν)) = 1
0 else

Then F :Ord→Ord is ORM computable.
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A recursion theorem

F (α) = 1 iff ∃β < α H (α, β, F (β)) = 1

F (α)

F (0) F (1)

F (0)

� F (β)

F (0) F (1)

F (0)

� F (γ)

F (δ)
 




Peter Koepke, Ordinal Computability, CiE 2009, Heidelberg, July 23, 2009

A recursion theorem

F (α)

F (0) F (1)

F (0)

� F (β)

F (0) F (1)

F (0)

� F (γ)

F (δ)
 




Peter Koepke, Ordinal Computability, CiE 2009, Heidelberg, July 23, 2009

A recursion theorem

F (α)

F (0) F (1)

F (0)

� F (β)

F (0) F (1)

F (0)

� F (γ)

F (δ)
 


Search for a good path using a stack F (α)?, F (β)?, F (γ)?,�
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A recursion theorem

Code the stack α0 > α1 >� > αn−1 into one register

Rm = 3α0 + 3α1 + � + 3αn−2 + 3αn−1.
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The constructible model L

Kurt Gödel defined the following model of the axioms of set theory

• L0 = ∅

• Lα+1 = the collection of subsets of Lα which are first order
definable in the structure (Lα,∈ ) with parameters

• Lγ =
⋃

α<γ
Lα for limit ordinals γ

• L =
⋃

α∈Ord Lα
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The constructible model L

Lα

Lα+1

L =
⋃

Lα
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The constructible model L

Lα

Lα+1

L =
⋃

Lα
F

α

∃β ?

F (α) = 1

iff ∃β < α H(α, β, F (β)) = 1
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The constructible model L

Theorem (_, Siders) A set X of ordinals is ORM computable iff
X ∈L, i.e. if X is constructible.

Proof. (→ ) Any ORM computation can be carried out inside the
model L, hence X ∈L.

(← ) One can code iterated definability and the Lα-hierarchy into
the ordinals so that the associated operations become ORM com-
putable. So constructible sets of ordinals are ORM computable.
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The constructible model L

• Gödel’s Axiom of Constructibility can be reformulated as:
every set of ordinals is ORM computable

• One can use the computability perspective to prove the
Generalised Continuum Hypothesis and other principles in
L

• From a universal ORM one can define a “Silver machine”
which allows to prove Jensen’s finestructural principles in
L
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α-β-Register machines, space α, time β

R0∈α

R1∈α


Control
Program

Rn∈α

Time

0 1 ω ω + 1 ℵ1

β

States
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α-β-Register machines

• ω-ω-machines are classical register machines

• ω-Ord-machines are register versions of the Infinite Time
Turing Machines (using adequate limit operations)

• for α admissible, α-α-computability corresponds to α-
recursion theory (Sacks et al)
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α-β-Register machines

Register machines space ω space admissible α space Ord

time ω standard register
machine
computable = ∆1

0

- -

time

admissible α

? α register machine
(α recursion theory)
computable =
∆1(Lα) [_, Seyfferth]

-

time Ord ITRM
Infinite time register
machine computable
= Lω

ω

CK∩P(ω)

[_, CiE 2009]

? Ordinal register
machine
computable =
L∩P(Ord)
[_, Siders]
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α-β-Turing machines

0 1 1 0 1 0 1 1 1 �
Turing

Program

Time β

Tape of length α

Turing head
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α-β-Turing machines

Turing space ω space admissible α space Ord

time ω standard Turing

machine
computable = ∆1

0

- -

time
admissible α

? α Turing machine
(α-recursion theory)
computable =
∆1(Lα) [_, Seyfferth]

-

time Ord ITTM
∆1

1 ( computable
in real parameter
(∆2

1

[Hamkins et al]

? Ordinal Turing
machine
computable =
L∩P(Ord)

[_]
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α-β-X machines

For a

• (classical) machine model X

• ordinal space α

• ordinal time β

determine the class of computable sets.
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α-β-X machines

For a

• (classical) machine model X

• ordinal space α

• ordinal time β

determine the class of computable sets.

This gives a parametrised spectrum from classical computability
theory to constructibility theory, i.e. set theory.
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Infinite Time Register Machines, ITRM =
ω-Ord-register machines

• use “hardware” of classical register machines

• use arbitrary ordinal time

• use liminf rule with the proviso that at time t register Rm

is “reset” to 0 if liminfs<t Rm(s) = ω
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Infinite Time Register Machines

Theorem (_) A real number a∈ ω2 is computable by an ITRM iff
a∈Lω

ω

CK .

Here ω0
CK, ω1

CK, � , ωω
CK is the monotone enumeration of the first

admissible ordinals and their limit.
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Infinite Time Register Machines

Theorem (_, Miller) The set WO= {Z ∈ ω2|Z codes a wellorder}
is computable by an ITRM.

·

·

· ·

·
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Infinite Time Register Machines

·

·

· ·

·

Look for an infinite branch in Z , keeping the finite attempts in a
register Rm ; if there is an infinite branch, the register will overrun
and be reset to 0; otherwise it will not overrun and have a finite
liminf.
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Infinite Time Register Machines

The hyperjump Z+∈ ω2 of Z ∈ ω2 is defined by:

Z+(n) = 1 iff {(i, j) ∈ ω × ω |Pn
Z(2i · 3j) = 1} is a wellfounded

relation.

where P0, P1, � is a fixed recursive enumeration of all register pro-
grams and let Pn

Z: ω ⇀ ω be the partial function given by Pn with
oracle Z . Then

Theorem. 0, 0+, 0++,� , 0(l),� are all ITRM computable.
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Infinite Time Register Machines

The

Theorem. 0, 0+, 0++,� , 0(l),� are all ITRM computable.

implies:

Theorem. Every real in Lω
ω

CK is ITRM computable.

Proof. Because every real in Lω
ω

CK is Turing computable from some

finite iterate 0(l) of the hyperjump.
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Infinite Time Register Machines

Theorem (_) If an ITRM with n registers stops, it will do so

before time ωn+1
CK .

Idea. If an ITRM computation runs for ℵ1 many steps then by a
downward Löwenheim-Skolem argument there is a closed
unbounded sets of ordinals < ℵ1 where the machine configuration
is the same as at ℵ1 . But then the machine will “cycle” after ℵ1 .

This argument can be refined to work at ωn+1
CK instead of ℵ1 .

So every ITRM computable real a can be computed within Lω
ω

CK ;
a∈Lω

ω

CK .
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Ordinal Computability

• analyses various classes of sets by atomic Turing or register
operations together with limit operations

• connects classical computability theory, higher recursion
theory, descriptive set theory, and constructibility theory

• still has many accessible open problems: certain combina-
tions of space α and time β, other machine models

• has participated at CiE since the first conference at Ams-
terdam
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2

Thank you!


