
Ordinal Computability

by Peter Koepke

University of Bonn

EMU - Effective Mathematics of the Uncountable

CUNY Graduate Center, August 8, 2008

1

A standard Turing computation

n + 1 0 0 0 0 0 0 1 � �
⇑ n 0 0 0 0 0 � 1 1
 0 0 0 0 0 � 0 0

S 4 0 0 0 0 0 � 0 0

P 3 0 0 0 0 0 � 0 0

A 2 0 0 1 1 1 � 1 1

C 1 0 1 1 0 0 � 0 0

E 0 1 1 1 1 0 � 1 1

0 1 2 3 4 � n n + 1 � �
T I M E ⇒

2

The shape of standard Turing computations

space N

time N

space N

time N

3

The shape of BSS computations

space R

time N

space R

time N

4

Real functions, differential equations, dynamical systems

space R

time R

space R

time R

5

Standard Turing computations are based on the ordinal ω =N

space ω =N

time ω

space ω

time ω

6

Ordinals

Natural numbers:

0 = ∅, 1 = {0}, 2 = {0, 1}, � , n = {0, 1,� , n− 1}, �

ω =N= {0, 1, 2,� , n,� }
Ordinal numbers:

0, 1, 2,� , n,� , ω, ω + 1 = ω ∪{ω},� , α, α + 1 = α∪{α},� ,ℵ1,� ,ℵω,�
∞=Ord= {0, 1, 2,� , ω,� , α,� }

7

Ordinal computations

space Ord

time Ord

space Ord

time Ord

8

Limit ordinals and ordinal limits

An ordinal λ is a limit ordinal , if it is not of the form λ = 0 or λ = µ + 1.

Let {αξ |ξ < λ}⊆Ord.

supξ<λ αξ =
⋃

ξ<λ
αξ ∈Ord, minξ<λ αξ =

⋂

ξ<λ
αξ ∈Ord .

lim infξ<λ αξ = supζ<λ (minζ6ξ<λ αξ).

9

Ordinal computations: lim inf at limit ordinals

space Ord

time Ord

space Ord

time Ordλ λ

10

γ-δ-computations

space δ

time γ

space δ

time γ

11

ITTM computations are ∞-ω-computations

space ω

time ∞

space ω

time ∞

12

Ordinal register machines (ORM) (with Ryan Siders)

space Ord

time ∞

space Ord

time ∞

13

A register program is a finite list P = I0, I1,� , Is−1 of instructions :

a) the zero instruction Z(n) set register Rn to 0;

b) the successor instruction S(n) increases register Rn by 1;

c) the oracle instruction O(n) sets register Rn to 1 if its content is an element
of the oracle, and to 0 otherwise;

d) the transfer instruction T (m,n) sets Rn to the contents of Rm ;

e) the jump instruction J (m, n, q): if Rm = Rn, the register machine proceeds
to the qth instruction of P ; otherwise it proceeds to the next instruction in
P .

14

Let P = P0, P1,� , Pk−1 be a register program. A pair

S: θ→ω,R: θ→ (ωOrd)

is the ORM computation by P with oracle Z ⊆Ord if:

a) θ is a successor ordinal or θ =Ord; θ is the length of the computation;

b) S(0) = 0; the machine starts in state 0;

c) If t < θ and S(t) � s = {0, 1,� , s− 1} then θ = t + 1; the machine stops if the
machine state is not a program state of P ;

d) If t < θ and S(t) ∈ {0, 1, � , s − 1} then t + 1 < θ; the next configuration is
determined by the instruction PS(t):

15

e) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

∀k ∈ω Rk(t) = liminf
r→t

Rk(r);

S(t) = liminf
r→t

S(r).

...� 17:begin loop

...

21: begin subloop

...

29: end subloop

...

32:end loop

...

16

x ⊆ Ord is ORM computable (from parameters) if there are a program P and ordi-
nals δ1,� , δn−1 such that

∀α P : (α, δ1,� , δn−1, 0, 0,�)� χx(α),

where χx is the characteristic function of x.

Theorem. x ⊆Ord is ORM computable iff x ∈L, where L is Gödel’s inner model
of constructible sets.

Proof. → is obvious, since ORM computations can be carried out in L with the
same results.

← relies on the following

17

Recursion Theorem. Let H :Ord3→Ord be ORM computable. Define

F (α) =

{

1 iff ∃ν < α H (α, ν , F (ν)) = 1
0 else

Then F :Ord→Ord is ORM computable.

Proof. To determine F (α0), organize the search for α1 < α0 with H(α0, α1, F (α1)) =
1 and the search for F (α1) by a stack

F (α0)?, F (α1)?,� , F (αn−1)?

Code the stack α0 > α1 >� > αn−1 by one ordinal

α = 〈α0, α1,� , αn−2, αn−1〉= 3α0 + 3α1 +� + 3αn−2 + 3αn−1.

18

value:=2

MainLoop:

nu:=last(stack)

alpha:=llast(stack)

if nu = alpha then

1: do

remove_last_element_of(stack)

value:=0

goto SubLoop

end_do

else

2: do

stack:=stack + 1

goto MainLoop

end_do

SubLoop:

nu:=last(stack)

alpha:=llast(stack)

if alpha = UNDEFINED then STOP

else

do

if H(alpha,nu,value)=1 then

3: do

remove_last_element_of(stack)

value:=1

goto SubLoop

end_do

else

4: do

stack:=stack + 2*(3**y)

value:=2

goto MainLoop

end_do

end_do

19

− computable approach to L

− proving the continuum hypothesis = counting the number of ORM com-
putable subsets of ω

− fine structure of L: define Silver machines from an ORM program
which “computes L ”

− are (some) fine structural constructions computations?

− approximate ∞-∞-machines by α-α-machines, α→∞

20

α-α-computations for admissible α (with Benjamin Seyfferth)

space α

time α

space α

time α

21

Theorem. Let α be an admissible ordinal and X ⊆α . Then

a) X is computable by an α-α-register machine in parameters < α iff
X ∈∆1

1(Lα)

b) X is computably enumerable by an α-α-register machine in parameters < α

iff X ∈Σ1
1(Lα)

One can characterize when a limit ordinal β is admissible using β-β-machines.
One can do parts of α recursion theory using α-α-machines, e.g., the Sacks-
Simpson theorem.

22

Ordinal register computability

Register
machines

space ω space admissible α space Ord

time ω standard register
machine
computable = ∆1

0

- -

time
admissible α

? α register machine
(α recursion theory)
computable =
∆1(Lα)

-

time Ord ? ? Ordinal register
machine
computable =
L∩P(Ord)

23

Ordinal Turing computability

Turing space ω space admissible α space Ord

time ω standard Turing

machine
computable = ∆1

0

- -

time
admissible α

? α Turing machine
(α-recursion theory)
computable =
∆1(Lα)

-

time Ord ITTM
∆1

1 (computable
in real parameter
(∆2

1

? Ordinal Turing
machine
computable =
L∩P(Ord)

24

Ordinal register computability

Register
machines

space ω space admissible α space Ord

time ω standard register
machine
computable = ∆1

0

- -

time
admissible α

? α register machine
(α recursion theory)
computable =
∆1(Lα)

-

time Ord ITRM
Infinite time register
machine
computabel in real
parameters = ?

? Ordinal register
machine
computable =
L∩P(Ord)

25

Infinite Time Register Machines (ITRM) (with Russell Miller)

Let P = P0, P1,� , Pk−1 be a register program. A pair

S : θ→ω,R: θ→ (ωω)

is the infinite time register computation by P with oracle Z ⊆ω if:

a) ...

b) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits or in case of overflow resetting to 0:

∀k ∈ω Rk(t) =

{

0, if liminfr→t Rk(r) = ω,

liminfr→t Rk(r), else;

S(t) = liminf
r→t

S(r).

26

A subset A⊆P(ω) =R is ITRM-computable if there is a register program P and an
oracle Y ⊆ω such that for all Z ⊆ω:

Z ∈A iff P : (0, 0,�), Y ×Z� 1, and Z � A iff P : (0, 0,�), Y ×Z� 0

where Y × Z is the cartesian product of Y and Z with respect to the pairing func-
tion

(y, z)� (y + z)(y + z + 1)

2
+ z.

27

Stacks

Code a stack (r0,� , rm−1) of natural numbers by

r = 2m · 3r0 · 5r1� pm
rm−1

Proposition 1. Let α < τ where τ is a limit ordinal. Assume that in some ITRM-

computation using a stack, the stack contains r = (r0, � , rm−1) for cofinally many

times below τ and that all contents in the time interval (α, τ) are endextensions of

r = (r0,� , rm−1). Then at time τ the stack contents are

r = (r0,� , rm−1).

28

push 1; %% marker to make stack non-empty

push 0; %% try 0 as first element of descending sequence

FLAG=1; %% flag that fresh element is put on stack

Loop: Case1: if FLAG=0 and stack=0 %% inf descending seq found

then begin; output ’no’; stop; end;

Case2: if FLAG=0 and stack=1 %% inf descending seq not found

then begin; output ’yes’; stop; end;

Case3: if FLAG=0 and length-stack > 1 %% top element cannot be continued infinitely

then begin; %% try next

pop N; push N+1; FLAG:=1; %% flag that fresh element is put on stack

goto Loop;

end;

Case4: if FLAG=1 and stack-is-decreasing

then begin;

push 0; %% try to continue sequence with 0

FLAG:=0; FLAG:=1; %% flash the flag

goto Loop;

end;

Case5: if FLAG=1 and not stack-is-decreasing

then begin;

pop N; push N+1; %% try next

FLAG:=0; FLAG:=1; %% flash the flag

goto Loop;

end;

29

Lemma 2. Let I : θ → ω, R: θ → (ωω) be the computation by P with oracle Z and

trivial input (0, 0,�). Then

a) If Z is wellfounded then the computation stops with output ‘yes’.

b) If Z is illfounded then the computation stops with output ‘no’.

Theorem 3. The set WO = {Z ⊆ ω |Z codes a wellorder } is computable by an

ITRM.

Theorem 4. Every Π1
1 set A⊆P(ω) is ITRM-computable.

30

ITTMs can simulate ITRMs:

Simulate the number i in register Rm as an initial segment of i 1’s on the m-th tape
of an ITTM.

If λ is a limit time and liminfτ→λ Rm(τ) = i∗ 6 ω then the m-th tape will hold an
initial segment of i∗ 1’s.

OK, if i∗ is finite.

If i∗ = ω, this may be detected by a subroutine which then resets the m-th tape to
0.

Since ITTM-decidable ⊆∆2
1 :

31

Ordinal register computability

Register
machines

space ω space admissible α space Ord

time ω standard register
machine
computable = ∆1

0

- -

time
admissible α

? α register machine
(α recursion theory)
computable =
∆1(Lα)

-

time Ord ITRM
∆1

1 (computable
in real parameter
(∆2

1

? Ordinal register
machine
computable =
L∩P(Ord)

32

ITRMs, ITTMs, and halting problems

(S, R) is a configuration if S ∈ ω is a program state and R: ω→ ω where R(n) = 0
for almost all n < ω. Define a wellfounded partial order of configurations

(S0, R0) 6 (S1, R1) iff S0 6S1 and ∀n < ω R0(n) 6R1(n).

33

Lemma 5. Let

S : θ→ω,R: θ→ (ωω)

be the infinite time register computation by P with input (0, 0, �) and oracle Z.

Then this computation does not halt iff there are τ0 < τ1 < θ such that

(S(τ0), R(τ0)) = (S(τ1), R(τ1)) and ∀τ ∈ [τ0, τ1](S(τ0), R(τ0)) 6 (S(τ), R(τ)).

τ0 τ1

(S,R)

θ

34

Proof. (→) Assume that the computation does not halt. Let A be the set of all
configurations occuring class-many times. A is downwards directed in the partial
order of configurations:

for (S0, R0), (S1, R1) ∈ A choose a sufficiently high ω-sequence τ0 < τ1 < � of stages
such that each (Si, Ri) occurs at all stages of the form τ2·k+i with i < 2.

Then (S,R) occuring at stage supn τn has (S, R) 6 (I0, R0) and (S,R) 6 (I1, R1).

Let (S0, R0) be the unique 6 -minimal element of A. Choose sufficiently high stages
τ0, τ1 such that τ0 < τ1 with (S(τ0), R(τ0)) = (S(τ1), R(τ1)) = (S0, R0).

35

(←) For the converse assume that there are τ0 < τ1 < θ such that and

(S(τ0), R(τ0)) = (S(τ1), R(τ1)) and ∀τ ∈ [τ0, τ1](S(τ0), R(τ0)) 6 (S(τ), R(τ)).

Then if σ > τ0 is of the form σ = τ0 + (τ1− τ0) ·α + β, β < τ1− τ0 then

(S(σ), R(σ)) = (S(τ0 + β), R(τ0 + β)).

So the computation does not stop. �

36

Theorem 6. The halting problem for ITRMs

{(P , Z) | P is a register program, Z ⊆ω, and the computation by P

with input (0, 0,�) and oracle Z halts}

is decidable by an ITTM with oracle Z.

ITRMs are weaker than ITTMs.

Proof. Implement the criterion of Lemma 5 on an ITTM.

Simulate the computation for (P ,Z).

Use an auxiliary tape with cells for each possible configuration of the ITRM.

At stage τ of the simulation erase from the auxiliary tape all 1’s for configurations
which are not 6 (S(τ), R(τ)), put a 1 for the configuration (S(τ), R(τ)).

If there was already a 1 in this cell, then by Lemma 5 the computation diverges.

If the simulation stops the computation stops. �

37

Theorem 7. The restricted halting problem for ITRMs

{(P ,Z) | P is a register program using at most N registers, Z ⊆ω,

and the computation by P with input (0, 0,�) and oracle Z halts}

is decidable by an ITRM with oracle Z, for every N < ω.

Proof. Emulate the bookkeeping of the previous proof using auxiliary registers.

C(τ) = {(S(σ), R(σ))|σ < τ ∧∀σ ′∈ [σ, τ](S(σ), R(σ)) 6 (S(σ ′), R(σ ′))}

The halting criterion becomes

∃τ ((S(τ), R(τ))∈C(τ)).

C(τ) can be carried along using N + const extra registers. �

38

Theorem 8.

The strength of ITRMs using N registers grows eventually strictly with N.

There cannot be a universal ITRM.

Question. For which N is an N -register ITRM strictly weaker than an N + 1-reg-
ister ITRM?

39

Infinite time register computable model theory

Follow Hamkins, Miller, Seabold, Warner Infinite Time Computable Model

Theory using:

− decide WF and WO

− decide the elementary diagram of first-order structures on N since it is ∆1
1 in

the code for the structure

− lost melody theorem

40

