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Abstract

Ordinary computations can be characterised by register machines working with natural numbers. We
study ordinal register machines where the registers can hold arbitrary ordinal numbers. The class of sets
of ordinals which are computable by such machines has strong closure properties and satisfies the set
theoretic axiom system SO. This implies that ordinal computability is equivalent to Gödel ’ s model L
of constructible sets. In this tutorial we shall give a proof of this theorem, starting with brief reviews of
ordinal theory and standard register machines.
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Register machines

Addi ti on, computi ng gamma = alpha + beta:

0 alpha’ : =0

1 beta’ : =0

2 gamma: =0

3 i f alpha=alpha’ then go to 7

4 alpha’ : =alpha’ +1

5 gamma: =gamma+1

6 go to 3

7 i f beta=beta’ then STOP

8 beta’ : =beta’ +1

9 gamma: =gamma+1

1 0 go to 7

Working on ordinals instead of natural numbers?!
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Theorem 1 . A set x ⊆ Ord is ordinal computab le if and only if x ∈ L .

Questions:

− how can other notions of computability be lifted from natural numbers to ordinals?

− how do recursion theoretic notions lift to ordinal machines, and what is their set-theoretic sig-
nificance?

− can ordinal machines be used for the fine-structural analysis of the constructible universe?

− can we generate larger models of set theory by some stronger notions of ordinal computation?
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Structure of the tutorial:

− A review of the theory of ordinals.

− A short review of standard register machines.

− Definition of ordinal register machines.

− The theory SO of sets of ordinals.

− Interpreting ZFC within SO.

− A recursion theorem for ordinal computability.

− Computing a model of SO.

− Every constructible set of ordinals is ordinal computable.

− An application: the generalised continuum hypothesis in L .
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Ordinal numbers

0 = ∅
1 = { 0}
2 = { 0 , 1 }
3 = { 0 , 1 , 2}

�

n + 1 = { 0 , 1 , � , n}

�
m< n↔ m ∈ n
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Definition 2. A set or class A is transitive , Trans(A) , iff ∀u, v (u ∈ v ∧ v ∈ A→ u ∈ A) .

Definition 3. A set x is an ordinal number , Ord(x ) , if Trans(x) ∧ ∀y ∈ x Trans( y) . Let

Ord= {x | x is an ordinal number }

be the class of al l ordinals.
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Theorem 4. a ) The class Ord is transitive .

b ) Ord is linearly ordered by < .

c ) Ord is wel l-ordered by < , i . e . ,

∀x ⊆ Ord (x � ∅ → ∃α ∈ x∀β < αβ � x ) .

Definition 5. An ordinal α is a successor ordinal if it is of the form α = β + 1 . An ordinal α is a
limit ordinal ifα is not a successor ordinal and α � 0 .

Definition 6. Let ω be the smal lest limit ordinal. ω is the set of natural numbers .

Theorem 7. The structure (ω, 0 , + 1 ) satisfies the Peano axioms. In particular the principle of
complete induction holds:

∀X ⊆ ω ( 0 ∈ X ∧ ∀n (n ∈ X→ n + 1 ∈ X) →X = ω) .
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Induction and recursion

Theorem 8. Let ϕ( v , w

�

) be an ∈ -formula. Then

∀w� ( ∃α ∈ Ord ϕ(α , w

�

) → ∃α ∈ Ord ( ϕ(α , w

�

) ∧ ∀β < α¬ϕ( β, w

�

) ) ) .

Theorem 9. Let ϕ( v , w

�

) be an ∈ -formula and assume that

− ϕ( 0 , w

�

)

− ∀α ∈ Ord ( ϕ(α , w

�

) → ϕ(α + 1 , w

�

) )

− ∀α (α is a limit ordinal → (∀β < αϕ( β, w

�

) → ϕ(α , w
�

) ) )

Then ∀α ∈ Ord ϕ(α , w

�

) .
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Theorem 10. Let G : V → V be a definable function. Then there is a unique definable function F :
Ord→ V which for every α ∈ Ord satisfies the recursion equation

F (α) = G(F � α) .

Theorem 1 1 . Let G0 ∈ V and let Gsucc : V→ V and G lim : V→ V be definable functions. Then there is
a unique definab le function F : Ord→ V such that

− F( 0) = G0

− ∀α ∈ Ord F(α + 1 ) = Gsucc(F (α) )

− ∀α ∈ Ord (α is a limit ordinal → F(α) = G lim(F � α) ) .
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Definition 1 2. The von Neumann hierarchy (Vα | α ∈ Ord) :

− V0 = ∅

− Vα+ 1 = P(Vα)

− Vλ =
⋃

α< λ Vα =
⋃

range( (Vα | α < λ ) ) .
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Definition 1 3. The ordinal sum α + β is defined by recursion on β ∈ Ord by

− α + 0 = α

− α + ( β + 1 ) = (α + β) + 1

− α + λ =
⋃

β< λ (α + β) .

Definition 14. The ordinal product α · β is defined by recursion on β ∈ Ord by

− α · 0 = 0

− α · ( β + 1 ) = (α · β) + α

− α · λ =
⋃

β< λ (α · β) .

Definition 1 5. Let ( δi | i < λ ) be a sequence of ordinals of limit length λ . Then

a ) limi < λ δi =
⋃

i < λ δi is the limit of ( δi | i < λ ) ;

b ) lim infi < λ δi = limi < λ min {δj | i 6 j < λ } is the inferior limit of ( δi | i < λ ) .
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The Gödel pairing function

Definition 1 6. Define a wel l-ordering ≺ on Ord × Ord by

( γ, δ) ≺ ( γ ′, δ ′) iff max ( γ, δ) < max ( γ ′, δ ′) ∨
(max ( γ, δ) = max ( γ ′, δ ′) ∧ γ < γ ′) ∨
(max ( γ, δ) = max ( γ ′, δ ′) ∧ γ = γ ′ ∧ δ < δ ′) .

Exercise 1 . Show that ≺ is a set-like well-ordering of Ord × Ord. Set- like means that

∀γ ′, δ ′ { ( γ , δ ) | ( γ , δ ) ≺ ( γ ′, δ ′) } is a set .

Definition 1 7. Define an order- isomorphism G− 1 : Ord→ Ord × Ord recursively by

G− 1 (α) = the ≺ -minimal element of Ord × Ord \ {G− 1 ( β) | β < α } .

G is cal led the Gödel pairing function.
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Register machines

Definition 1 8. An unlimited register machine URM has registers R0 , R1 , � which can hold natural
numbers . A register program consists of commands to increase or to reset a register. The program
may jump on condition of equality between two registers.

An URM program is a finite list P = I0 , I1 , � , Is− 1 of instructions each of which may be of one
of four kinds:
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a ) the zero instruction Z (n) changes the contents of Rn to 0 , leaving al l other registers unal-
tered;

b ) the successor instruction S(n) increases the natural number contained in Rn by 1 , leaving al l
other registers unaltered;

c ) the transfer instruction T(m, n) replaces the contents of Rn by the natural number contained
in Rm , leaving al l other registers unaltered;

d ) the jump instruction J (m, n, q) is carried out within the program P as fol lows: the contents
rm and rn of the registers Rm and Rn are compared, but al l the registers are left unaltered;
then, ifRm = Rn , the URM proceeds to the qth instruction ofP; ifRm � Rn , the URM pro-
ceeds to the next instruction in P.

The instructions of a register program can be addressed by their indices which are cal led program
states . At each ordinal time t the machine wil l be in a configuration consisting of a program state
I( t) ∈ ω and the register contents which can be viewed as a function R( t) : ω→ ω. R( t) (n) is the con-
tent of the register Rn at time t . We also write Rn( t) instead ofR( t) (n) .
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Definition 1 9. Let P = I0 , I1 , � , Is− 1 be a program. A triple

I : θ→ ω, R : θ→ ( ωω)

is a ( register) computation by P if the fol lowing hold:

a ) θ 6 ω; θ is the length of the computation;

b ) I( 0) = 0 ; the machine starts in state 0 ;

c ) If t < θ and I( t) � s = { 0 , 1 , � , s − 1 } then θ = t + 1 ; the machine stops if the machine state is
not a program state ofP;

d ) If t < θ and I( t) ∈ state(P) then t + 1 < θ; the next configuration is determined by the instruc-
tion II( t) :

i . if II( t) is the zero instruction Z (n) then let I( t + 1 ) = I( t) + 1 and define R( t + 1 ) : ω→
Ord by

Rk ( t + 1 ) =

{
0 , if k = n
Rk ( t) , if k � n
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ii . if II( t) is the successor instruction S(n) then let I( t + 1 ) = I( t) + 1 and define R( t + 1 ) :
ω→ Ord by

Rk ( t + 1 ) =

{
Rk ( t) + 1 , if k = n
Rk ( t) , if k � n

iii . if II( t) is the transfer instruction T(m, n) then let I( t + 1 ) = I( t) + 1 and define R( t +

1 ) : ω→ Ord by

Rk ( t + 1 ) =

{
Rm( t) , ifRm( t) = Rn( t)
Rk ( t) , ifRm( t) � Rn( t)

iv. if II( t) is the jump instruction J(m, n, q) then let R( t + 1 ) = R( t) and

I( t + 1 ) =

{
q , if k = n
I( t) + 1 , if k � n

The computation is obviously recursively determined by the initial register contents R( 0) and the
program P. We cal l it the computation by P with imput R( 0) . If the computation stops at length
θ = β + 1 < ω then R( β) are the final register contents. In this case we say that P computes R( β) ( 0)
from R( 0) and write P : R( 0) � R( β) ( 0) .
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Algorithms

Addi ti on, computi ng gamma = alpha + beta:

0 alpha’ : =0

1 beta’ : =0

2 gamma: =0

3 i f alpha=alpha’ then go to 7

4 alpha’ : =alpha’ +1

5 gamma: =gamma+1

6 go to 3

7 i f beta=beta’ then STOP

8 beta’ : =beta’ +1

9 gamma: =gamma+1

1 0 go to 7
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Decrementati on, computi ng beta = alpha −̇ 1 :

0 alpha’ : =0

1 beta: =0

2 i f alpha=alpha’ then STOP

3 alpha’ : =alpha’ +1

4 i f alpha=alpha’ then STOP

5 beta: =beta+1

6 go to 3
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Multi pli cati on, computi ng gamma = alpha * beta:

0 beta’ : =0

1 gamma: =0

2 i f beta=beta’ then STOP

3 beta’ : =beta’ +1

4 gamma: =gamma + alpha

5 go to 2
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Multi pli cati on, computi ng gamma = alpha * beta:

0 beta’ : =0

1 gamma: =0

2 i f beta=beta’ then STOP

3 beta’ =beta’ +1

4 alpha’ ’ : =0

5 beta’ ’ : =0

6 gamma’ : =0

7 gamma=alpha’ ’ then go to 1 1

8 alpha’ ’ =alpha’ ’ +1

9 gamma’ =gamma’ +1

1 0 go to 7

1 1 i f alpha=beta’ ’ then go to 1 5

1 2 beta’ ’ =beta’ ’ +1

1 3 gamma’ =gamma’ +1

1 4 go to 1 1

1 5 gamma: =gamma’

1 6 go to 2
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Ordinal computations

Definition 20. Let P = I0 , I1 , � , Is− 1 be an URM program. A triple

I : θ→ ω, R : θ→ ( ωOrd)

is an ( ordinal register) computation by P if the fol lowing hold:

a ) θ is a successor ordinal or θ = Ord; θ is the length of the computation;

b ) I( 0) = 0 ; the machine starts in state 0 ;

c ) If t < θ and I( t) � s = { 0 , 1 , � , s − 1 } then θ = t + 1 ; the machine stops if the machine state is
not a program state ofP;

d ) If t < θ and I( t) ∈ state(P) then t + 1 < θ; the next configuration is determined by the instruc-
tion II( t) :

i . if II( t) is the zero instruction Z (n) then let I( t + 1 ) = I( t) + 1 and define R( t + 1 ) : ω→
Ord by

Rk ( t + 1 ) =

{
0 , if k = n
Rk ( t) , if k � n

ii . if II( t) is the successor instruction S(n) then let I( t + 1 ) = I( t) + 1 and define R( t + 1 ) :
ω→ Ord by

Rk ( t + 1 ) =

{
Rk ( t) + 1 , if k = n
Rk ( t) , if k � n
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iii . if II( t) is the transfer instruction T(m, n) then let I( t + 1 ) = I( t) + 1 and define R( t +

1 ) : ω→ Ord by

Rk ( t + 1 ) =

{
Rm( t) , if k = n
Rk ( t) , if k � n

iv. if II( t) is the jump instruction J(m, n, q) then let R( t + 1 ) = R( t) and

I( t + 1 ) =

{
q , ifRm( t) = Rn( t)
I( t) + 1 , ifRm( t) � Rn( t)

e ) If t < θ is a limit ordinal, the machine constel lation at t is determined by taking inferior
limits:

∀k ∈ ω Rk ( t) = liminf
r→ t

Rk ( r) ;

I( t) = liminf
r→ t

I( r) .

The computation is obviously determined recursively by the initial register contents R( 0) and the
program P. We cal l it the ordinal computation by P with imput R( 0) . If the computation stops, θ =
β + 1 is a successor ordinal and R( β) is the final register content. In this case we say that P com-
putes R( β) ( 0) from R( 0) and write P : R( 0 ) � R( β) ( 0 ) .
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. . .
� 1 7: begi n loop

. . .

21 : begi n subloop

. . .

29 : end subloop

. . .

32 : end loop

. . .

Assume that for times r → t the loop ( 1 7 − 32) with its subloop ( 21 − 29) is traversed cofinally
often. Then at time t it is natural to put the machine at the start of the “main loop”. Assuming that
the lines of the program are enumerated in increasing order this corresponds to the liminf rule

I( t) = liminf
r→ t

S( r) .
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Definition 21 . An n-ary partial function F : Ordn⇀ Ord is ( ordinal register) computable if there is
a register program P such that for every n- tuple (α0 , � , αn− 1 ) holds

P : (α0 , � , αn− 1 , 0 , 0 , � ) � F (α0 , � , αn− 1 ) .

Definition 22. A subset x ⊆ Ord is ( ordinal register) computable if there is a register program P
and ordinals δ1 , � , δn− 1 such that for every α ∈ Ord holds

P : (α , δ1 , � , δn− 1 , 0 , 0 , � ) � χx(α) ,

where χx is the characteristic function of x .
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Ordinal algorithms

Ordi nal addi ti on, computi ng gamma = alpha + beta:

0 alpha’ : =0

1 beta’ : =0

2 gamma: =0

3 i f alpha=alpha’ then go to 7

4 alpha’ : =alpha’ +1

5 gamma: =gamma+1

6 go to 3

7 i f beta=beta’ then STOP

8 beta’ : =beta’ +1

9 gamma: =gamma+1

1 0 go to 7
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Observe that at limit times this algorithm, by the liminf rule, will nicely cycle back to the begin-
nings of loops 3 - 6 or 7 - 1 0 resp. and thus it will implement the recursion rule for addition at
limit ordinals.

Ordi nal decrement, computi ng beta = alpha −̇ 1 :

0 alpha’ : =0

1 beta: =0

2 i f alpha=alpha’ then STOP

3 alpha’ : =alpha’ +1

4 i f alpha=alpha’ then STOP

5 beta: =beta+1

6 go to 3
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Theorem 23. Let f ( v0 , � , vn− 1 ) and g0(w

�

) , � , gn− 1 (w

�

) be computab le functions on the ordinals.
Then the composition h(w

�

) = f ( g0(w

�

) , � , gn− 1 (w

�

) ) is ordinal register computab le .

Ordi nal exponenti ati on, computi ng gamma = beta * * alpha:

0 gamma: =1

1 alpha’ : =0

2 i f alpha=alpha’ then STOP

3 gamma=gamma * beta

4 alpha’ =alpha’ +1

5 go to 2
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Goedel pai ri ng, computi ng gamma = G( alpha, beta) :

0 alpha’ : =0

1 beta’ : =0

2 eta: =0

3 flag: =0

4 gamma: =0

5 i f alpha=alpha’ and beta=beta’ then STOP

6 i f alpha’ =eta and and beta’ =eta and flag=0 then

alpha’ =0, flag: =1 , go to 5 fi

7 i f alpha’ =eta and and beta’ =eta and flag=1 then

eta: =eta+1 , alpha’ =eta, beta’ =0, gamma: =gamma+1 , go to 5 fi

8 i f beta’ <eta and flag=0 then

beta’ : =beta’ +1 , gamma: =gamma+1 , go to 5 fi

9 i f alpha’ <eta and flag=1 then

alpha’ : =alpha’ +1 , gamma: =gamma+1 , go to 5 fi
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Theorem 24. Let the function f : Ordn→ Ord be ordinal register computab le and surjective . Then
there are ordinal register computab le functions g0 , � , gn− 1 : Ord→ Ord such that

∀α f ( g0(α) , � , gn− 1 (α ) ) = α .

The inverse functions G0 and G1 satisfying

∀γ γ = G(G0( γ) , G1 ( γ) )

are ordinal computable as well.
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The theory SO

Definition 25. The Theory SO is formulated in the first-order language LSO and consists of the
fol lowing list of axioms:

1 . Well-ordering axiom (WO) :
∀α , β , γ(¬α < α ∧ (α < β ∧ β < γ→ α < γ) ∧
(α < β ∨ α = β ∨ β < α) ) ∧
∀a( ∃αα ∈ a→ ∃α(α ∈ a ∧ ∀β( β < α→ ¬β ∈ a) ) ) ;

2. Axiom of infinity ( INF) (existence of a limit ordinal):
∃α ( ∃ββ < α ∧ ∀β( β < α→ ∃γ( β < γ ∧ γ < α) ) ) ;

3. Axiom of extensionality (EXT) : ∀a , b(∀α (α ∈ a↔ α ∈ b) → a = b) ;

4. Initial segment axiom ( INI) : ∀α∃a∀β( β < α↔ β ∈ a) ;

5. Boundedness axiom (BOU) : ∀a∃α∀β( β ∈ a→ β < α) ;
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6. Pairing axiom (GPF) (Gödel Pairing Function):
∀α , β , γ ( g( β, γ) ≤ α↔ ∀δ , ε( ( δ , ε) < ∗ ( β, γ) → g( δ , ε) < α ) ) .
Here (α , β) < ∗ ( γ, δ) stands for
∃η , θ( η = max (α , β) ∧ θ = max ( γ, δ) ∧ ( η < θ ∨
( η = θ ∧ α < γ) ∨ ( η = θ ∧ α = γ ∧ β < δ) ) ) ,
where γ= max (α , β) abbreviates (α > β ∧ γ= α ) ∨ (α ≤ β ∧ γ = β) ;

7. Surjectivity of pairing ( SUR) : ∀α∃β, γ (α = g( β, γ) ) ;

8. Axiom schema of separation ( SEP) : For al l LSO-formulae φ(α , P1 , � , Pn) postulate :
∀P1 , � , Pn∀a∃b∀α (α ∈ b↔ α ∈ a ∧ φ(α , P1 , � , Pn) ) ;

9. Axiom schema of replacement (REP) : For al l LSO-formulae φ(α , β , P1 , � , Pn) postulate :
∀P1 , � , Pn (∀ξ , ζ1 , ζ2 ( φ( ξ , ζ1 , P1 , � , Pn) ∧ φ( ξ , ζ2 , P1 , � , Pn) → ζ1 = ζ2 ) →
∀a∃b∀ζ ( ζ ∈ b↔ ∃ ξ ∈ a φ( ξ , ζ , P1 , � , Pn) ) ) ;

1 0. Powerset axiom (POW) :
∀a∃b(∀z ( ∃αα ∈ z ∧ ∀α (α ∈ z→ α ∈ a) → ∃ ξ∀β( β ∈ z↔ g( β, ξ) ∈ b) ) ) .
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Theorem 26. The theory SO can be interpreted in the theory ZFC .

Definition 27. For sets or classes R, X, Y, f define the fol lowing notions in SO:

∅ : = ι0 = {α | α � α }
dom(R) : = {α | ∃β( (α , β) ∈ R) }
ran(R) : = { β | ∃α( (α , β) ∈ R) }
fun( f ) : = ∀α , β1 , β2 ( (α , β1 ) ∈ f ∧ (α , β2 ) ∈ f→ β1 = β2 )

f : X→ Y : = fun( f ) ∧ dom( f ) = X ∧ ran( f ) ⊂ Y
α = f ( β) : = (α , β) ∈ f

αRβ : = (α , β) ∈ R
X × Y : = { γ | G1 ( γ) ∈ X ∧ G2 ( γ) ∈ Y }
X � Y : = { (α , β) ∈ X | α ∈ Y }
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Theorem 28. ( SO) Let φ(α , X1 , � , Xn) be an LSO-formula. Then for al l X1 , � , Xn,

∀α( (∀β < α φ( β, X1 , � , Xn) ) → φ(α , X1 , � , Xn) )

implies

∀α φ(α , X1 , � , Xn)

Theorem 29. ( SO) Let R : On × SOn→ On be a function defined by some formula φ(α , f , β , X1 , � ,
Xn) . Then there exists a unique function F : On→ On defined by a formula ψ(α , β , X1 , � , Xn) such
that

∀α(F(α) = R(α , F � ια) ) ( 1 )
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Assembling sets along wellfounded relations

Definition 30. An ordered pair x = (x , Rx) is a point if Rx is a wel lfounded relation on ordinals
and x ∈ dom(Rx) . Let P be the class of al l points. Unless specified otherwise we use Rx to denote
the wel lfounded relation of the point x .

Define recursively

Ix: dom(Rx) → V , by Ix(u) = {Ix( v) | vRx u} .

Then let I(x) = Ix(x) be the interpretation of x .

Note that for points x and y

Ix(u) = Iy( v) iff {Ix(u ′) | u ′Rx u} = {Ix( v ′) | v ′Ry v }
iff (∀u ′Rx u ∃v ′Ry v Ix(u

′) = Iy( v
′) ) ∧ (∀v ′Ry v ∃u ′Rx u Ix(u

′) = Iy( v
′) ) .
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Definition 31 . Define a relation ≡ on points x = (x , Rx) , y = ( y, Ry) by induction on the product
wel lorder Rx × Ry:

(x , Rx) ≡ ( y , Ry) iff ∀uRx x ∃vRy y (u, Rx) ≡ ( v , Ry) ∧ ∀vRy y∃uRx x (u, Rx) ≡ ( v , Ry) .

Lemma 32. ( SO) ≡ is an equivalence relation on P.

Definition 33. Let x = (x , Rx) and y = ( y, Ry) be points. Then set

x J y iff ∃vRy y x ≡ ( v , Ry) .

Lemma 34. ( SO) The equivalence relation ≡ is a congruence relation with respect to J , i . e . ,

x J y ∧ x ≡ x ′ ∧ y≡ y ′ → x ′J y ′ .
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The class of points satisfies ZFC

Lemma 35. ( SO) Let (x i | i ∈ A) be a set- sized sequence of points. Then there is a point y = ( y,
Ry) such that for al l points x holds

x J y iff ∃ i ∈ A x ≡ x i .
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Theorem 36. ( SO) P= (P, ≡ , J ) is a model of ZFC .

Proof. ( 1 ) The axiom of extensionality holds in P:

∀x∀y (∀z ( z J x↔ z J y) → x ≡ y) .

( 2) The axiom of pairing holds in P:

∀x∀y∃z∀w (w J z↔ (w≡ x ∨ w≡ y) ) .

( 3) The axiom of unions holds in P:

∀x ∃y∀z ( z J y↔ ∃w(w J x ∧ z J w) ) .

( 4) The replacement schema holds in P, i . e. , for every first-order formula ϕ(u, v) in the language of
≡ and J the following is true in P:

∀u, v , v ′ ( ( ϕ(u, v) ∧ ϕ(u, v ′) ) → v ≡ v ′) → ∀x ∃y∀z ( z J y↔ ∃u (u J x ∧ ϕ(u, z ) ) ) .

The replacement schema also implies the separation schema.
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( 5) The axiom of powersets holds in P:

∀x ∃y∀z ( z J y↔ ∀w(w J z→ w J x) ) .

( 6) The axiom of choice holds in P:

∀x ( (∀y, z ( ( y J x ∧ z J x) → ( ∃uu J y ∧ (¬y≡ z→ ¬∃u (u J y ∧ u J z ) ) ) ) ) →
∃w∀y ( y J x→ ∃u ( (u J w ∧ u J y) ∧ ∀v ( ( v J w ∧ v J y) → u≡ v) ) ) ) .

qed ( 6)

( 7) The foundation schema holds in P , i . e. , for every first-order formula ϕ(u) in the language of
≡ and J the following is true in P:

∃uϕ(u) → ∃y ( ϕ( y) ∧ ∀z ( z J y→ ¬ϕ( z ) ) .

( 8) The axiom of infinity holds in P, i . e. ,

∃x ( ∃y y J x ∧ ∀y ( y J x→ ∃z ( z J x ∧ ∀u (u J z ↔ u J y ∨ u≡ y) ) ) )

�
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Theorem 37. In the set theoretical universe V consider a class S ⊆ {x | x ⊆ Ord} such that S =
(Ord, S , < , = , ∈ , G) is a model of the theory SO. Then there is a unique inner model (M, ∈ ) of
ZFC such that S= {v ∈M | v ⊆ Ord} .
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3-adic representations and ordinal stacks

F(α) =

{
1 iff ∃ν < α H(α , ν , F( ν ) ) = 1
0 else

Proposition 38. Let > 1 be a fixed basis ordinal. An equality

α = δα0 · ζ0 + δα1 · ζ1 + � + δαn− 1 · ζn− 1

with α0 > α1 > � > αn− 1 and 0 < ζ0 , ζ1 , � , ζn− 1 < δ is cal led a δ-adic representation of α . We claim
that every α ∈ Ord possesses a unique δ-adic representation.
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By the proposition, a decreasing stack α0 > α1 > � > αn− 2 > αn− 1 of ordinals can be coded by one
ordinal

α = 〈α0 , α1 , � , αn− 2 , αn− 1 〉 = 3α0 + 3α1 + � + 3αn− 2 + 3αn− 1 .

Proposition 39. Let t ∈ Ord be a limit time and t0 < t . For time τ ∈ [ t0 , t) let the contents of the
register stack be of the form ατ = 〈α0 , � , αk− 1 , ρ(τ) , � 〉 for fixed α0 , � , αk− 1 and variab le ρ(τ) 6
αk− 1 . Assume that the sequence ( ρ(τ) | τ ∈ [ t0 , t) ) is weakly monotonously increasing and that the
length of stack is equal to k + 1 cofinal ly often below t . Then at limit time t the content of stack
is of the form αt = 〈α0 , � , αk− 1 , ρ 〉 with ρ=

⋃
τ∈ [ t0 , t)

ρ( τ) .
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Stack recursion

value : =2 %% set value to undefi ned

Mai nLoop:

nu: =last( stack)

alpha: =llast( stack)

i f nu = alpha then

1 : do

remove_last_element_of ( stack)

value : =0 %% set value equal to 0

goto SubLoop

end_do

else

2 : do

stack: =stack + 1 %% push the ordi nal 0 onto the stack

goto Mai nLoop

end_do
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SubLoop:
nu: =last( stack)
alpha: =llast( stack)
i f alpha = UNDEFI NED then STOP
else
do
i f H( alpha, nu, value) =1 then

3: do
remove_last_element_of ( stack)
value : =1
goto SubLoop
end_do

else
4: do

stack: =stack + 2* ( 3* *y) %% push y+1
value : =2 %% set value to undefi ned
goto Mai nLoop
end_do

end_do
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Theorem 40. The above program P has the fol lowing properties

a ) IfP is in state Mai nLoop at time s with stack contents 〈α0 , α1 , � , αn− 1 〉 where n > 1 then it
wil l get into state SubLoop at a later time t with the same stack contents 〈α0 , α1 , α2 , � ,
αn− 1 〉 and the register value holding the value F (αn− 1 ) . Moreover in the time interval [ s , t)
the contents of stack wil l always be at least as b ig as 〈α0 , α1 , � , αn− 1 〉 .

b ) Let P be in state Mai nLoop at time s with stack contents α0 > α1 > α2 > � > αn− 1 where n >
1 . Define ᾱ = the minimal ordinal ν < αn− 1 such that H(αn− 1 , ν , F ( ν ) ) = 1 if this exists and
ᾱ = αn− 1 else . Then there is a strictly increasing sequence ( ti | i 6 ᾱ ) of times ti > t such that
P is in state Mai nLoop at time ti with stack contents 〈α0 , α1 , α2 , � , αn− 1 , i 〉 , and in every
time interval τ ∈ [ ti , ti+ 1 ) the stack contents are > 〈α0 , α1 , α2 , � , αn− 1 , i 〉 .

c ) IfP is in state Mai nLoop with stack contents α then it wil l later stop with stack content α
and the register value holding the value F (α) . Hence the function F is ordinal register com-
putab le .
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A recursive truth predicate

Consider a language LR appropriate for first-order structures of the form

(α , < , G , R) .

The language has atomic formulas t1 ≡ t2 , t1 < t2 , Ġ ( t1 , t2 , t3) and Ṙ ( t1 ) . If ϕ and ψ are ( com-
pound) formulas of the language and t is a term then

¬ϕ , ( ϕ ∨ ψ) , and ∃vn < t ϕ

are also formulas.
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We arrange a coding by ordinals such that a bounded existential quantification ∃vn < cξ ϕ is coded
by a larger ordinal than each of its instances ϕ cζ

vn
with ζ < ξ :

ϕ
cζ
vn

< ( ∃vn < cξ ϕ) .

The satisfaction relation

(α , < , G , R) � ϕ

This is equivalent to

( ϕ , < , G , R) � ϕ.
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Definition 41 . Define a bounded truth predicate T ⊆ Ord over the ordinals recursively by

T(α) iff α is a bounded LT- sentence and (α , < , G , T ∩ α) � α.

The characteristic function χT of T can be defined according to the recursion scheme

χT(α) =

{
1 iff ∃ν < α H(α , ν , χT( ν ) ) = 1
0 else

where

H(α , ν , χ) = 1 iff α is an LT-sentence and

( ∃ ξ , ζ < α (α = cξ≡ cζ ∧ ξ = ζ )

or ∃ ξ , ζ < α (α = cξ < cζ ∧ ξ < ζ )

or ∃ ξ , ζ , η < α (α = Ġ ( cξ , cζ , cη) ∧ η = G( ξ , ζ ) )

or ∃ ξ < α (α = Ṙ ( cξ) ∧ ν = ξ ∧ χ = 1 )

or ∃ϕ < α (α = ¬ϕ ∧ ν = ϕ ∧ χ = 0)

or ∃ϕ , ψ < α (α = ( ϕ ∨ ψ) ∧ ( ν = ϕ ∨ ν = ψ) ∧ χ = 1 )

or ∃n < ω∃ ξ < α∃ϕ < α (α = ∃vn < cξ ϕ ∧ ∃ ζ < ξ ν = ϕ
cζ
vn
∧ χ = 1 ) ) .

H and thus the bounded truth predicate T are ordinal computable.
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Computing a model of set theory

Definition 42. For ordinals µ and α define

T( µ, α) = { β < µ | T(G(α , β) ) = 1 } .

Set

S= {T( µ, α) | µ, α ∈ Ord} .
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Theorem 43. (Ord, S , < , = , ∈ , G) is a model of the theory SO.

Proof. Of axiom schemas ( 8) and ( 9) :

For θ ∈ Ord define

Sθ = {T( µ, α ) | µ, α ∈ θ } .

Then for any LSO-formula ϕ( v0 , � , vn− 1 ) and η ∈ Ord there is some limit ordinal θ > η such that

∀ξ0 , � , ξn− 1 ∈ θ ( (Ord, S , < , = , ∈ , G) � ϕ [ ξ0 , � , ξn− 1 ] iff ( θ , Sθ , < , = , ∈ , G) � ϕ [ ξ0 , � , ξn− 1 ] ) .

∀ξ0 , � , ξn− 1 ∈ θ ( (Ord, S , < , = , ∈ , G) � ϕ [ ξ0 , � , ξn− 1 ] iff ( θ , < , G ∩ θ3 , T) � ϕ∗ [ ξ0 , � , ξn− 1 ] ) .

So sets witnessing axioms ( 8) and ( 9) can be defined over ( θ , < , G ∩ θ3 , T) and are thus elements of
S. �
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Ordinal computability corresponds to constructibility

Kurt Gödel : The inner model L of constructib le sets

L =
⋃

α∈Ord

Lα

where L0 = ∅ , Lδ =
⋃

α< δ Lα for limit ordinals δ , and Lα+ 1 = the set of all sets which are first-order
definable in the structure (Lα , ∈ ) .

The model L is the ⊆ -smallest inner model of set theory.

Days in Logic 2006 , Coimbra: Ordinals, Computations, and Models of Set Theory



Theorem 44. A set x of ordinals is ordinal computab le if and only if it is an element of the con-
structib le universe L .

Proof. Let x ⊆ Ord be ordinal computable by the program P from the ordinals δ1 , � , δn− 1 , so that
for every α ∈ Ord:

P : (α , δ1 , � , δn− 1 , 0 , 0 , � ) � χx(α) .

By the simple nature of the computation procedure the same computation can be carried out inside
the inner model L , so that for every α ∈ Ord:

(L , ∈ ) � P : (α , δ1 , � , δn− 1 , 0 , 0 , � ) � χx(α) .

Hence χx ∈ L and x ∈ L .
Conversely consider x ∈ L . Since (Ord, S , < , = , ∈ , G) is a model of the theory SO there is an

inner model M of set theory such that

S= {z ⊆ Ord | z ∈M} .
Since L is the ⊆ -smallest inner model, L ⊆ M . Hence x ∈ M and x ∈ S. Let x = T( µ, α) . By the
computability of the truth predicate, x is ordinal register computable from the parameters µ and
α . �
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An application: the generalised continuum hypothesis in L

Theorem 45. The constructib le model (L , ∈ ) satisfies that every set of ordinals is ordinal com-
putab le .

Proof. Let x ∈ L , x ⊆ Ord, let P be a program and δ1 , � , δn− 1 ∈ Ord such that for every α ∈ Ord:

P : (α , δ1 , � , δn− 1 , 0 , 0 , � ) � χx(α) .

The same computation can be carried out inside the inner model L :

(L , ∈ ) � P : (α , δ1 , � , δn− 1 , 0 , 0 , � ) � χx(α) .

So in L , x is ordinal computable. �
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Theorem 46. Assume that every set of ordinals is ordinal computab le . Then:

a ) Let κ > ω be an infinite ordinal and x ⊆ κ . Then there are ordinals α1 , � , αn− 1 < κ+ such that
x is ordinal computab le from the parameters α1 , � , αn− 1 .

b ) Let κ > ω be infinite . Then card(P(κ ) ) = κ+ .

c ) The generalised continuum hypothesis GCH holds.

Proof. a) Take a program P and α1
′ , � , αn− 1

′ ∈ Ord such that for every α ∈ Ord:

P : (α , α1
′ , � , αn− 1

′ , 0 , 0 , � ) � χx(α) .

Let θ be an upper bound for the lengths of these computations for α < κ . Take a transitive ZF− -
model (M, ∈ ) such that α1

′ , � , αn− 1
′ , θ , κ , x ∈ M . Since ordinal computations are absolute for models

of set theory, for all α < κ :

(M, ∈ ) � P : (α , α1
′ , � , αn− 1

′ , 0 , 0 , � ) � χx(α) .
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The downward Löwenheim -Skolem theorem and the Mostowski isomorphism theorem yield an
elementary embedding

π : (M̄ , ∈ ) → (M, ∈ )

such that M̄ is transitive, card( M̄ ) = κ and {α1
′ , � , αn− 1

′ , θ , κ , x } ∪ κ ⊆ π ′′M̄ . Let π(α1 ) = α1
′ , � ,

π(αn− 1
′ ) = αn− 1 . Then α1 , � , αn− 1 < κ+ since card(M̄ ) < κ+ . Observe that π(x ) = x . Since π is ele-

mentary (M̄ , ∈ ) satisfies for α < κ that

(M̄ , ∈ ) � P : (α , α1 , � , αn− 1 , 0 , 0 , � ) � χx(α ) .

By the absoluteness of ordinal computations between M̄ and V

P : (α , α1 , � , αn− 1 , 0 , 0 , � ) � χx(α)

for α < κ . Thus x is ordinal computable from the parameters α1 , � , αn− 1 < κ+ . �
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