Second Order Arithmetic, Topological Regularity Properties, and Zermelo-Fraenkel Set Theory

by Ioanna Dimitriou, Peter Koepke and Michael MöLlerfeld
Bonn and Wolfsburg, Germany

June 7, 2007

Theorem. The following theories are equiconsistent

- ZFC
- Full second order arithmetic (SOA) + every uncountable Π_{1}^{1}-set of reals has a perfect subset ($\Pi_{1}^{1}-\mathrm{PSP}$)
- $\mathrm{SOA}+$ every projective set of reals is LEBESGUE-measurable, has the property of BAIRE and, if uncountable, has a non-empty perfect subset

These equivalences were presented at the 2003 Helsinki Logic colloquium. The first equivalence is also described in a note by Dmytro Taranovsky, MIT, of 2004/5.

Ideas:

- If V is a transitive model of ZFC, then $\infty=\operatorname{Ord} \cap V$ can be viewed as an inaccessible cardinal. Levy collapse ∞ to \aleph_{1} in a class generic extension $V[G]$. In $V[G]$, every projective set of reals has strong topological regularity properties (LEBESGUE-measurability, BAIRE-measurability, perfect subset property). $V[G]$ is a model of full second order arithmetic SOA.
- Let W be a model of SOA + every uncountable Π_{1}^{1}-set of reals has a perfect subset. Using techniques of Specker, $\aleph_{1}=\infty$ is inaccessible in L. Hence $L=L_{\infty}$ is a model of ZFC.

Issues:

- Class-sized Levy-collapse; can Solovay's analysis be carried out?
- Descriptive set theory in SOA.
- Building L in SOA.

Second order arithmetic SOA

- SOA formalises natural numbers as first order objects and real numbers (i.e., sets of natural numbers) as second order objects (D. Hilbert, P. Bernays).
- "Core mathematics" can be carried out in SOA (D. Hilbert, P. Bernays).
- Reverse mathematics: fundamental theorems of mathematics are "equivalent" to subsystems of SOA (H. Friedman, S. Simpson, ...).
- We consider supersystems of SOA, but we can use techniques from Simpson.

The axioms of SOA: Basic axioms, and

- induction: $\forall X((0 \in X \wedge \forall x(x \in X \rightarrow x+1 \in X)) \rightarrow \forall x x \in X)$.
- comprehension: for every formula $\varphi(x)$ postulate

$$
\exists X \forall x(x \in X \leftrightarrow \varphi(x)) .
$$

- definable choice: for every formula $\varphi(x, X)$ postulate

$$
\forall x \exists X \varphi(x, X) \rightarrow \exists Z \forall x \varphi\left(x,(Z)_{x}\right)
$$

where $(Z)_{x}=\{y \mid(x, y) \in Z\}$.

Descriptive set theory in SOA

- "Set of reals" \mathcal{X} means definable, or projective set of reals.
- \mathcal{X} is countable iff

$$
\exists X \forall Y\left(Y \in \mathcal{X} \rightarrow \exists x Y=(X)_{x}\right)
$$

where $(X)_{x}=\{y \mid(x, y) \in X\}$.

- The theory of arithmetical transfinite recursion ATR_{0} proves the Lebesgue measurability of every Borel set of reals (coded in SAO by a Borel code) (X. Yu, Annals of Pure and Applied Logic, 1993).

Descriptive set theory in SOA

- The perfect set theorem: "every uncountable $\boldsymbol{\Sigma}_{1}^{1}$-code has a non-empty perfect subset" is equivalent to arithmetical transfinite recursion ATR_{0} over the base theory $\mathrm{ACA}_{0}(\mathrm{St}$. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, Theorem V.5.5).
- $\quad \Sigma_{1}^{1}$-bounding: if \mathcal{C} is a Σ_{1}^{1}-class of reals coding well-orders then the order-types of those well-orders are bounded by a countable ordinal.

Kondo-Addison uniformization in SOA

- Simpson, VI.2.6: for every Π_{1}^{1}-formula $\varphi(X, Y)$ there is a Π_{1}^{1}-formula $\psi(X, Y)$ such that
- $\psi(X, Y) \rightarrow \varphi(X, Y)$
- $\psi(X, Y) \wedge \psi(X, Y) \rightarrow Y=Y^{\prime}$
- $\quad \exists Y \varphi(X, Y) \rightarrow \exists Y \psi(X, Y)$

Perfect subset properties (PSP) in SOA

- $\quad \boldsymbol{\Pi}_{1}^{1}$-PSP implies $\boldsymbol{\Sigma}_{2}^{1}$-PSP

Set theory in SOA

- The theories SOA and $\mathrm{ZFC}^{-}+$every set is countable interpret each other.
- In $\mathrm{ZFC}^{-},(\omega, \ldots, \mathbb{R})$ is a model of SOA.
- In SOA, let \mathcal{T} be the set of reals which code well-founded extensional relations on ω; view such a relation as a transitive set with 0 as a distinguished element, and define an $\in-$ relation E on \mathcal{T}. Then (\mathcal{T}, E) is a model of $\mathrm{ZFC}^{-}+$every set is countable.
- These two model constructions are canonically inverse to each other.

Constructible sets in SOA

- Inside (\mathcal{T}, E) define GöDEL's model L of constructible sets.
- $\quad L \vDash \mathrm{ZFC}^{-}$.
- For a real $x, x \in L$ is uniformly Σ_{2}^{1}.
- For constructible reals x, y the constructible well-order $x<_{L} y$ of L is uniformly Δ_{2}^{1}.
Σ_{2}^{1}-PSP implies the power set axiom in L
- Suffices: $\forall \alpha \exists \beta \mathcal{P}(\alpha) \cap L \subseteq L_{\beta}$

Define $\mathcal{B}=\{X \mid X$ codes a wellorder of successor type \wedge no $X^{\prime}<_{L} X$ is isomorphic to $X \wedge$ $\exists Y Y$ codes the constructible level $L_{\operatorname{otp}(X)}$ $\left.\wedge \mathcal{P}(\alpha) \cap L_{\mathrm{otp}(X)} \nsubseteq L_{\mathrm{otp}(X)-1}\right\}$

- \mathcal{B} is Σ_{2}^{1} in a code for the ordinal α.
- \mathcal{B} is countable: assume not. By $\boldsymbol{\Sigma}_{2}^{1}$-PSP there is a perfect subset $\mathcal{C} \subseteq \mathcal{B} . \mathcal{C}$ is an unbounded Σ_{1}^{1} set of wellorders, contradicting the bounding theorem.

Con(SOA $+\Pi_{1}^{1}$-PSP) implies Con(ZFC)

- SOA $+\Pi_{1}^{1}$-PSP implies $(\mathrm{ZFC})^{L}$.

Levy collapsing the universe

- Let $(V, \in) \vDash \mathrm{ZFC}, \infty=V \cap \operatorname{Ord}$
- Extend V to $V[G]$ by class forcing with

$$
\begin{aligned}
\operatorname{Coll}\left(\infty, \aleph_{1}\right)=\{p \mid & p: \operatorname{dom}(p) \rightarrow \infty, \operatorname{dom}(p) \subseteq \infty \times \omega \\
& p \text { finite, } \forall(\alpha, n) \in \operatorname{dom}(p) p(\alpha, n)<\alpha\}
\end{aligned}
$$

- $\operatorname{Coll}\left(\infty, \aleph_{1}\right)$ is pretame, hence
- $V[G] \vDash \mathrm{ZFC}^{-}+$every set is countable
- $\left(\omega, \mathbb{R}^{V[G]}\right) \vDash \mathrm{SOA}$

Π_{1}^{1}-PSP in $V[G]$

- $G \upharpoonright(\alpha \times \omega)$ is $\operatorname{Coll}\left(\alpha, \aleph_{1}\right)$-generic over V.
- $V[G]=\bigcup_{\alpha<\infty} V[G \upharpoonright(\alpha \times \omega)]$
- Let $X \in \mathbb{R}^{V[G]}$, say $X \in \mathbb{R}^{V[G \upharpoonright(\alpha \times \omega)]}$. Then $L[X] \subseteq V[G \upharpoonright(\alpha \times$ $\omega)]$ and since $V[G \upharpoonright(\alpha \times \omega)]$ satisfies the power set axiom

$$
\mathbb{R} \cap L[X] \subseteq \mathbb{R} \cap V[G \upharpoonright(\alpha \times \omega)] \in V[G]
$$

- Hence in $V[G]$, there are only countably reals constructible from X. This implies Π_{1}^{1}-PSP in the parameter X.

Con(ZFC) implies $\mathrm{Con}\left(\mathrm{SOA}+\Pi_{1}^{1}-\mathrm{PSP}\right)$

- $V[G] \vDash \mathrm{ZFC}^{-}+$every set is countable $+\Pi_{1}^{1}$-PSP

Shoenfield absoluteness in SOA

- Let $\varphi(X)$ be Σ_{2}^{1}. Then

$$
\varphi(X) \leftrightarrow L[X] \vDash \varphi(X)
$$

An application

- Assume $\mathrm{SOA}+\Pi_{1}^{1}$-PSP
- Let $\forall X \exists Y \varphi(X, Y)$ be $\Pi_{4}^{1}, \varphi \Pi_{2}^{1}$, and $\mathrm{ZFC} \vdash \forall X \exists Y \varphi(X, Y)$
- Then $\forall X \exists Y \varphi(X, Y)$ holds (in SOA $+\Pi_{1}^{1}-\mathrm{PSP}$). Proof. Let $X_{0} \in \mathbb{R} . L\left[X_{0}\right] \vDash$ ZFC. $L\left[X_{0}\right] \vDash \forall X \exists Y \varphi(X, Y)$. Take $Y_{0} \in L\left[X_{0}\right]$ such that $L\left[X_{0}\right] \vDash \varphi\left(X_{0}, Y_{0}\right)$. By absoluteness, $\varphi\left(X_{0}, Y_{0}\right)$. Thus $\forall X \exists Y \varphi(X, Y)$.
- Hence SOA $+\Pi_{1}^{1}$-PSP implies Borel determinacy.

Further results

- The Levy collapse of the universe yields full topological regularity, i.e., every projective set of reals is Lebesguemeasurable, has the property of Baire and, if uncountable, has a non-empty perfect subset

