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Theorem. The following theories are equiconsistent
o ZFC

e Full second order arithmetic (SOA) + every uncountable
[1i-set of reals has a perfect subset (I} — PSP)

e SOA + every projective set of reals 1s LEBESGUE-measur-
able, has the property of BAIRE and, if uncountable, has a
non-empty perfect subset

These equivalences were presented at the 2003 Helsinki Logic collo-
quium. The first equivalence is also described in a note by
DMYTRO TARANOVSKY, MIT, of 2004/5.



Ideas:

If V' is a transitive model of ZFC, then co=0rd NV can be
viewed as an inaccesstble cardinal. LEVY collapse oo to N
in a class generic extension V|G]. In V|G|, every projective
set of reals has strong topological regularity properties
(LEBESGUE-measurability, BAIRE-measurability, perfect

subset property). V[G] is a model of full second order arith-
metic SOA.

Let W be a model of SOA + every uncountable Ilj-set of
reals has a perfect subset. Using techniques of SPECKER,

N; = oo 1s inaccessible in L. Hence L = L., is a model of
ZFC.



Issues:

e (llass-sized LEVY-collapse; can SOLOVAY'’s analysis be car-
ried out?

e Descriptive set theory in SOA.

e Building L in SOA.



Second order arithmetic SOA

e SOA formalises natural numbers as first order objects and
real numbers (i.e., sets of natural numbers) as second order
objects (D. HILBERT, P. BERNAYS).

e "Core mathematics” can be carried out in SOA (D.
HILBERT, P. BERNAYS).

o Reverse mathematics: fundamental theorems of mathe-
matics are ‘“equivalent” to subsystems of SOA (H.
FRIEDMAN, S. SIMPSON, ...).

e We consider supersystems of SOA, but we can use tech-
niques from SIMPSON.



The axioms of SOA: Basic axioms, and
e nduction: VX ((0e X AVz(reX—ar+1€X))-VerreX).

e comprehension: for every formula () postulate

AXVz(x e X « p(x)).
e definable choice: for every formula (x, X) postulate
VedXop(x, X)—3ZVxp(x,(Z))

where (Z),={y|(z,y) € Z}.



Descriptive set theory in SOA
e “Set of reals” X means definable, or projective set of reals.

e X is countable ift

IXVY (Y €X—TaY =(X),)

where (X),={yl|(zx,y) € X }.

e The theory of arithmetical transfinite recursion ATR
proves the LEBESGUE measurability of every BOREL set of
reals (coded in SAO by a BOREL code) (X. YU, Annals of
Pure and Applied Logic, 1993).



Descriptive set theory in SOA

The perfect set theorem: “every uncountable ¥i-code has a
non-empty perfect subset” is equivalent to arithmetical
transfinite recursion ATR( over the base theory ACA, (ST.
SIMPSON, Subsystems of Second Order Arithmetic,
Springer-Verlag, Theorem V.5.5).

>i-bounding: if C is a Xi-class of reals coding well-orders
then the order-types of those well-orders are bounded by a
countable ordinal.



KONDO-ADDISON uniformization in SOA

e SIMPSON, VI.2.6: for every Ilj-formula ¢(X, Y) there is a
[T3-formula (X ,Y’) such that

o YX,Y)—p(X,Y)
e YX,Y)ANYX,Y)—=Y=Y'

o IV(X,Y)—IVY(X,Y)

Y
p(X,Y)

<

X




Perfect subset properties (PSP) in SOA

e II|-PSP implies ¥3-PSP




Set theory in SOA

e The theories SOA and ZFC™ + every set is countable inter-
pret each other.

e InZFC™, (w,...,R) is a model of SOA.

e In SOA, let 7 be the set of reals which code well-founded
extensional relations on w; view such a relation as a transi-
tive set with 0 as a distinguished element, and define an € -
relation £ on 7. Then (7, F) is a model of ZFC™ + every
set is countable.

e These two model constructions are canonically inverse to
each other.



Constructible sets in SOA
e Inside (7, F) define GODEL’s model L of constructible sets.
o LFZFC.
e For areal z, x € L is uniformly ¥3.

e For constructible reals x, y the constructible well-order
z <py of L is uniformly A3 .



>1-PSP implies the power set axiom in L

e Suffices: Vadf P(a)NL C Ly

Define B={X | X codes a wellorder of successor type A
no X' <y X is isomorphic to X A
JY'Y codes the constructible level L, x)

A P(@) N Lotp(x) € Lotp(x)—1

e [Bis Y3 in a code for the ordinal a.

e 13 is countable: assume not. By X3-PSP there is a perfect

subset C C B. C is an unbounded X1 set of wellorders, con-
tradicting the bounding theorem.



Con(SOA -+ IT{-PSP) implies Con(ZFC)

e SOA +II{-PSP implies (ZFC)~.



LEVY collapsing the universe
e Let (V,€)EZFC, co=VNO0rd

e Extend V to V|G] by class forcing with

Coll(oco, Ny)={p | p:dom(p)— oco,dom(p) C oo X w,
p finite, V(a,n) € dom(p) p(a, n) < a}

e Coll(oo,Ny) is pretame, hence
e VI|G|FZFC™ + every set is countable

e (w,RVI¢)ESOA



IT{-PSP in V|[G]

G | (a xw) is Coll(a, Ny)-generic over V.

VIGI=U,co VIG T (@ xw)]

o<<00

Let X e RV, say X e RVII@x) Then L[X] CV[G | (o x
w)] and since V|G [ (a X w)] satisfies the power set axiom

RNLIX|CRNVI|G | (axw) eV|G]

Hence in V|G|, there are only countably reals constructible
from X. This implies [1{-PSP in the parameter X .



Con(ZFC) implies Con(SOA + IT;-PSP)

e V[G]FZFC™ + every set is countable + IT{-PSP



SHOENFIELD absoluteness in SOA
o Let ¢(X) be ¥5. Then

p(X) = LIX]F ¢(X)



An application
e Assume SOA +IT}-PSP
e Let YX3IYp(X,Y) bell}, ¢ I3, and ZFCHVXIYp(X,Y)
e Then VX3Yp(X,Y) holds (in SOA + IT{-PSP).
Proof . Let XoeR. L[ Xy FZFC. LX) FVX3Yp(X,Y).
Take Y) € L[ X] such that L|X|E ¢(X,Y)). By absoluteness,
©(Xo, Yp). Thus VXIY(X,Y).

e Hence SOA +IT}-PSP implies BOREL determinacy.



Further results

e The LEVY collapse of the universe yields full topological
reqularity, i.e., every projective set of reals is LEBESGUE-
measurable, has the property of BAIRE and, if uncountable,
has a non-empty perfect subset



