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Theorem. The following theories are equiconsistent

• ZFC

• Full second order arithmetic (SOA) + every uncountable
Π 1

1 -set of reals has a perfect subset (Π 1
1 − PSP)

• SOA + every projective set of reals is Lebesgue -measur-
able , has the property of Baire and, if uncountable, has a
non-empty perfect subset

These equivalences were presented at the 2003 Helsinki Logic collo-
quium. The first equivalence is also described in a note by
Dmytro Taranovsky , MIT, of 2004/5.
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Ideas:

• If V is a transitive model of ZFC, then ∞ = Ord ∩ V can be
viewed as an inaccessible cardinal. Levy collapse ∞ to ℵ 1

in a class generic extension V [G ] . In V [G ] , every projective
set of reals has strong topological regularity properties
(Lebesgue -measurability, Baire -measurability, perfect
subset property) . V [G ] is a model of full second order arith-
metic SOA.

• Let W be a model of SOA + every uncountable Π 1
1 -set of

reals has a perfect subset. Using techniques of Specker ,
ℵ 1 = ∞ is inaccessible in L . Hence L = L∞ is a model of
ZFC.
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Issues:

• Class-sized Levy-collapse; can Solovay ’ s analysis be car-
ried out?

• Descriptive set theory in SOA.

• Building L in SOA.
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Second order arithmetic SOA

• SOA formalises natural numbers as first order objects and
real numbers ( i. e. , sets of natural numbers) as second order
objects (D. Hilbert , P. Bernays ) .

• ”Core mathematics” can be carried out in SOA (D.
Hilbert , P. Bernays ) .

• Reverse mathematics: fundamental theorems of mathe-
matics are “equivalent” to subsystems of SOA (H.
Friedman , S. Simpson , . . . ) .

• We consider supersystems of SOA, but we can use tech-
niques from Simpson .
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The axioms of SOA: Basic axioms, and

• induction : ∀X ( ( 0 ∈ X ∧ ∀x(x ∈ X→ x + 1 ∈ X) ) →∀x x ∈ X) .

• comprehension : for every formula ϕ (x) postulate

∃X∀x (x ∈ X↔ ϕ (x) ) .

• definable choice : for every formula ϕ (x , X) postulate

∀x ∃Xϕ (x , X ) → ∃Z∀xϕ (x , (Z ) x)

where (Z ) x = { y | (x , y) ∈ Z } .
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Descriptive set theory in SOA

• “Set of reals” X means definable, or projective set of reals.

• X is countable iff

∃X∀Y (Y ∈ X→ ∃xY = (X) x)

where (X) x = { y | (x , y) ∈ X } .

• The theory of arithmetical transfinite recursion ATR0

proves the Lebesgue measurability of every Borel set of
reals ( coded in SAO by a Borel code) (X. Yu , Annals of
Pure and Applied Logic , 1 993) .
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Descriptive set theory in SOA

• The perfect set theorem: “every uncountable Σ 1
1 -code has a

non-empty perfect subset” is equivalent to arithmetical
transfinite recursion ATR0 over the base theory ACA0 (St .
Simpson , Subsystems of Second Order Arithmetic ,
Springer-Verlag, Theorem V. 5. 5) .

• Σ 1
1 -bounding: if C is a Σ 1

1 -class of reals coding well-orders
then the order-types of those well-orders are bounded by a
countable ordinal.
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Kondo-Addison uniformization in SOA

• Simpson , VI. 2 . 6: for every Π 1
1 -formula ϕ(X, Y) there is a

Π 1
1 -formula ψ(X, Y) such that

• ψ(X, Y) → ϕ (X, Y)

• ψ(X, Y) ∧ ψ(X, Y) → Y = Y ′

• ∃Yϕ (X, Y) → ∃Yψ (X, Y)

ϕ(X, Y)

ψ(X, Y)

X

Y
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Perfect subset properties (PSP) in SOA

• Π1
1 -PSP implies Σ 2

1 -PSP

ϕ(X, Y) Π 1
1

ψ(X, Y) Π 1
1

X

Y

∃Yϕ (X, Y) Σ 2
1
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Set theory in SOA

• The theories SOA and ZFC− + every set is countable inter-
pret each other.

• In ZFC− , (ω, � , R) is a model of SOA.

• In SOA, let T be the set of reals which code well-founded
extensional relations on ω ; view such a relation as a transi-
tive set with 0 as a distinguished element, and define an ∈ -
relation E on T. Then (T , E) is a model of ZFC− + every
set is countable.

• These two model constructions are canonically inverse to
each other.
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Constructible sets in SOA

• Inside (T , E ) define Gödel ’ s model L of constructible sets.

• L � ZFC− .

• For a real x , x ∈ L is uniformly Σ 2
1 .

• For constructible reals x , y the constructible well-order
x < L y of L is uniformly ∆2

1 .

1 2



Σ 2
1 -PSP implies the power set axiom in L

• Suffices: ∀α∃β P(α) ∩ L ⊆ Lβ

Define B= {X | X codes a wellorder of successor type ∧
no X ′ < LX is isomorphic to X ∧
∃YY codes the constructible level Lotp(X )

∧ P(α) ∩ Lotp(X ) * Lotp(X )− 1 }

• B is Σ 2
1 in a code for the ordinal α .

• B is countable: assume not. By Σ 2
1 -PSP there is a perfect

subset C ⊆ B. C is an unbounded Σ 1
1 set of wellorders, con-

tradicting the bounding theorem.
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Con(SOA+ Π1
1 -PSP) implies Con(ZFC)

• SOA + Π1
1 -PSP implies (ZFC) L .
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Levy collapsing the universe

• Let (V, ∈ ) � ZFC, ∞ = V ∩ Ord

• Extend V to V [G ] by class forcing with

Coll(∞ , ℵ 1 ) = { p | p: dom( p) →∞ , dom( p) ⊆ ∞ × ω,
p finite, ∀(α , n) ∈ dom( p) p(α , n) < α }

• Coll(∞ , ℵ 1 ) is pretame , hence

• V [G ] � ZFC− + every set is countable

• (ω, RV [G ] ) � SOA
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Π1
1 -PSP in V [G ]

• G � (α × ω) is Coll(α , ℵ 1 ) -generic over V .

• V [G ] =
⋃

α<∞ V [G � (α × ω) ]

• Let X ∈ RV [G ] , say X ∈ RV [G � (α× ω) ] . Then L [X ] ⊆ V [G � (α ×
ω) ] and since V [G � (α × ω) ] satisfies the power set axiom

R∩ L [X ] ⊆ R∩ V [G � (α × ω) ] ∈ V [G ]

• Hence in V [G ] , there are only countably reals constructible
from X . This implies Π 1

1 -PSP in the parameter X .
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Con(ZFC) implies Con(SOA + Π1
1 -PSP)

• V [G ] � ZFC− + every set is countable + Π1
1 -PSP
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Shoenfield absoluteness in SOA

• Let ϕ (X) be Σ 2
1 . Then

ϕ (X) ↔ L [X ] � ϕ(X)
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An application

• Assume SOA + Π1
1 -PSP

• Let ∀X∃Yϕ (X, Y) be Π 4
1 , ϕ Π 2

1 , and ZFC ` ∀X∃Yϕ (X, Y)

• Then ∀X∃Yϕ (X, Y) holds ( in SOA + Π1
1 -PSP) .

Proof. Let X0 ∈ R . L [X0 ] � ZFC. L [X0 ] � ∀X∃Yϕ (X, Y) .
Take Y0 ∈ L [X0 ] such that L [X0 ] � ϕ (X0 , Y0) . By absoluteness,
ϕ (X0 , Y0) . Thus ∀X∃Yϕ (X, Y) .

• Hence SOA + Π1
1 -PSP implies Borel determinacy.
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Further results

• The Levy collapse of the universe yields full topological
regularity , i. e. , every projective set of reals is Lebesgue -
measurable, has the property of Baire and, if uncountable,
has a non-empty perfect subset
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