Second Order Arithmetic, Topological Regularity Properties, and Zermelo-Fraenkel Set Theory

BY IOANNA DIMITRIOU, PETER KOEPKE AND MICHAEL MÖLLERFELD

Bonn and Wolfsburg, Germany

June 7, 2007

Theorem. The following theories are equiconsistent

- ZFC
- Full second order arithmetic (SOA) + every uncountable Π_1^1 -set of reals has a perfect subset (Π_1^1 -PSP)
- SOA + every projective set of reals is Lebesgue-measurable, has the property of Baire and, if uncountable, has a non-empty perfect subset

These equivalences were presented at the 2003 Helsinki Logic colloquium. The first equivalence is also described in a note by DMYTRO TARANOVSKY, MIT, of 2004/5.

Ideas:

- If V is a transitive model of ZFC, then $\infty = \text{Ord} \cap V$ can be viewed as an *inaccessible* cardinal. Levy collapse ∞ to \aleph_1 in a class generic extension V[G]. In V[G], every projective set of reals has strong topological regularity properties (Lebesgue-measurability, Baire-measurability, perfect subset property). V[G] is a model of full second order arithmetic SOA.
- Let W be a model of SOA + every uncountable Π_1^1 -set of reals has a perfect subset. Using techniques of SPECKER, $\aleph_1 = \infty$ is inaccessible in L. Hence $L = L_\infty$ is a model of ZFC.

Issues:

- Class-sized Levy-collapse; can Solovay's analysis be carried out?
- Descriptive set theory in SOA.
- Building L in SOA.

Second order arithmetic SOA

- SOA formalises natural numbers as first order objects and real numbers (i.e., sets of natural numbers) as second order objects (D. Hilbert, P. Bernays).
- "Core mathematics" can be carried out in SOA (D. HILBERT, P. BERNAYS).
- Reverse mathematics: fundamental theorems of mathematics are "equivalent" to *subsystems* of SOA (H. FRIEDMAN, S. SIMPSON, ...).
- We consider *supersystems* of SOA, but we can use techniques from SIMPSON.

The axioms of SOA: Basic axioms, and

- induction: $\forall X ((0 \in X \land \forall x (x \in X \rightarrow x + 1 \in X)) \rightarrow \forall x \ x \in X)$.
- comprehension: for every formula $\varphi(x)$ postulate

$$\exists X \, \forall x \, (x \in X \leftrightarrow \varphi(x)).$$

• definable choice: for every formula $\varphi(x,X)$ postulate

$$\forall x \exists X \varphi(x, X) \rightarrow \exists Z \forall x \varphi(x, (Z)_x)$$

where $(Z)_x = \{y | (x, y) \in Z\}.$

Descriptive set theory in SOA

- "Set of reals" \mathcal{X} means definable, or projective set of reals.
- \bullet \mathcal{X} is countable iff

$$\exists X \forall Y (Y \in \mathcal{X} \to \exists x Y = (X)_x)$$

where
$$(X)_x = \{y | (x, y) \in X\}.$$

• The theory of arithmetical transfinite recursion ATR₀ proves the Lebesgue measurability of every Borel set of reals (coded in SAO by a Borel code) (X. Yu, Annals of Pure and Applied Logic, 1993).

Descriptive set theory in SOA

- The perfect set theorem: "every uncountable Σ_1^1 -code has a non-empty perfect subset" is equivalent to arithmetical transfinite recursion ATR₀ over the base theory ACA₀ (ST. SIMPSON, Subsystems of Second Order Arithmetic, Springer-Verlag, Theorem V.5.5).
- Σ_1^1 -bounding: if \mathcal{C} is a Σ_1^1 -class of reals coding well-orders then the order-types of those well-orders are bounded by a countable ordinal.

KONDO-ADDISON uniformization in SOA

- SIMPSON, VI.2.6: for every Π_1^1 -formula $\varphi(X, Y)$ there is a Π_1^1 -formula $\psi(X, Y)$ such that
 - \bullet $\psi(X,Y) \rightarrow \varphi(X,Y)$
 - $\bullet \quad \psi(X,Y) \wedge \psi(X,Y) \longrightarrow Y = Y'$
 - $\bullet \quad \exists Y \varphi(X,Y) \rightarrow \exists Y \psi(X,Y)$

Perfect subset properties (PSP) in SOA

• Π_1^1 -PSP implies Σ_2^1 -PSP

Set theory in SOA

- The theories SOA and ZFC⁻ + every set is countable interpret each other.
- In ZFC⁻, $(\omega, ..., \mathbb{R})$ is a model of SOA.
- In SOA, let \mathcal{T} be the set of reals which code well-founded extensional relations on ω ; view such a relation as a transitive set with 0 as a distinguished element, and define an \in -relation E on \mathcal{T} . Then (\mathcal{T}, E) is a model of ZFC⁻ + every set is countable.
- These two model constructions are canonically inverse to each other.

Constructible sets in SOA

- Inside (\mathcal{T}, E) define Gödel's model L of constructible sets.
- $L \models \mathbf{ZFC}^-$.
- For a real $x, x \in L$ is uniformly Σ_2^1 .
- For constructible reals x, y the constructible well-order $x <_L y$ of L is uniformly Δ_2^1 .

Σ_2^1 -PSP implies the power set axiom in L

• Suffices: $\forall \alpha \exists \beta \, \mathcal{P}(\alpha) \cap L \subseteq L_{\beta}$

Define $\mathcal{B} = \{X \mid X \text{ codes a wellorder of successor type } \land$ no $X' <_L X$ is isomorphic to $X \land$ $\exists YY \text{ codes the constructible level } L_{\text{otp}(X)} \land \mathcal{P}(\alpha) \cap L_{\text{otp}(X)} \nsubseteq L_{\text{otp}(X)-1} \}$

- \mathcal{B} is Σ_2^1 in a code for the ordinal α .
- \mathcal{B} is countable: assume not. By Σ_2^1 -PSP there is a perfect subset $\mathcal{C} \subseteq \mathcal{B}$. \mathcal{C} is an unbounded Σ_1^1 set of wellorders, contradicting the bounding theorem.

 $Con(SOA + \Pi_1^1 - PSP)$ implies Con(ZFC)

• SOA + Π_1^1 -PSP implies (ZFC)^L.

Levy collapsing the universe

- Let $(V, \in) \models \mathsf{ZFC}, \infty = V \cap \mathsf{Ord}$
- Extend V to V[G] by class forcing with

$$\operatorname{Coll}(\infty, \aleph_1) = \{ p \mid p: \operatorname{dom}(p) \to \infty, \operatorname{dom}(p) \subseteq \infty \times \omega, \\ p \text{ finite}, \forall (\alpha, n) \in \operatorname{dom}(p) \ p(\alpha, n) < \alpha \}$$

- $Coll(\infty, \aleph_1)$ is pretame, hence
- $V[G] \models ZFC^- + \text{ every set is countable}$
- $(\omega, \mathbb{R}^{V[G]}) \models SOA$

Π_1^1 -PSP in V[G]

- $G \upharpoonright (\alpha \times \omega)$ is $Coll(\alpha, \aleph_1)$ -generic over V.
- $V[G] = \bigcup_{\alpha < \infty} V[G \upharpoonright (\alpha \times \omega)]$
- Let $X \in \mathbb{R}^{V[G]}$, say $X \in \mathbb{R}^{V[G \upharpoonright (\alpha \times \omega)]}$. Then $L[X] \subseteq V[G \upharpoonright (\alpha \times \omega)]$ and since $V[G \upharpoonright (\alpha \times \omega)]$ satisfies the power set axiom

$$\mathbb{R} \cap L[X] \subseteq \mathbb{R} \cap V[G \upharpoonright (\alpha \times \omega)] \in V[G]$$

• Hence in V[G], there are only countably reals constructible from X. This implies Π_1^1 -PSP in the parameter X.

Con(ZFC) implies $Con(SOA + \Pi_1^1 - PSP)$

• $V[G] \models ZFC^- + \text{ every set is countable } + \Pi_1^1 - PSP$

Shoenfield absoluteness in SOA

• Let $\varphi(X)$ be Σ_2^1 . Then

$$\varphi(X) \leftrightarrow L[X] \vDash \varphi(X)$$

An application

- Assume $SOA + \Pi_1^1$ -PSP
- Let $\forall X \exists Y \varphi(X, Y)$ be Π_4^1 , $\varphi \Pi_2^1$, and $\operatorname{ZFC} \vdash \forall X \exists Y \varphi(X, Y)$
- Then $\forall X \exists Y \varphi(X, Y)$ holds (in SOA + Π_1^1 -PSP). Proof. Let $X_0 \in \mathbb{R}$. $L[X_0] \vDash \operatorname{ZFC}$. $L[X_0] \vDash \forall X \exists Y \varphi(X, Y)$. Take $Y_0 \in L[X_0]$ such that $L[X_0] \vDash \varphi(X_0, Y_0)$. By absoluteness, $\varphi(X_0, Y_0)$. Thus $\forall X \exists Y \varphi(X, Y)$.
- Hence $SOA + \Pi_1^1$ -PSP implies BOREL determinacy.

Further results

• The Levy collapse of the universe yields full topological regularity, i.e., every projective set of reals is Lebesgue-measurable, has the property of Baire and, if uncountable, has a non-empty perfect subset