Sets in Prikry Extensions

BY PETER KOEPKE, BONN

Set Theory Meeting, ILLC Amsterdam 13.8.2007

Theorem 1. (Kanovei, K.,...) Let $M_0 \models U_0$ is a measure on κ_0 . Let C be a Prikry sequence for U_0 over M_0 . Then

$$\forall Z \subseteq \kappa_0, Z \in M_0[C] \exists C' \subseteq C M_0[Z] = M_0[C'].$$

Hence the constructibility degrees of subsets of κ_0 over the ground model M_0 are parametrized by $\mathcal{P}(\omega)/\text{fin}$.

Conjecture.

 $\forall Z \in M_0[C] \exists C' \subseteq C M_0[Z] = M_0[C'].$

1. Prikry forcing

Definition 2. *Prikry forcing* is the partial order (P, \leq) defined by $P = \{(a, A) | a \in [\kappa_0]^{<\omega}, A \in U_0, \max(a) < \min(A)\}$ and

 $(a, A) \leq (b, B)$ iff $a \setminus b \subseteq B \land A \subseteq B$.

If G is P-generic over M_0 then

$$C = \bigcup_{(a,A)\in G} a$$

is a **Prikry sequence** for U_0 , i.e.

$$\forall A \in \mathcal{P}(\kappa_0) \cap M_0 \ (A \in U_0 \leftrightarrow C \setminus A \text{ is finite}).$$

Proposition 3.

- a) $M_0[G] = M_0[C].$
- b) $V_{\kappa_0} \cap M_0 = V_{\kappa_0} \cap M_0[C].$
- c) Cardinals are absolute between M_0 and $M_0[C]$.
- d) C is cofinal in κ_0 of ordertype ω .

Theorem 4. (A.Dodd, R.B.Jensen) If a regular cardinal κ is turned into a singular cardinal of cofinality ω then κ is measurable in an inner model and there is a Prikry sequence for that measure.

2. Iterated Ultrapowers

Definition 5. Define the *iteration*

 $(M_m, U_m, \kappa_m, \pi_{mn})_{m \leqslant n \leqslant \omega}$

of (M_0, U_0) by recursion:

 $- \pi_{00} = id$

 $- \pi_{m,m+1}: M_m \to M_{m+1} = \text{Ult}(M_m, U_m) \text{ is the ultrapower of } M_m \text{ by } U_m$

$$- \qquad \pi_{i,m+1} = \begin{cases} \pi_{m,m+1} \circ \pi_{i,m} & \text{if } i \leq m \\ \text{id } if & i = m+1 \end{cases}$$

$$- U_{m+1} = \pi_{m,m+1}(U_m), \ \kappa_{n+1} = \pi_{m,m+1}(\kappa_m)$$

- M_{ω} , $(\pi_{m\omega})_{m < \omega}$ is the **transitive** direct limit of the system $(M_m, \pi_{mn})_{m \leq n < \omega}$

$$- U_{\omega} = \pi_{0\,\omega}(U_0), \ \kappa_{\omega} = \pi_{0\,\omega}(\kappa_0)$$

Proposition 6.

- a) $\pi_{m\omega} \upharpoonright \kappa_m = \mathrm{id}$
- b) $M_m = \{\pi_{0m}(f)(\kappa_0, ..., \kappa_{m-1}) | f \in M_0, f: \kappa_0^m \to M_0\}$
- c) $\forall A \in \mathcal{P}(\kappa_{\omega}) \cap M_{\omega} \ (A \in U_{\omega} \leftrightarrow \{\kappa_m | m < \omega\} \setminus A \text{ is finite}), \text{ i.e., } \{\kappa_m | m < \omega\}$ is a Prikry sequence for U_{ω} .

3. An Intersection Model

Set
$$M = M_{\omega}$$
, $\kappa = \kappa_{\omega}$, $U = U_{\omega}$, $D = \{\kappa_m | m < \omega\}$.

Definition 7. Define an intersection model by

$$N = \bigcap_{m < \omega} M_m$$

Proposition 8. The intersection model N equals M[D], the Prikry extension by D.

$$\forall Z \subseteq \kappa, Z \in M[D] \exists D' \subseteq D \ M[Z] = M[D']$$

Wellorder ascending sequences $\alpha_0 < ... < \alpha_{m-1}$ and $\beta_0 < ... < \beta_{n-1}$ lexicographically from the top: $(\alpha_0, ..., \alpha_{m-1}) \prec (\beta_0, ..., \beta_{n-1})$ iff there is some *i* such that

 $\alpha_{m-1} = \beta_{n-1}$, ..., $\alpha_{m-i} = \beta_{n-i}$, β_{n-i-1} exists, and if α_{n-i-1} exists, then $\alpha_{m-i-1} < \beta_{n-i-1}$.

Lemma 10. Let $u \in M_n$. Let $\alpha_0 < ... < \alpha_{m-1}$ be \prec -minimal such that there is $f \in M_0, f: \kappa_0^m \to M_0$ such that

$$u = \pi_{0n}(f)(\alpha_0, ..., \alpha_{m-1}).$$

Then $\{\alpha_0, ..., \alpha_{m-1}\} \subseteq \{\kappa_0, ..., \kappa_{n-1}\}.$ If $\alpha_0 < ... < \alpha_{m-1}$ is \prec -minimal such that

$$u = \pi_{0n}(f)(\alpha_0, \dots, \alpha_{m-1})$$

and if moreover $u \subseteq \kappa_n$ then $\alpha_0 < \ldots < \alpha_{m-1}$ is \prec -minimal such that

$$u = \pi_{0\omega}(f)(\alpha_0, \dots, \alpha_{m-1}) \cap \kappa_n.$$

Proof. Assume that $\{\alpha_0, ..., \alpha_{m-1}\} \not\subseteq \{\kappa_0, ..., \kappa_{n-1}\}$ and let *i* be maximal such that $\alpha_i \notin \{\kappa_0, ..., \kappa_{n-1}\}$. Let κ_l be minimal such that $\alpha_i < \kappa_l$. By the representation theorem there is some $g \in M_0$, $g: \kappa_0^l \to M_0$ such that

$$\alpha_i = \pi_{0l}(g)(\kappa_0, \dots, \kappa_{l-1}).$$

Then

$$\alpha_i = \pi_{0n}(g)(\kappa_0, \dots, \kappa_{l-1}).$$

Let $\beta_0 < \ldots < \beta_{r-1}$ enumerate

$$\{\kappa_0, ..., \kappa_{l-1}\} \cup \{\alpha_0, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_{m-1}\}.$$

Note that $(\beta_0, ..., \beta_{r-1}) \prec (\alpha_0, ..., \alpha_{m-1})$. Let

$$(\kappa_0, ..., \kappa_{l-1}) = (\beta_{j_0}, ..., \beta_{j_{l-1}})$$

and

$$(\alpha_0, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{m-1}) = (\beta_{k_0}, \dots, \beta_{k_{i-1}}, \beta_{k_{i+1}}, \dots, \beta_{k_{m-1}}).$$

Define $h: \kappa_0^r \to M_0$ by

$$h(\xi_0, \dots, \xi_{r-1}) = f(\xi_{k_0}, \dots, \xi_{k_{i-1}}, g(\xi_{j_0}, \dots, \xi_{j_{l-1}}), \xi_{k_{i+1}}, \dots, \xi_{k_{m-1}}).$$

Then

$$u = \pi_{0n}(f)(\alpha_0, ..., \alpha_{m-1})$$

= $\pi_{0n}(f)(\alpha_0, ..., \alpha_{i-1}, \pi_{0n}(g)(\kappa_0, ..., \kappa_{l-1}), \alpha_{i+1}, ..., \alpha_{m-1})$
= $\pi_{0n}(f)(\beta_{k_0}, ..., \beta_{k_{i-1}}, \pi_{0n}(g)(\beta_{j_0}, ..., \beta_{j_{l-1}}), \beta_{k_{i+1}}, ..., \beta_{k_{m-1}})$
= $\pi_{0n}(f)(\beta_0, ..., \beta_{r-1})$

contradicting the minimality of $(\alpha_0, ..., \alpha_{m-1})$.

Proof of Theorem 9.

For $Z \in M$ the theorem is obvious. So consider $Z \subseteq \kappa$, $Z \in M[D] \setminus M$.

Lemma 11. κ is singular in M[Z].

Proof. Assume not. For $m < \omega$ let

$$Z = \pi_{0m}(f_m)(\kappa_0, \dots, \kappa_{m-1}) \in M_m.$$

Then $Z \cap \kappa_m = \pi_{0m}(f_m)(\kappa_0, ..., \kappa_{m-1}) \cap \kappa_m$ and

$$Z \cap \kappa_m = \pi_{0\,\omega}(f_m)(\kappa_0, \dots, \kappa_{m-1}) \cap \kappa_m.$$

So in the model M[Z],

$$\forall \zeta < \kappa \exists m < \omega \exists \xi_0, \dots, \xi_{m-1} < \zeta \colon Z \cap \zeta = \pi_0 \omega(f_m)(\xi_0, \dots, \xi_{m-1}) \cap \zeta.$$

This defines **regressive** functions, and there are values m_0 and $\eta_0, ..., \eta_{m_0}$ such that for a stationary set $S \subseteq \kappa$

$$\forall \zeta \in S \ Z \cap \zeta = \pi_{0\omega}(f_{m_0})(\eta_0, \dots, \eta_{m_0-1}) \cap \zeta.$$

But then

$$Z = \pi_{0\,\omega}(f_{m_0})(\eta_0, ..., \eta_{m_0-1}) \in M.$$

Contradiction.

Lemma 12. In M[Z], there is an infinite subset $D_0 \subseteq D$ (which is cofinal in κ).

Proof. Let $\{\alpha_{\nu} | \nu < \gamma\} \in M[Z]$ be cofinal in κ where $\gamma < \kappa$. Without loss of generality, $\gamma < \kappa_0$.

Work in M_0 . For $\nu < \gamma$ consider the minimal κ_m such that $\alpha_{\nu} < \kappa_m$ and a \prec -minimal sequence $\vec{\kappa}_{\nu} \subseteq D$ such that for some f_{ν}

$$\alpha_{\nu} = \pi_{0\,m}(f_{\nu})(\vec{\kappa}_{\nu}).$$

Since $\gamma < \kappa_0$

$$(\pi_{0\omega}(f_{\nu})|\nu<\gamma) = \pi_{0\omega}((f_{\nu}|\nu<\gamma)) \in M$$

we can, in M[Z], define $\vec{\kappa}_{\nu}$ as the \prec -minimal sequence such that

 $\alpha_{\nu} = \pi_{0\,\omega}(f_{\nu})(\vec{\kappa}_{\nu}).$

Let $D_0 = \bigcup_{\nu < \gamma} \vec{\kappa}_{\nu} \in M[Z], D_0 \subseteq D$. If D_0 were finite then

$$\{\alpha_{\nu}|\nu < \gamma\} \subseteq \{\pi_{0\,\omega}(f_{\nu})(\vec{\kappa})|\nu < \gamma, \vec{\kappa} \subseteq D_0\} \in M$$

would make κ singular in M, contradiction.

Work in M_0 . Let $\lambda_0 < \lambda_1 < \dots$ enumerate D_0 . For $m < \omega$ let $\vec{\kappa}_m \subseteq D$ be \prec -minimal such that there is $f_m \in M_0, f_m: \kappa_0^{\text{length}(\vec{\kappa}_m)} \to M_0$ such that

$$Z \cap \lambda_m = \pi_0 \omega(f_m)(\vec{\kappa}_m) \cap \lambda_m. \tag{1}$$

Let $D' = D_0 \cup \bigcup_{m < \omega} \vec{\kappa}_m \subseteq D$. Observe that

$$(\pi_{0\omega}(f_m)|m<\omega) = \pi_{0\omega}((f_m|m<\omega)) \in M.$$
(2)

By (1) and (2), $Z \in M[D']$.

Conversely, $D_0 \in M[Z]$, and $(\vec{\kappa}_m | m < \omega)$ can be defined in M[Z] by: $\vec{\kappa}_m$ is \prec -minimal such that

$$Z \cap \lambda_m = \pi_0_{\omega}(f_m)(\vec{\kappa}_m) \cap \lambda_m.$$

Hence $D' \in M[Z]$. Thus M[Z] = M[D'].

Proof of Theorem 1.

We want to show that the top condition

$$(\emptyset, \kappa_0) \Vdash \Phi(\dot{C}) \equiv \forall Z \subseteq \kappa_0 \exists C' \subseteq \dot{C} \ M_0[Z] = M_0[C'],$$

Assume not, and let $M_0 \models (a, A) \Vdash \neg \Phi(\dot{C})$. By elementarity, $M \models (\pi_{0\omega}(a), \pi_{0\omega}(A)) \Vdash \neg \Phi(\dot{C})$. Let $\{\kappa_m | n \leq m < \omega\} \subseteq \pi_{0\omega}(A)$. Then $\pi_{0\omega}(a) \cup \{\kappa_m | n \leq m < \omega\}$ is a Prikry sequence for $\pi_{0\omega}(U_0)$ and

$$M[\pi_{0\,\omega}(a)\cup\{\kappa_m|n\leqslant m<\omega\}]$$

is a generic extension where $(\pi_{0\omega}(a), \pi_{0\omega}(A))$ is in the generic filter corresponding to $\pi_{0\omega}(a) \cup \{\kappa_m | n \leq m < \omega\}$. Hence

$$M[\pi_{0\,\omega}(a)\cup\{\kappa_m|n\leqslant m<\omega\}]\vDash \neg\Phi(\pi_{0\,\omega}(a)\cup\{\kappa_m|n\leqslant m<\omega\})$$

Since the model M[C] and the formula $\Phi(C)$ are invariant w.r.t. finite variations of C

$$M[D] \vDash \neg \Phi(D)$$

But this contradicts Theorem 9.