Submodels of Prikry Generic Extensions

BY PETER KOEPKE, UNIVERSITY OF BONN

CUNY Logic Workshop, New York City, 4.4.2008

Theorem 1. (Gitik, Kanovei, K.) Let $M_0 \models U_0$ is a measure on κ_0 . Let C be a Prikry sequence for U_0 over M_0 . Then

$$\forall Z \in M_0[C] \exists C' \subseteq C, C' \in M_0[C] \ M_0[Z] = M_0[C'].$$

This implies:

- the constructibility degrees of sets in the Prikry generic extension over the ground model M_0 are parametrized by $\mathcal{P}(\omega)/\text{fin}$.
- every proper intermediate inner model N, $M_0 \subsetneq N \subseteq M_0[C]$, of ZFC is a Prikry generic extension of the form $M_0[C']$ for some $C' \subseteq C$; hence Prikry forcing is a "minimal" forcing for singularizing a measurable cardinal.

$$- (\{N | M_0 \subseteq N \subseteq M_0[C]\}, \subseteq) \cong (\mathcal{P}(C)^{M_0[C]}, \subseteq /\text{fin}) \cong (\mathcal{P}(\omega)^{M_0}, \subseteq /\text{fin})$$

We sketch the theorem for $Z \subseteq \kappa_0$ and for $Z \subseteq \kappa_0^+$.

1. Prikry forcing

Definition 2. Prikry forcing is the partial order (P, \leq) defined by

$$P = \{(a, A) | a \in [\kappa_0]^{<\omega}, A \in U_0, \max(a) < \min(A) \}$$

and

$$(a, A) \leq (b, B)$$
 iff $a \setminus b \subseteq B \land A \subseteq B$.

If G is P-generic over M_0 then

$$C = \bigcup_{(a,A)\in G} a$$

is a **Prikry sequence** for U_0 , i.e.

$$\forall A \in \mathcal{P}(\kappa_0) \cap M_0 \ (A \in U_0 \leftrightarrow C \setminus A \text{ is finite}).$$

Proposition 3.

- a) $M_0[G] = M_0[C]$, with $G = \{(a, A) \in P \mid C \setminus A = a\}$
- b) $V_{\kappa_0} \cap M_0 = V_{\kappa_0} \cap M_0[C]$.
- c) Cardinals are absolute between M_0 and $M_0[C]$.
- d) C is cofinal in κ_0 of ordertype ω .

Theorem 4. (A.Dodd, R.B.Jensen) If a regular cardinal κ is turned into a singular cardinal of cofinality ω then κ is measurable in an inner model and there is a Prikry sequence for that measure.

2. Iterated Ultrapowers

Definition 5. Define the iteration

$$(M_m, U_m, \kappa_m, \pi_{m\,n})_{m \leqslant n \leqslant \omega}$$

of (M_0, U_0) by recursion:

- $\pi_{00} = id$
- $\pi_{m,m+1}: M_m \to M_{m+1} = \text{Ult}(M_m, U_m)$ is the ultrapower of M_m by U_m
- $\qquad \pi_{i,m+1} = \begin{cases} \pi_{m,m+1} \circ \pi_{im} & \text{if } i \leq m \\ \text{id } if & i=m+1 \end{cases}$
- $U_{m+1} = \pi_{m,m+1}(U_m), \ \kappa_{m+1} = \pi_{m,m+1}(\kappa_m)$
- M_{ω} , $(\pi_{m\omega})_{m\leqslant\omega}$ is the **transitive** direct limit of the system $(M_m, \pi_{mn})_{m\leqslant n<\omega}$
- $U_{\omega} = \pi_{0\omega}(U_0), \ \kappa_{\omega} = \pi_{0\omega}(\kappa_0)$

Proposition 6.

- a) $\pi_{m\omega} \upharpoonright \kappa_m = \mathrm{id}$
- b) $M_m = \{ \pi_{0m}(f)(\kappa_0, ..., \kappa_{m-1}) | f \in M_0, f : \kappa_0^m \to M_0 \}$
- c) $\forall A \in \mathcal{P}(\kappa_{\omega}) \cap M_{\omega} \ (A \in U_{\omega} \leftrightarrow \{\kappa_m | m < \omega\} \setminus A \ is \ finite), \ i.e., \ \{\kappa_m | m < \omega\} \}$ is a Prikry sequence for U_{ω} .

3. An Intersection Model

Set $M = M_{\omega}$, $\kappa = \kappa_{\omega}$, $U = U_{\omega}$, $D = {\kappa_m | m < \omega}$.

Definition 7. Define an intersection model by

$$N = \bigcap_{m < \omega} M_m$$

Proposition 8. The intersection model N equals M[D], the Prikry extension of M by D.

Theorem 9.

$$\forall Z \subseteq \kappa, Z \in M[D] \exists D' \subseteq D M[Z] = M[D']$$

Wellorder ascending sequences $\alpha_0 < ... < \alpha_{m-1}$ and $\beta_0 < ... < \beta_{n-1}$ lexicographically from the top: $(\alpha_0, ..., \alpha_{m-1}) \prec (\beta_0, ..., \beta_{n-1})$ iff there is some i such that

 $\alpha_{m-1} = \beta_{n-1}$, ..., $\alpha_{m-i} = \beta_{n-i}$, β_{n-i-1} exists, and if α_{n-i-1} exists, then $\alpha_{m-i-1} < \beta_{n-i-1}$.

Lemma 10. Let $u \in M_n$. Let $\alpha_0 < ... < \alpha_{m-1}$ be \prec -minimal such that there is $f \in M_0$, $f: \kappa_0^m \to M_0$ such that

$$u = \pi_{0n}(f)(\alpha_0, ..., \alpha_{m-1}).$$

Then $\{\alpha_0, ..., \alpha_{m-1}\} \subseteq \{\kappa_0, ..., \kappa_{n-1}\}.$

If $\alpha_0 < \ldots < \alpha_{m-1}$ is \prec -minimal such that

$$u = \pi_{0n}(f)(\alpha_0, ..., \alpha_{m-1})$$

and if moreover $u \subseteq \kappa_n$ then $\alpha_0 < ... < \alpha_{m-1}$ is \prec -minimal such that

$$u = \pi_{0\omega}(f)(\alpha_0, ..., \alpha_{m-1}) \cap \kappa_n$$
.

Proof. Assume that $\{\alpha_0, ..., \alpha_{m-1}\} \nsubseteq \{\kappa_0, ..., \kappa_{m-1}\}$ and let i be maximal such that $\alpha_i \notin \{\kappa_0, ..., \kappa_{m-1}\}$. Let κ_l be minimal such that $\alpha_i < \kappa_l$. By the representation theorem there is some $g \in M_0$, $g: \kappa_0^l \to M_0$ such that

$$\alpha_i = \pi_{0l}(g)(\kappa_0, ..., \kappa_{l-1}).$$

Then

$$\alpha_i = \pi_{0n}(g)(\kappa_0, ..., \kappa_{l-1}).$$

Let $\beta_0 < ... < \beta_{r-1}$ enumerate

$$\{\kappa_0, ..., \kappa_{l-1}\} \cup \{\alpha_0, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_{m-1}\}.$$

Note that $(\beta_0, ..., \beta_{r-1}) \prec (\alpha_0, ..., \alpha_{m-1})$.

Let

$$(\kappa_0, ..., \kappa_{l-1}) = (\beta_{j_0}, ..., \beta_{j_{l-1}})$$

and

$$(\alpha_0, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_{m-1}) = (\beta_{k_0}, ..., \beta_{k_{i-1}}, \beta_{k_{i+1}}, ..., \beta_{k_{m-1}}).$$

Define $h: \kappa_0^r \to M_0$ by

$$h(\xi_0, ..., \xi_{r-1}) = f(\xi_{k_0}, ..., \xi_{k_{i-1}}, g(\xi_{j_0}, ..., \xi_{j_{l-1}}), \xi_{k_{i+1}}, ..., \xi_{k_{m-1}}).$$

Then

$$u = \pi_{0n}(f)(\alpha_0, ..., \alpha_{m-1})$$

$$= \pi_{0n}(f)(\alpha_0, ..., \alpha_{i-1}, \pi_{0n}(g)(\kappa_0, ..., \kappa_{l-1}), \alpha_{i+1}, ..., \alpha_{m-1})$$

$$= \pi_{0n}(f)(\beta_{k_0}, ..., \beta_{k_{i-1}}, \pi_{0n}(g)(\beta_{j_0}, ..., \beta_{j_{l-1}}), \beta_{k_{i+1}}, ..., \beta_{k_{m-1}})$$

$$= \pi_{0n}(f)(\beta_0, ..., \beta_{r-1})$$

contradicting the minimality of $(\alpha_0, ..., \alpha_{m-1})$.

Proof of Theorem 9.

For $Z \in M$ the theorem is obvious. So consider $Z \subseteq \kappa$, $Z \in M[D] \setminus M$.

Lemma 11. κ is singular in M[Z].

Proof. Assume not. For $m < \omega$ let

$$Z = \pi_{0m}(f_m)(\kappa_0, ..., \kappa_{m-1}) \in M_m$$
.

Then $Z \cap \kappa_m = \pi_{0m}(f_m)(\kappa_0, ..., \kappa_{m-1}) \cap \kappa_m$ and

$$Z \cap \kappa_m = \pi_{0\omega}(f_m)(\kappa_0, ..., \kappa_{m-1}) \cap \kappa_m$$
.

So in the model M[Z],

$$\forall \zeta < \kappa \exists m < \omega \exists \xi_0, ..., \xi_{m-1} < \zeta : Z \cap \zeta = \pi_{0\omega}(f_m)(\xi_0, ..., \xi_{m-1}) \cap \zeta.$$

This defines **regressive** functions, and there are values m_0 and $\eta_0, ..., \eta_{m_0}$ such that for a stationary set $S \subseteq \kappa$

$$\forall \zeta \in S \ Z \cap \zeta = \pi_{0\omega}(f_{m_0})(\eta_0, ..., \eta_{m_0-1}) \cap \zeta.$$

But then

$$Z = \pi_{0\omega}(f_{m_0})(\eta_0, ..., \eta_{m_0-1}) \in M.$$

Contradiction.

Lemma 12. In M[Z], there is an infinite subset $D_0 \subseteq D$ (which is cofinal in κ).

Proof. Let $\{\alpha_{\nu} | \nu < \gamma\} \in M[Z]$ be cofinal in κ where $\gamma < \kappa$. Without loss of generality, $\gamma < \kappa_0$.

Work in M_0 . For $\nu < \gamma$ consider the minimal κ_m such that $\alpha_{\nu} < \kappa_m$ and a \prec -minimal sequence $\vec{\kappa}_{\nu} \subseteq D$ such that for some f_{ν}

$$\alpha_{\nu} = \pi_{0m}(f_{\nu})(\vec{\kappa}_{\nu}).$$

Since $\gamma < \kappa_0$

$$(\pi_{0\omega}(f_{\nu})|\nu<\gamma) = \pi_{0\omega}((f_{\nu}|\nu<\gamma)) \in M$$

we can, in M[Z], define $\vec{\kappa}_{\nu}$ as the \prec -minimal sequence such that

$$\alpha_{\nu} = \pi_{0\omega}(f_{\nu})(\vec{\kappa}_{\nu}).$$

Let $D_0 = \bigcup_{\nu < \gamma} \vec{\kappa}_{\nu} \in M[Z], D_0 \subseteq D$. If D_0 were finite then

$$\{\alpha_{\nu}|\nu<\gamma\}\subseteq\{\pi_{0\omega}(f_{\nu})(\vec{\kappa})|\nu<\gamma,\vec{\kappa}\subseteq D_0\}\in M$$

would make κ singular in M, contradiction.

Work in M_0 . Let $\lambda_0 < \lambda_1 < ...$ enumerate D_0 . For $m < \omega$ let $\vec{\kappa}_m \subseteq D$ be \prec -minimal such that there is $f_m \in M_0$, $f_m : \kappa_0^{\operatorname{length}(\vec{\kappa}_m)} \to M_0$ such that

$$Z \cap \lambda_m = \pi_{0\omega}(f_m)(\vec{\kappa}_m) \cap \lambda_m. \tag{1}$$

Let $D' = D_0 \cup \bigcup_{m < \omega} \vec{\kappa}_m \subseteq D$. Observe that

$$(\pi_{0\omega}(f_m)|m<\omega) = \pi_{0\omega}((f_m|m<\omega)) \in M. \tag{2}$$

By (1) and (2), $Z \in M[D']$.

Conversely, $D_0 \in M[Z]$, and $(\vec{\kappa}_m | m < \omega)$ can be defined in M[Z] by: $\vec{\kappa}_m$ is \prec -minimal such that

$$Z \cap \lambda_m = \pi_{0\omega}(f_m)(\vec{\kappa}_m) \cap \lambda_m.$$

Hence $D' \in M[Z]$.

Thus
$$M[Z] = M[D']$$
.

Proof of Theorem 1 for $Z \subseteq \kappa_0$.

We want to show that the top condition

$$(\emptyset, \kappa_0) \Vdash \Phi(\dot{C}) \equiv \forall Z \subseteq \kappa_0 \,\exists C' \subseteq \dot{C} \,\, M_0[Z] = M_0[C'],$$

Assume not, and let $M_0 \vDash "(a, A) \Vdash \neg \Phi(\dot{C})"$.

By elementarity, $M \vDash "(\pi_{0\omega}(a), \pi_{0\omega}(A)) \Vdash \neg \Phi(\dot{C})"$.

Let $\{\kappa_m|n\leqslant m<\omega\}\subseteq \pi_{0\omega}(A)$. Then $\pi_{0\omega}(a)\cup \{\kappa_m|n\leqslant m<\omega\}$ is a Prikry sequence for $\pi_{0\omega}(U_0)$ and

$$M[\pi_{0\omega}(a) \cup \{\kappa_m | n \leqslant m < \omega\}]$$

is a generic extension where $(\pi_{0\omega}(a), \pi_{0\omega}(A))$ is in the generic filter corresponding to $\pi_{0\omega}(a) \cup {\kappa_m | n \leq m < \omega}$. Hence

$$M[\pi_{0\omega}(a) \cup \{\kappa_m | n \leqslant m < \omega\}] \vDash \neg \Phi(\pi_{0\omega}(a) \cup \{\kappa_m | n \leqslant m < \omega\})$$

Since the model M[C] and the formula $\Phi(C)$ are invariant w.r.t. finite variations of C

$$M[D] \vDash \neg \Phi(D)$$

But this contradicts Theorem 9.

4. Dense Projections and two-stage iterations

Definition 13. Let (P, \leqslant) , (P', \leqslant) be partial orders. $\pi: P \to P'$ is a **dense** projection if

- $p \leqslant q \to \pi(p) \leqslant \pi(q)$
- $\pi[P]$ is dense in P'
- $\forall p' \leqslant \pi(p) \exists q \leqslant p \ p(q) \leqslant p'$

Theorem 14. Let $\pi: P \to P'$ be a dense projection, $p \in M$. Let G be M-generic over P. Set

$$G' = \{ p' \in P' | \exists p \in G \ p' \geqslant \pi(p) \}.$$

Then

- G' is M-generic over P'.
- $\pi^{-1}[G'] \subseteq P$ is a partial order, $\pi^{-1}[G'] \in M[G']$.
- G is M[G']-generic over $\pi^{-1}[G']$.
- M[G] = M[G'][G] is a two-stage extension by $P' * \pi^{-1}[\dot{G}']$; $\pi^{-1}[\dot{G}']$ is the quotient P/P'.
- $p' \Vdash_{P'} p \in \pi^{-1}[\dot{G}'] \Leftrightarrow p' \Vdash_{P'} \pi(p) \in \dot{G}' \Leftrightarrow p' \leqslant \pi(p).$

Now let P be Prikry forcing over M with normal measure U. Define a dense projection $\pi: P \to P$

$$\pi(\{a_0, a_1, ..., a_{2n-1}\}, A) = (\{a_0, a_2, ..., a_{2n-2}\}, A')$$

and

$$\pi(\{a_0, a_1, ..., a_{2n}\}, A) = (\{a_0, a_2, ..., a_{2n}\}, A')$$

where $a_0 < a_1 < ... < a_{2n-1} < a_{2n} < \kappa$ and $A' = \{a \in A \mid a \text{ is a limit of } A\} \in U$. Let M[G] be a Prikry extension with Prikry sequence

$$C = \{c_0, c_1, \ldots\}, c_0 < c_1 < \ldots$$

The projection G' of G is given by the Prikry sequence

$$\bigcup_{(a,A)\in G'} a = \bigcup_{(a,A)\in G'} \pi(a) = C_{\text{even}} = \{c_0, c_2, c_4...\}.$$

Hence $M[G] = M[C_{\text{even}}][G]$, G is $M[C_{\text{even}}]$ -generic over $\pi^{-1}[G']$. Denote the quotient forcing by

$$P/\dot{C}_{\mathrm{even}}$$

Theorem 15. $M[G] \models P/C_{\text{even}}$ has the κ^+ -chain condition.

Proof. Consider $\dot{p}^G = (\dot{p}_{\alpha}^G | \alpha < \kappa^+) \in P/C_{\text{even}}$. We may assume that this is forced by the weakest condition and it suffices to find a condition which forces the compatibility of some \dot{p}_{α} and \dot{p}_{β} . For $\alpha < \kappa^+$ choose q_{α} , $p_{\alpha} \in P$ such that

$$q_{\alpha} \Vdash \dot{p}_{\alpha} = p_{\alpha} \in P/\dot{C}_{\text{even}}$$

We may assume that the stems of q_{α} and p_{α} have the same odd length. By a pigeon principle we may assume that for all $\alpha < \kappa^+$

$$q_{\alpha} = (\{a_0, b_1, a_2, b_3, ..., a_{2n}\}, B_{\alpha})$$

$$p_{\alpha} = (\{a_0, a_1, a_2, a_3, ..., a_{2n}\}, A_{\alpha})$$

for fixed $a_0 < b_1 < a_2 < b_3 < ... < a_{2n}$ and $a_0 < a_1 < a_2 < a_3 < ... < a_{2n}$. Then

$$(\{a_0, b_1, a_2, b_3, ..., a_{2n}\}, (B_{\alpha} \cap B_{\beta})') \Vdash p_{\alpha}, p_{\beta} \text{ are compatible in } P/\dot{C}_{\text{even}}.$$

Towards a Proof of Theorem 1 for subsets of κ^+ .

Consider $Z \subseteq \kappa^+$, $Z \in M[C]$. Every $Z \cap \alpha$, $\alpha < \kappa^+$ is equivalent to some $C_\alpha \subseteq C$:

$$M[Z \cap \alpha] = M[C_{\alpha}].$$

By pigeon principle, there is a fixed C', say C_{even} , such that for every $\alpha < \kappa^+$

$$M[Z \cap \alpha] = M[C_{\text{even}}].$$

Z is M[C]-generic over P/C_{even} . Let \dot{Z} be a P/C_{even} -name, $\dot{Z}^G = Z$. For every $\alpha < \kappa^+$ define the Boolean value

$$b_{\alpha} = \|\dot{Z} \cap \check{\alpha} = (Z \cap \alpha)^*\|.$$

 $(b_{\alpha}|\alpha < \kappa^{+})$ is decreasing in the complete Boolean algebra for P/C_{even} , and by the κ^{+} -c.c. it is eventually constant. Let b_{*} be that constant value. Then

$$Z = \bigcup \{z \in M[C_{\text{even}}] \mid \exists \alpha < \kappa^+ \parallel \dot{Z} \cap \check{\alpha} = \check{z} \parallel = b_*\} \in M[C_{\text{even}}].$$

Thank you!