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Mathematical texts are formulated in a semi-formal language, mixing natural language discourse
and mathematical formulas. The meaning of a mathematical text can be described by a transla-
tion into first-order formulas; the text is correct if its first-order translation is a formal proof in
a first-order proof calculus. The NAPROCHE project (NAtural language PROof CHEcking)
recognizes that there is a specific, semi-formal or natural mathematical language which ought to
be studied by linguistic techniques. The project aims at constructing a system which checks the
correctness of texts written in a controlled but rich sublanguage of ordinary mathematical lan-
guage including TEX-style typeset formulas. In our talk we demonstrate a small working proto-
type, explain its modular structure, and discuss future enhancements and extensions, with an
emphasis on the mathematical aspects of the system and its applications.

http: //www. math. uni - bonn. de/people/naproche/
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The language of mathematics, example

Euclid:
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The language of mathematics, example

Gauss:
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The language of mathematics, example

This example, de Morgan’ s law, could be a basic exercise in
an introductory logic course; the solution is readable ( by
humans) and is also accepted by the NAPROCHE proof
checking system. This indicates that the distance between
natural proofs and formal proofs may be reduced or even
eliminated.

Theorem. α ∧ β↔ ¬ (¬α ∨ ¬β) .

Proof. Assume α ∧ β. Assume for a contradiction that ¬
α ∨ ¬β.
Assume ¬α . α . Contradiction. Thus ¬α→⊥ .
Assume ¬β. β. Contradiction. Thus ¬β→⊥ .
Hence contradiction. Thus ¬ (¬α ∨ ¬β) . Thus α ∧ β→ ¬ (¬
α ∨ ¬β) .

Assume ¬ (¬α ∨ ¬β) . Assume ¬α . ¬α ∨ ¬β. Contradiction.
Thus α .
Assume ¬β. ¬α ∨ ¬β. Contradiction. Thus β. α ∧ β.
Thus ¬ (¬α ∨ ¬β) → α ∧ β. Qed.
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Interpretations

- The formalistic or logicistic approach :

the common mathematical language denotes / abbreviates
texts written in ( first-order) logic; this language is not an
object of study of the foundations of mathematics.

- The naturalistic approach :

− treats the common mathematical language (CML)
like a natural language; slogan: „take the mathema-
tical language serious“

− the grammar of CML is a natural language
grammar for the plain text components plus a
grammar for mathematical terms and formulas plus
some typically mathematical constructs

− the semantics of CML is mainly given by an ade-
quate first-order formalization

− the pragmatics of CML is determined by the desire
to write texts and proofs, whose formalizations are
formally correct

Some characteristics the grammar ofCML :

− combination of natural language and “mathematical
formulas”

− specific, ( re-) defined words, and figures of speech

− hypothetical constructions ( “assume”, “define”, “let”,
. . . )
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− typography (α , β, � ,
a

b
,
√

, . . . )

− graphics ( diagrams, pictures, . . . )

− definitions, theorems, proofs

− . . .

The semantics ofCML can be taken in line with the logici-
stic approach:

− ( first-order) predicate logic

− Gentzen-style natural deduction

− addition of further ( implicit) assumptions and argu-
ments

− possibility of ambiguities in the translation

The pragmatics of CML is guided by the mathematical
practice:

− communication „about some objective mathematical
reality“

− concise and unambiguous, up to some „irrelevant“
details

− language is used with a common mathematical
background knowledge which follows from some
foundational theory, usually Zermelo-Fraenkel set
theory (ZFC)

− correct and complete proofs
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− the reader has to supply relevant and fitting back-
ground knowledge as to make mathematical texts
correct; ambiguities can usually be resolved with
this criterion

− “distances“ between a text and its formalization can
vary

A programmatic text from the initial phase of
NAPROCHE describes this very clear cut semantic and
pragmatic situation by:

. . . From a linguistic perspective, the Language ofMathema-
tics is distinguished by the fact that its core mathematical
meaning can be fully captured by an intel ligent translation
into first-order predicate logic. . . .

This radical simplification of the linguistic framework can
be pictured as follows:

English

Semantics

Formal semanticsrender

?
?

?

?

?

?
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English

Formal semantics

First-order logic

Common mathematical language

NAPROCHE

This observation motivates the NAPROCHE (NAtural lan-
guage PROof CHEcking) project and its principal com-
ponents:

− modeling the grammar, semantics, and pragmatics
of CML

− theoretical studies and practical implementations

− controlled mathematical language

− semantics using DRT; proof representation struc-
tures PRS

− proof checking using existing formal proof-checkers

− applications:

− interfaces for formal mathematics systems

− writing texts for humans and machines
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− tutorial applications

− interactions with the philosophy of mathe-
matics

In particular, the project aims at developing the
NAPROCHE system :

− The NAPROCHE project is centered around the
NAPROCHE system, a practical implementation of
semantics for parts of CML

− combines standard tools for writing mathematical
texts and for checking formal proofs with a DRT-
orientated grammar, adapted to CML and proof
checking

− linguistic issues

− mathematical issues

A quote from the initial phase of the project:

The . . . project NAPROCHE aims at constructing a system
which accepts a controlled but rich subset of ordinary
mathematical language including TEX-style typeset formulas
and transforms them into formal statements. We adapt lin-
guistic techniques to allow for common grammatical con-
structs and to extract mathematically relevant implicit
information about hypotheses and conclusions. Combined
with proof checking software we obtain NAtural language
PROofCHEckers.
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A screenshot from the NAPROCHE system so far:

This is a standard TEXMACS window with an incorporated
proof checker. The button „Proof-Checker“ initiates the
checking of the current editing buffer, the result of the
check is output on the status line. In the example, „The
proof is accepted! “ because the argument so far is correct.
Whether the argument proves the Theorem is only checked
after the proof has been closed by a „Qed. “

The NAPROCHE system is a “mathematical Curt” (Black-
burn and Bos, 2005) . On the left-hand side is the Curt
architecture, the NAPROCHE architecture on the right-
hand side has an adding typesetting layer at the top.
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Input text ( “Every man di es ”)

l Parser, Tokenizer ( readline. pl)

Tokenized format ( [ all , man, di e ] )

l NLP (natural language processing)

Internal representation (DRS)

l
FOL format (all ( A, i mp( man( A) , di e ( A) ) ) )

l ( fol2otter. pl, fol2mace. pl)

Input format for theorem prover / model builder

Typeset mathematical text

l
LATEX-style format / XML format

l
Tokenized format

l
Internal representation

l
First-order logic format

l
Input format for theorem prover/checker

The first NAPROCHE prototype realized this concept as
follows:

− TEXMACS + all other layers implemented in
home-grown PROLOG

− simple keyword language

− Theorem / Proof / Qed construct

− no explicit references to assumptions and lemmas

− only simple proof rules

The currently developed version of NAPROCHE will use
standard tools as follows:

Typeset mathematical text

l TEXMACS

adapted XML format
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l Parser, Tokenizer

Tokenized format

l XML→ PRS Grammar

Proof representation structures

l PRS→ FOL

First-order logic format

l ( fol2otter. pl)

Input format for theorem prover Otter

l Otter

accepted / not accepted

Discussion of possible provers and proof checkers:

− proof checking can be done e. g. MIZAR or a home-
grown Prolog checker

− proof checking amounts to proving every statement
from available premises and methods, with e. g.
strong provers like Otter, Bliksem

− Problem: how to determine the available premises

− explicit declaration of premises: By Theorem
5. 7 . . .

− underspecified declarations which can be
resolved in
context: By induction hypothesis . . .
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− closely preceding statements

− Solution ( ?) : define a metric between statement in
text and
background knowledge, use premises with small distance

The crucial device for the complete system will be an
extended DRT format: PRS = proof representation struc-
tures. A formal grammar transforms XML texts into the
PRS semantics. This follows Blackburn-Bos, with mathe-
matical features added.

The current system interface is given by the mathematical
text editor TEXMACS :

− WYSIWYW LATEX-quality text editor

− uses the TEX and LATEX algorithms and font hand-
ling

− developed since 1 999 by Joris van der Hoeven

− www. texmacs . org

− extendable system with scheme/guile as extension
language

− can be used as an interface to other programs and
for NAPROCHE

The TEXMACS format is a sort of markup language:

Theorem. (¬ϕ ∨ ψ) → ( ϕ→ ψ) .
Proof.
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Let (¬ϕ ∨ ψ) .
Let ¬ϕ . Let ϕ . Contradiction. ψ . Thus ϕ → ψ . Thus ¬
ϕ→ ( ϕ→ ψ) .
Let ψ . Let ϕ . ψ . Thus ϕ→ ψ . Thus ψ→ ( ϕ→ ψ) .
ϕ→ ψ . Thus (¬ϕ ∨ ψ) → ( ϕ→ ψ) .
Qed.

Internal representation ( . tm file)

<TeXmacs | 1 . 0 . 6>
<style | generi c>
<\body>

Example :
<\quotation>
Theorem. <wi th| mode | math| ( \ <neg\>\<varphi \>\<vee\>\<psi \> ) \ <ri ghtarrow\>

( \<varphi \>\<ri ghtarrow\>\<psi \>) > . \
Proof .
Let <wi th| mode | math| ( \<neg\>\<varphi \>\<vee\>\<psi \> ) > .
Let <wi th| mode | math| \ <neg\>\<varphi \>> . Let <wi th| mode | math| \ <varphi \>> .
Contradi cti on. <wi th| mode | math| \ <psi \>> . Thus
<wi th| mode | math| \ <varphi \>\<rightarrow\>\<psi \>> . Thus

<wi th| mode | math| \ <neg\>\<varphi \>\<rightarrow\> ( \<varphi \>\<ri ghtarrow\>\<psi \>) > .
. . .

The further plans for the development of the NAPROCHE
system include:

− declaration of premises ( „By Lemma . . . “)

− definition of new symbols ( „Define a function . . . “)

− set theoretic approach: formulas and abstraction
terms {x | ϕ } ; efficient handling of terms using
”lazy expansions”

− ellipses ( „the sequence x1 , � , xn“)

− providing background knowledge to the checker,
e. g. , on natural numbers or finite sequences
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− formalization of interesting theories

This involves many logical aspects like:

− identify deduction rules actually used in CML; these
rules might constitute a truely natural deduction
calculus

− ”for all i ∈ I choose ai such that . . . “

− deal with the dynamic phenomenon that brackets
are usually explicitely opened but often not closed

There is a range of possible applications like:

− formalization of basic/interesting mathematical
domains:
”Logic for man and machines ”

− tutorial applications

− natural language interfaces to provers and proof
checkers

− distinguishing explicit and implicit knowledge in
mathematical practice

− . . .
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