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Cantor’s Continuum Hypothesis

Georg Cantor proved:

Theorem 1. The power set {x |x⊆N} of N is not denumerable.

In the language of cardinal arithmetic this reads:

Theorem 2. 2ℵ0>ℵ1 .

Cantor conjectured

Conjecture 3. (Cantor’s Continuum Hypothesis, CH) 2ℵ0=ℵ1 .

Kurt Gödel proved the consistency of CH, assuming the consistency of the Zermelo-
Fraenkel axioms ZFC, by constructing the model L of constructible sets

Theorem 4. L�CH .

Paul Cohen proved the opposite relative consistency

Theorem 5. Any (countable) model M of ZFC can be extended to a model M [G] of
ZFC+2ℵ0>ℵ1 .

For this, Cohen invented the method of forcing to adjoin further objects G to M .
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G is a (generic) limit of approximations (conditions) in some partial order.

For the ¬CH construction we want to adjoin a characteristic function F satisfying

1. F :λ× ω→ 2 for some λ>ℵ2
M

2. ∀i < j <λ(λn.F (i, n)� λn.F (j , n)

ω

λ

i j

Ai Aj

F

Ai� Aj

0 1

Cohen’s partial order for this is essentially

P = {p |∃n<ω∃D∈ [λ]<ω p:D×n→ 2}

partially ordered by reverse inclusion:

p6 q (p is stronger than q) iff p⊇ q
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This may be pictured as

ω

λ

q

i j

0 1
p6 q

If G⊆P is a “generic path” through P then F =
⋃

{p|p∈G} is as required.

Hausdorff’s Generalized Continuum Hypothesis

Felix Hausdorff conjectured an extension of CH

Conjecture 6. (Hausdorff’s Generalized Continuum Hypothesis, GCH)

∀α.2ℵα=ℵα+1

3



Since GCH holds in Gödel’s model L,

Theorem 7. GCH is independent of ZFC.

Easton proved

Theorem 8. Let E:Ord→Ord be a sufficiently absolute function such that

− E(α)>α

− α< β→E(α)6E(β)

− Lim(E(α))→ cof(E(α))>ℵα

Then one can construct a forcing extension M [G] such that

∀α(ℵα is regular→ 2ℵα=ℵE(α))

The Singular Cardinal Hypothesis

is the statement

(SCH) if κ is a singular strong limit cardinal then 2κ= κ+

Moti Gitik and Bill Mitchell showed

Theorem 9. The following two theories are equiconsistent:

− ZFC+¬SCH

− ZFC+ there are “many” measurable cardinals

SCH Without the Axiom of Choice

Theorem 10. The following theories are equiconsistent:

− ZF
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− ZF + “GCH holds below ℵω” + “there is a surjection from P(ℵω) onto ℵα”, for
some fixed big ordinal α

This is a strong surjective failure of SCH, without requiring large cardinals. Injective fail-
ures possess much higher consistency strengths.

The forcing

Fix a ground model V of ZFC+GCH and let λ=ℵα be some regular cardinal in V .

The forcing P0=(P0,⊇ , ∅) adjoins one Cohen subset of ℵn+1 for every n<ω .

P0= {p |∃(δn)n<ω (∀n<ω: δn∈ [ℵn,ℵn+1)∧ p:
⋃

n<ω

[ℵn, δn)→ 2)}.

The forcing (P ,6P , ∅) is defined by

P = {(p∗, (ai, pi)i<λ) | ∃(δn)n<ω ∃D ∈ [λ]<ω (∀n<ω: δn∈ [ℵn,ℵn+1),

p∗:
⋃

n<ω

[ℵn, δn)
2→ 2,

∀i∈D: pi:
⋃

n<ω

[ℵn, δn)→ 2∧ pi� ∅,

∀i∈D: ai∈ [ℵω \ℵ0]
<ω∧∀n<ω: card(ai∩ [ℵn,ℵn+1))6 1,

∀i � D(ai= pi= ∅))}

p∗

pj

ξ ∈ ai

pi�ξℵ0

ℵ1

ℵ2

ℵn

ℵn+1
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P is partially ordered by

p′=(p∗
′ , (ai

′, pi
′)i<λ)6P (p∗, (ai, pi)i<λ) = p

iff

a) p∗
′ ⊇ p∗,∀i <λ(ai

′⊇ ai∧ pi
′⊇ pi),

b) ∀i < λ∀n<ω∀ξ ∈ ai∩ [ℵn,ℵn+1)∀ζ ∈dom(pi
′ \ pi)∩ [ℵn,ℵn+1): pi

′(ζ)= p∗
′(ξ)(ζ), and

c) ∀j ∈ supp(p): (aj
′ \ aj)∩

⋃

i∈supp(p),i� j
ai
′= ∅.

p∗
′ ⊇ p∗

pj
′

ξ ∈ ai

pi
′⊇ pi�ξ

equal endsegments

Lemma 11. P satisfies the ℵω+2-chain condition.

Let G be V -generic for P .

Define

G∗ = {p∗∈P∗ |(p∗, (ai, pi)i<λ)∈G}

A∗ =
⋃

G∗:
⋃

n<ω

[ℵn,ℵn+1)
2→ 2

A∗(ξ) = {(ζ , A∗(ξ, ζ))|ζ ∈ [ℵn,ℵn+1)}: [ℵn,ℵn+1)→ 2

Ai =
⋃

{pi |(p∗, (aj , pj)j<λ)∈G}: [ℵ0,ℵω)→ 2
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A∗

Aj

ξ ∈ ai

Ai�ξ
equal endsegments� � � �

Fuzzifying the Ai

Define the exclusive or function ⊕ : 2× 2→ 2 by

a⊕ b=0 iff a= b.

For functions A,A′: dom(A)=dom(A′)→ 2

define the pointwise exclusive or A⊕A′:dom(A)→ 2 by

(A⊕A′)(ξ)=A(ξ)⊕A′(ξ).

For functions A,A′: (ℵω \ℵ0)→ 2 define an equivalence relation ∼ by

A∼A′ iff ∃n<ω ((A⊕A′) ↾ℵn+1∈ V [G∗]∧ (A⊕A′) ↾ [ℵn+1,ℵω)∈V ).

Let Ã = {A′|A ′∼A} be the ∼ -equivalence class of A.

The “symmetric” submodel

Set

− T∗=P(<κ)V [A∗], setting κ=ℵω
V ;
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− AO = (Ãi |i <λ).

The final model is

N =HODV [G](V ∪{T∗, AO }∪T∗∪
⋃

i<λ

Ãi)

consisting of all sets which, in V [G] are hereditarily definable from parameters in the

transitive closure of V ∪{T∗, AO }.

Lemma 12. Every set X ∈N is definable in V [G] in the following form: there are an ∈ -
formula ϕ, x∈ V, n<ω, and i0,	 , il−1<λ such that

X = {u∈V [G] |V [G]� ϕ(u, x, T∗,AO , A∗ ↾ (ℵn+1
V )2, Ai0,	 , Ail−1

)}.

Lemma 13. N is a model of ZF, and there is a surjection f :P(κ)→λ in N.

Proof. Note that for every i <λ: Ai∈N .
(1) Let i < j < λ . Then Ai≁Aj .
Proof . Assume instead that Ai ∼ Aj . Then take n < ω such that v = (Ai ⊕ Aj) ↾ [ℵn+1,

ℵω)∈ V . The set

D= {(p∗, (ak, pk)k<λ) |∃ξ ∈ [ℵn+1,ℵω)(ξ ∈dom(pi)∩ dom(pj)∧ v(ξ)� pi(ξ)⊕ pj(ξ))}∈V

is readily seen to be dense in P . Take (p∗, (ak, pk)k<λ) ∈ D ∩ G. Take ξ ∈ [ℵn+1, ℵω) such
that

ξ ∈dom(pi)∩dom(pj)∧ v(ξ)� pi(ξ)⊕ pj(ξ)).

Since pi ⊆Ai and pj ⊆Aj we have v(ξ)� Ai(ξ)⊕Aj(ξ) and v � (Ai⊕Aj) ↾ [ℵn+1,ℵω). Con-
tradiction. qed(1)

Thus

f(z) =

{

i, if z ∈ Ãi ;
0, else;

is a well-defined surjection f : P(κ) → λ , and f is definable in N from the parameters κ

and AO . �
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Approximating N

Lemma 14. Let X ∈N and X ⊆Ord. Then there are n<ω and i0,	 , il−1<λ such that

X ∈ V [A∗ ↾ (ℵn+1
V )2, Ai0,	 , Ail−1

].

Proof. Let

X = {u∈Ord |V [G]� ϕ(u, x, T∗, AO , A∗ ↾ (ℵn+1
V )2, Ai0,	 , Ail−1

)}.

By taking n sufficiently large, we may assume that

∀j < k< l∀m∈ [n, ω)∀δ ∈ [ℵm,ℵm+1): Aij ↾ [δ,ℵm+1)� Aik ↾ [δ,ℵm+1).

For j < l set

aij
∗ = {ξ |∃m6n∃δ ∈ [ℵm,ℵm+1):Aij ↾ [δ,ℵm+1)=A∗(ξ) ↾ [δ,ℵm+1)}

where A∗(ξ)= {(ζ , A∗(ξ, ζ))|(ξ, ζ)∈dom(A∗)}.

Define

X ′ = {u∈Ord | there is p=(p∗, (ai, pi)i<λ)∈P such that

p∗ ↾ (ℵn+1
V )2⊆A∗ ↾ (ℵn+1

V )2,

ai0⊇ ai0
∗ ,	 , ail−1

⊇ ail−1

∗ ,

pi0⊆Ai0 ,	 , pil−1
⊆Ail−1

, and

p ϕ(ǔ , x̌ , σ, τ , Ȧ ↾ (ℵ̌n+1)
2, Ȧi0,	 , Ȧil−1

)},

where σ, τ , Ȧ , Ȧi0,	 , Ȧil−1
are canonical names for T∗,AO , A∗, Ai0,	 , Ail−1

resp.

Then X ′∈ V [A∗ ↾ (ℵn+1
V )2, Ai0,	 , Ail−1

].

(1) X ⊆X ′.
Proof . Straightforward. qed(1)

The converse direction, X ′⊆X , uses an automorphism argument.
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=

=

p∗ ↾ℵ1
2 p∗

′ ↾ℵ1
2

ai0
∗ ail−1

∗

p∗ ↾ [ℵn,ℵn+1)
2⊆A∗�

i∈ supp(p)

� � �possibly different same since ⊆Ail−1
possibly different

pi0 pi0
′ pi pi

′

One defines an isomorphism π of P below p and below p′, respectively.

=

=

q∗
′ ↾ℵ1

2

ai0
∗ ail−1

∗
i∈ supp(p)

�
q∗ ↾ℵ1

2

� �corresponding grey parts are equal

identities outside supp(p)

black extensions determined

by linking ordinals��
�

Wrapping up

Lemma 15. Let n < ω and i0, 	 , il−1 < λ . Then cardinals are absolute between V and
V [A∗ ↾ (ℵn+1

V )2, Ai0,	 , Ail−1
].
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Lemma 16. Cardinals are absolute between N and V, and in particular κ=ℵω
V =ℵω

N .

Proof. If not, then there is a function f ∈N which collapses a cardinal in V . By Lemma
14, f is an element of some model V [A∗ ↾ (ℵn+1

V )2, Ai0, 	 , Ail−1
] as above. But this contra-

dicts Lemma 15. �

Lemma 17. GCH holds in N below ℵω .

Proof. If X ⊆ ℵn and X ∈ N then X is an element of some model V [A∗ ↾ (ℵn+1
V )2, Ai0, 	 ,

Ail−1
] as above. Since Ai0,	 , Ail−1

do not adjoin new subsets of ℵn we have that

X ∈V [A∗ ↾ (ℵn+1
V )2].

Hence P(ℵn
V ) ∩ N ∈ V [A∗ ↾ (ℵn+1

V )2]. GCH holds in V [A∗ ↾ (ℵn+1
V )2]. Hence there is a bijec-

tion P(ℵn
V )∩N↔ℵn+1

V in V [A∗ ↾ (ℵn+1
V )2] and hence in N . �

Discussion and Remarks

To work with singular cardinals κ of uncountable cofinality, various finiteness properties in
the construction have to be replaced by the property of being of cardinality < cof(κ). This
yields choiceless violations of Silver’s theorem.

Theorem 18. Let V be any ground model of ZFC + GCH and let λ be some cardinal in
V. Then there is a model N ⊇ V of the theory ZF+ “GCH holds below ℵω1

” + “there is a
surjection from P(ℵω1

) onto λ”. Moreover, the axiom of dependent choices DC holds in N.
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