Violating the Singular Cardinals Hypothesis Without Large Cardinals

Talk at the University of Bristol

BY PETER KOEPKE (BONN), JOINT WORK WITH MOTI GITIK (JERUSALEM)

November 29, 2010

Cantor's Continuum Hypothesis

GEORG CANTOR proved:

Theorem 1. The power set $\{x \mid x \subseteq \mathbb{N}\}$ of \mathbb{N} is not denumerable.

In the language of cardinal arithmetic this reads:

Theorem 2. $2^{\aleph_0} \geq \aleph_1$.

CANTOR conjectured

Conjecture 3. (CANTOR's Continuum Hypothesis, CH) $2^{\aleph_0} = \aleph_1$.

KURT GÖDEL proved the consistency of CH, assuming the consistency of the ZERMELO-FRAENKEL axioms ZFC, by constructing the model L of constructible sets

Theorem 4. $L \models CH$.

PAUL COHEN proved the opposite relative consistency

Theorem 5. Any (countable) model M of ZFC can be extended to a model M[G] of $ZFC + 2^{\aleph_0} > \aleph_1$.

For this, COHEN invented the method of *forcing* to adjoin further objects G to M.

G is a (generic) limit of approximations (conditions) in some partial order.

For the \neg CH construction we want to adjoin a characteristic function F satisfying

- 1. $F: \lambda \times \omega \to 2$ for some $\lambda \ge \aleph_2^M$
- 2. $\forall i < j < \lambda (\lambda n.F(i,n) \neq \lambda n.F(j,n)$

COHEN's partial order for this is essentially

$$P = \{ p \mid \exists n < \omega \exists D \in [\lambda]^{<\omega} p : D \times n \to 2 \}$$

partially ordered by *reverse inclusion*:

 $p \leqslant q \ (p \text{ is stronger than } q) \text{ iff } p \supseteq q$

If $G \subseteq P$ is a "generic path" through P then $F = \bigcup \{p | p \in G\}$ is as required.

Hausdorff's Generalized Continuum Hypothesis

FELIX HAUSDORFF conjectured an extension of CH

Conjecture 6. (HAUSDORFF's Generalized Continuum Hypothesis, GCH)

$$\forall \alpha. 2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$$

Since GCH holds in GÖDEL's model L,

Theorem 7. GCH is independent of ZFC.

EASTON proved

Theorem 8. Let $E: \operatorname{Ord} \to \operatorname{Ord}$ be a sufficiently absolute function such that

- $E(\alpha) > \alpha$
- $\quad \alpha < \beta \to E(\alpha) \leqslant E(\beta)$
- $\quad \operatorname{Lim}(E(\alpha)) \to \operatorname{cof}(E(\alpha)) > \aleph_{\alpha}$

Then one can construct a forcing extension M[G] such that

 $\forall \alpha (\aleph_{\alpha} \text{ is } regular \rightarrow 2^{\aleph_{\alpha}} = \aleph_{E(\alpha)})$

The Singular Cardinal Hypothesis

is the statement

(SCH) if κ is a **singular** strong limit cardinal then $2^{\kappa} = \kappa^+$

MOTI GITIK and BILL MITCHELL showed

Theorem 9. The following two theories are equiconsistent:

- $\quad {\rm ZFC} + \neg {\rm SCH}$
- ZFC+ there are "many" measurable cardinals

SCH Without the Axiom of Choice

Theorem 10. The following theories are equiconsistent:

– ZF

- ZF + "GCH holds below \aleph_{ω} " + "there is a surjection from $\mathcal{P}(\aleph_{\omega})$ onto \aleph_{α} ", for some fixed big ordinal α

This is a strong *surjective* failure of SCH, without requiring large cardinals. *Injective* failures possess much higher consistency strengths.

The forcing

Fix a ground model V of ZFC + GCH and let $\lambda = \aleph_{\alpha}$ be some regular cardinal in V. The forcing $P_0 = (P_0, \supseteq, \emptyset)$ adjoins one COHEN subset of \aleph_{n+1} for every $n < \omega$.

$$P_0 = \{ p \mid \exists (\delta_n)_{n < \omega} \ (\forall n < \omega : \delta_n \in [\aleph_n, \aleph_{n+1}) \land p : \bigcup_{n < \omega} \ [\aleph_n, \delta_n) \to 2) \}.$$

The forcing (P, \leq_P, \emptyset) is defined by

$$\begin{split} P &= \{ (p_*, (a_i, p_i)_{i < \lambda}) \mid \exists (\delta_n)_{n < \omega} \exists D \in [\lambda]^{<\omega} \, (\forall n < \omega : \delta_n \in [\aleph_n, \aleph_{n+1}), \\ p_* : \bigcup_{n < \omega} [\aleph_n, \delta_n)^2 \to 2, \\ \forall i \in D : p_i : \bigcup_{n < \omega} [\aleph_n, \delta_n) \to 2 \land p_i \neq \emptyset, \\ \forall i \in D : a_i \in [\aleph_\omega \setminus \aleph_0]^{<\omega} \land \forall n < \omega : \operatorname{card}(a_i \cap [\aleph_n, \aleph_{n+1})) \leqslant 1, \\ \forall i \notin D \, (a_i = p_i = \emptyset)) \} \end{split}$$

P is partially ordered by

$$p' = (p'_*, (a'_i, p'_i)_{i < \lambda}) \leq_P (p_*, (a_i, p_i)_{i < \lambda}) = p$$

 iff

- a) $p'_* \supseteq p_*, \forall i < \lambda (a'_i \supseteq a_i \land p'_i \supseteq p_i),$
- b) $\forall i < \lambda \forall n < \omega \forall \xi \in a_i \cap [\aleph_n, \aleph_{n+1}) \forall \zeta \in \operatorname{dom}(p'_i \setminus p_i) \cap [\aleph_n, \aleph_{n+1}): p'_i(\zeta) = p'_*(\xi)(\zeta), \text{ and } i \in \mathbb{N}$
- c) $\forall j \in \operatorname{supp}(p) : (a'_j \setminus a_j) \cap \bigcup_{i \in \operatorname{supp}(p), i \neq j} a'_i = \emptyset.$

Lemma 11. *P* satisfies the $\aleph_{\omega+2}$ -chain condition.

Let G be V-generic for P.

Define

$$\begin{split} G_* &= \{ p_* \in P_* \,|\, (p_*, (a_i, p_i)_{i < \lambda}) \in G \} \\ A_* &= \bigcup G_* : \bigcup_{n < \omega} [\aleph_n, \aleph_{n+1})^2 \to 2 \\ A_*(\xi) &= \{ (\zeta, A_*(\xi, \zeta)) | \zeta \in [\aleph_n, \aleph_{n+1}) \} : [\aleph_n, \aleph_{n+1}) \to 2 \\ A_i &= \bigcup \{ p_i \,|\, (p_*, (a_j, p_j)_{j < \lambda}) \in G \} : [\aleph_0, \aleph_\omega) \to 2 \end{split}$$

Fuzzifying the A_i

Define the *exclusive or* function $\oplus: 2 \times 2 \rightarrow 2$ by

$$a \oplus b = 0$$
 iff $a = b$.

For functions $A, A': \operatorname{dom}(A) = \operatorname{dom}(A') \to 2$ define the pointwise exclusive or $A \oplus A': \operatorname{dom}(A) \to 2$ by

$$(A \oplus A')(\xi) = A(\xi) \oplus A'(\xi)$$

For functions $A, A': (\aleph_{\omega} \setminus \aleph_0) \to 2$ define an equivalence relation \sim by

$$A \sim A' \text{ iff } \exists n < \omega \left((A \oplus A') \upharpoonright \aleph_{n+1} \in V[G_*] \land (A \oplus A') \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) \in V \right).$$

Let $\tilde{A} = \{A' | A' \sim A\}$ be the \sim -equivalence class of A.

The "symmetric" submodel

 Set

$$- \quad T_* = \mathcal{P}(<\kappa)^{V[A_*]}, \text{ setting } \kappa = \aleph^V_\omega;$$

$$- \quad \vec{A} = (\tilde{A}_i \mid i < \lambda).$$

The final model is

$$N = \mathrm{HOD}^{V[G]}(V \cup \{T_*, \vec{A}\} \cup T_* \cup \bigcup_{i < \lambda} \tilde{A}_i)$$

consisting of all sets which, in V[G] are hereditarily definable from parameters in the transitive closure of $V \cup \{T_*, \vec{A}\}$.

Lemma 12. Every set $X \in N$ is definable in V[G] in the following form: there are an \in -formula φ , $x \in V$, $n < \omega$, and $i_0, \ldots, i_{l-1} < \lambda$ such that

$$X = \{ u \in V[G] \, | \, V[G] \vDash \varphi(u, x, T_*, \vec{A}, A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}) \}.$$

Lemma 13. N is a model of ZF, and there is a surjection $f: \mathcal{P}(\kappa) \to \lambda$ in N.

Proof. Note that for every $i < \lambda$: $A_i \in N$. (1) Let $i < j < \lambda$. Then $A_i \approx A_j$. *Proof*. Assume instead that $A_i \sim A_j$. Then take $n < \omega$ such that $v = (A_i \oplus A_j) \upharpoonright [\aleph_{n+1}, \aleph_{\omega}) \in V$. The set

$$D = \{ (p_*, (a_k, p_k)_{k < \lambda}) | \exists \xi \in [\aleph_{n+1}, \aleph_{\omega}) (\xi \in \operatorname{dom}(p_i) \cap \operatorname{dom}(p_j) \land v(\xi) \neq p_i(\xi) \oplus p_j(\xi)) \} \in V$$

is readily seen to be dense in P. Take $(p_*, (a_k, p_k)_{k < \lambda}) \in D \cap G$. Take $\xi \in [\aleph_{n+1}, \aleph_{\omega})$ such that

$$\xi \in \operatorname{dom}(p_i) \cap \operatorname{dom}(p_j) \wedge v(\xi) \neq p_i(\xi) \oplus p_j(\xi)).$$

Since $p_i \subseteq A_i$ and $p_j \subseteq A_j$ we have $v(\xi) \neq A_i(\xi) \oplus A_j(\xi)$ and $v \neq (A_i \oplus A_j) \upharpoonright [\aleph_{n+1}, \aleph_{\omega})$. Contradiction. qed(1)

Thus

$$f(z) = \begin{cases} i, \text{ if } z \in \tilde{A}_i; \\ 0, \text{ else}; \end{cases}$$

is a well-defined surjection $f: \mathcal{P}(\kappa) \to \lambda$, and f is definable in N from the parameters κ and \vec{A} .

Approximating N

Lemma 14. Let $X \in N$ and $X \subseteq \text{Ord.}$ Then there are $n < \omega$ and $i_0, \ldots, i_{l-1} < \lambda$ such that

$$X \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}].$$

Proof. Let

$$X = \{ u \in \operatorname{Ord} | V[G] \vDash \varphi(u, x, T_*, \vec{A}, A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}) \}.$$

By taking n sufficiently large, we may assume that

$$\forall j < k < l \forall m \in [n, \omega) \forall \delta \in [\aleph_m, \aleph_{m+1}) \colon A_{i_j} \upharpoonright [\delta, \aleph_{m+1}) \neq A_{i_k} \upharpoonright [\delta, \aleph_{m+1}).$$

For j < l set

$$a_{i_j}^* = \{\xi | \exists m \leqslant n \exists \delta \in [\aleph_m, \aleph_{m+1}) \colon A_{i_j} \upharpoonright [\delta, \aleph_{m+1}) = A_*(\xi) \upharpoonright [\delta, \aleph_{m+1}) \}$$

where $A_*(\xi) = \{(\zeta, A_*(\xi, \zeta)) | (\xi, \zeta) \in \text{dom}(A_*)\}.$

Define

$$\begin{split} X' &= \{ u \in \mathrm{Ord} \mid \text{ there is } p = (p_*, (a_i, p_i)_{i < \lambda}) \in P \text{ such that} \\ p_* \upharpoonright (\aleph_{n+1}^V)^2 \subseteq A_* \upharpoonright (\aleph_{n+1}^V)^2, \\ a_{i_0} \supseteq a_{i_0}^*, \dots, a_{i_{l-1}} \supseteq a_{i_{l-1}}^*, \\ p_{i_0} \subseteq A_{i_0}, \dots, p_{i_{l-1}} \subseteq A_{i_{l-1}}, \text{ and} \\ p \Vdash \varphi(\check{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright (\check{\aleph}_{n+1})^2, \dot{A}_{i_0}, \dots, \dot{A}_{i_{l-1}}) \}, \end{split}$$

where $\sigma, \tau, \dot{A}, \dot{A}_{i_0}, \dots, \dot{A}_{i_{l-1}}$ are canonical names for $T_*, \vec{A}, A_*, A_{i_0}, \dots, A_{i_{l-1}}$ resp. Then $X' \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, \dots, A_{i_{l-1}}].$ (1) $X \subseteq X'.$ *Proof*. Straightforward. qed(1)

The converse direction, $X' \subseteq X$, uses an automorphism argument.

One defines an isomorphism π of P below p and below p', respectively.

Wrapping up

Lemma 15. Let $n < \omega$ and $i_0, ..., i_{l-1} < \lambda$. Then cardinals are absolute between V and $V[A^* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}].$

Lemma 16. Cardinals are absolute between N and V, and in particular $\kappa = \aleph_{\omega}^{V} = \aleph_{\omega}^{N}$.

Proof. If not, then there is a function $f \in N$ which collapses a cardinal in V. By Lemma 14, f is an element of some model $V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}]$ as above. But this contradicts Lemma 15.

Lemma 17. GCH holds in N below \aleph_{ω} .

Proof. If $X \subseteq \aleph_n$ and $X \in N$ then X is an element of some model $V[A_* \upharpoonright (\aleph_{n+1}^V)^2, A_{i_0}, ..., A_{i_{l-1}}]$ as above. Since $A_{i_0}, ..., A_{i_{l-1}}$ do not adjoin new subsets of \aleph_n we have that

$$X \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2].$$

Hence $\mathcal{P}(\aleph_n^V) \cap N \in V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$. GCH holds in $V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$. Hence there is a bijection $\mathcal{P}(\aleph_n^V) \cap N \leftrightarrow \aleph_{n+1}^V$ in $V[A_* \upharpoonright (\aleph_{n+1}^V)^2]$ and hence in N.

Discussion and Remarks

To work with singular cardinals κ of *uncountable* cofinality, various finiteness properties in the construction have to be replaced by the property of being of cardinality $< cof(\kappa)$. This yields choiceless violations of SILVER's theorem.

Theorem 18. Let V be any ground model of ZFC + GCH and let λ be some cardinal in V. Then there is a model $N \supseteq V$ of the theory ZF + "GCH holds below \aleph_{ω_1} " + "there is a surjection from $\mathcal{P}(\aleph_{\omega_1})$ onto λ ". Moreover, the axiom of dependent choices DC holds in N.