Violating the Singular Cardinals Hypothesis Without Large Cardinals

CUNY Logic Workshop, November 18, 2011
by Peter Koepke (Bonn); joint work with Moti Gitik (Tel Aviv)

EASTON proved that the behavior of the exponential function 2^{κ} at regular cardinals κ is independent of the axioms of set theory except for some simple classical laws. The Singular Cardinals Hypothesis SCH implies that the Generalized Continuum Hypothesis GCH $2^{\kappa}=\kappa^{+}$holds at a singular cardinal κ if GCH holds below κ. Gitik and Mitchell have determined the consistency strength of the negation of the Singular Cardinals Hypothesis in Zermelo Fraenkel set theory with the axiom of choice AC in terms of large cardinals.
Arthur Apter and I pursue a program of determining such consistency strengths in Zermelo Fraenkel set theory without AC. Moti Gitik and I showed that the following negation of the Singular Cardinals Hypothesis is relatively consistent with Zermelo Fraenkel set theory: GCH holds below the first uncountable limit cardinal \aleph_{ω} and there is a surjection from its power set $\mathcal{P}\left(\aleph_{\omega}\right)$ onto some arbitrarily high cardinal λ.
This leads to the conjecture that without the axiom of choice and without assuming large cardinal strength a - surjectively modified - exponential function can take rather arbitrary values at all infinite cardinals.

Cantor's Continuum Hypothesis

Theorem 1. (Georg Cantor) The power set $\{x \mid x \subseteq \mathbb{N}\}$ of \mathbb{N} is not denumerable.

Theorem 2. $2^{\aleph_{0}} \geqslant \aleph_{1}$.

Conjecture 3. (Cantor's Continuum Hypothesis, CH) $2^{\aleph_{0}}=\aleph_{1}$.

Kurt Gödel proved the consistency of CH, assuming the consistency of the ZermeloFraenkel axioms ZF, by constructing the model L of constructible sets.

Theorem 4. $L \vDash \mathrm{CH}$.

Paul Cohen proved the opposite relative consistency

Theorem 5. Any (countable) model V of ZFC can be extended to a model $V[G]$ of $\mathrm{ZFC}+2^{\aleph_{0}}>\aleph_{1}$.

COHEN introduced the method of forcing to adjoin a characteristic function F to the ground model V satisfying

1. $F: \lambda \times \omega \rightarrow 2$ for some $\lambda \geqslant \aleph_{2}^{V}$
2. $\forall i<j<\lambda \quad \lambda n . F(i, n) \neq \lambda n . F(j, n) ;$ set $A_{i}=\lambda n . F(i, n)$

The COHEN partial order is essentially

$$
\left.P=\left\{\left(p_{i}\right)_{i<\lambda}\right) \mid \exists d \in[1, \omega) \exists D \in[\lambda]^{<\omega}\left(\left(\forall i \in D p_{i}: d \rightarrow 2\right) \wedge\left(\forall i \notin D p_{i}=\emptyset\right)\right)\right\}
$$

partially ordered by reverse inclusion:

$$
\left.\left.p=\left(p_{i}\right)_{i<\lambda}\right) \leqslant q=\left(q_{i}\right)_{i<\lambda}\right)(p \text { is stronger than } q) \text { iff } \forall i<\lambda p_{i} \supseteq q_{i}
$$

If $G \subseteq P$ is a "generic path" through P then $F=\bigcup_{p \in G, i<\lambda} i \times p_{i}$ is as required.

Fuzzifying the $\boldsymbol{A}_{\boldsymbol{i}}$

Define the symmetric difference of two functions $A, A^{\prime}: \operatorname{dom}(A)=\operatorname{dom}\left(A^{\prime}\right) \rightarrow 2$ by

$$
A \Delta A^{\prime}(\xi)=1 \text { iff } A(\xi) \neq A^{\prime}(\xi)
$$

For $A, A^{\prime}: \aleph_{0} \rightarrow 2$ define an equivalence relation \sim by

$$
A \sim A^{\prime} \text { iff } A \Delta A^{\prime} \in V
$$

Let $\tilde{A}=\left\{A^{\prime} \mid A^{\prime} \sim A\right\}$ be the \sim-equivalence class of A and let
$\vec{A}=\left(\tilde{A}_{i} \mid i<\lambda\right)$ be the sequence of equivalence classes of the COHEN reals.

A symmetric submodel

The model

$$
N=\operatorname{HOD}^{V[G]}\left(V \cup\{\vec{A}\} \cup \bigcup_{i<\lambda} \tilde{A}_{i}\right)
$$

consists of all sets which, in $V[G]$, are hereditarily definable from parameters in the transitive closure of $V \cup\{\vec{A}\}$.

Lemma 6. Every set $X \in N$ is definable in $V[G]$ in the following form: there are an \in formula $\varphi, x \in V, n<\omega$, and $i_{0}, \ldots, i_{l-1}<\lambda$ such that

$$
X=\left\{u \in V[G] \mid V[G] \vDash \varphi\left(u, x, \vec{A}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right)\right\} .
$$

Lemma 7. N is a model of ZF, and there is a surjection $f: \mathcal{P}\left(\aleph_{0}\right) \rightarrow \lambda$ in N defined by

$$
f(z)=\left\{\begin{array}{l}
i, \text { if } z \in \tilde{A}_{i} \\
0, \text { else. }
\end{array}\right.
$$

Approximating N

Lemma 8. (Approximation Lemma) Let $X \in N$ and $X \subseteq$ Ord. Then there are i_{0}, \ldots, $i_{l-1}<\lambda$ such that

$$
X \in V\left[A_{i_{0}}, \ldots, A_{i_{l-1}}\right] .
$$

Proof. Let $X=\left\{u \in \operatorname{Ord} \mid V[G] \vDash \varphi\left(u, x, \vec{A}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right)\right\}$.
Define

$$
\begin{aligned}
X^{\prime}=\{u \in \text { Ord } \mid & \text { there is } p=\left(p_{i}\right) \in P \text { such that } \\
& p_{i_{0}} \subseteq A_{i_{0}}, \ldots, p_{i_{-1}} \subseteq A_{i_{-1}}, \text { and } \\
& \left.p \Vdash \varphi\left(\stackrel{u}{u}, \check{x}, \tau, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{-1}}\right)\right\},
\end{aligned}
$$

where $\tau, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}$ are canonical names for $\vec{A}, A_{i_{0}}, \ldots, A_{i_{l-1}}$ resp.
Then $X^{\prime} \in V\left[A_{i_{0}}, \ldots, A_{\left.i_{-1}\right]}\right] . X \subseteq X^{\prime}$ is obvious.
$X^{\prime} \subseteq X$ uses an automorphism argument to show: whenever $p=\left(p_{i}\right)$ and $p^{\prime}=\left(p_{i}^{\prime}\right)$ are conditions with $p_{i_{0}} \subseteq A_{i_{0}}, \ldots, p_{i_{l-1}} \subseteq A_{i_{l-1}}$ and $p_{i_{0}}^{\prime} \subseteq A_{i_{0}}, \ldots, p_{i_{l-1}}^{\prime} \subseteq A_{i_{l-1}}$ then we cannot have

$$
p \Vdash \varphi\left(\check{u}, \check{x}, \tau, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right) \text { and } p^{\prime} \Vdash \neg \varphi\left(\check{u}, \check{x}, \tau, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right) .
$$

Wlog, p, p^{\prime} have the shape:

Define an automorphism $\pi:\{r \in P \mid r \leqslant p\} \leftrightarrow\left\{r^{\prime} \in P \mid r^{\prime} \leqslant p^{\prime}\right\}$:

Since the names $\check{u}, \check{x}, \tau, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}$ are invariant under π, we cannot have $p \Vdash \varphi$ and $\pi(p)=p^{\prime} \Vdash \neg \varphi$.

Lemma 9. If $\lambda \geqslant\left(2^{\aleph_{0}}\right)^{V}$ then there is no surjection $\mathcal{P}\left(\aleph_{0}\right) \rightarrow \lambda^{+}$in N.

Proof. By the Approximation Lemma the ground model V has λ names for elements in $\mathcal{P}^{N}\left(\aleph_{0}\right)$. A surjection $\mathcal{P}\left(\aleph_{0}\right) \rightarrow \lambda^{+}$in N would yield a surjection $\lambda \rightarrow\left(\lambda^{+}\right)^{N}$ in $V[G]$. But cardinals are preserved between V, N and $V[G]$.

Theorem 10. There is a model of $\mathrm{ZF}+\neg \mathrm{AC}$ with a surjection $\mathcal{P}\left(\aleph_{0}\right) \rightarrow \aleph_{\omega}$ and with no surjection $\mathcal{P}\left(\aleph_{0}\right) \rightarrow \aleph_{\omega+1}$. Hence

$$
\theta:=\theta\left(\aleph_{0}\right):=\sup \left\{\xi \mid \text { there is a surjection } \mathcal{P}\left(\aleph_{0}\right) \rightarrow \xi\right\}=\aleph_{\omega+1}
$$

Hausdorff's Generalized Continuum Hypothesis

FElix HaUsdorff conjectured an extension of CH

Conjecture 11. (Generalized Continuum Hypothesis, GCH)

$$
\forall \alpha 2^{\aleph_{\alpha}}=\aleph_{\alpha+1}
$$

Since GCH holds in GÖDEL's model L,

Theorem 12. GCH is independent of ZFC.

William B. Easton proved

Theorem 13. Let $E:$ Ord \rightarrow Ord be a sufficiently absolute function such that

- $E(\alpha)>\alpha$
- $\quad \alpha<\beta \rightarrow E(\alpha) \leqslant E(\beta)$
$-\quad \operatorname{Lim}(E(\alpha)) \rightarrow \operatorname{cof}(E(\alpha))>\aleph_{\alpha}$
Then there is a model $V[G]$ such that

$$
\forall \alpha\left(\aleph_{\alpha} \text { is regular } \rightarrow 2^{\aleph_{\alpha}}=\aleph_{E(\alpha)}\right)
$$

The Singular Cardinals Hypothesis

is / implies the statement

$$
(\mathrm{SCH}) \text { if } \kappa \text { is a singular strong limit cardinal then } 2^{\kappa}=\kappa^{+}
$$

Moti Gitik and Bill Mitchell showed

Theorem 14. The following two theories are equiconsistent:
$-\quad \mathrm{ZFC}+\neg \mathrm{SCH}$

- ZFC + there are "many" measurable cardinals

SCH without the Axiom of Choice

Theorem 15. The following theories are equiconsistent:
$-\quad$ ZF
$-\mathrm{ZF}+" \mathrm{GCH}$ holds below $\aleph_{\omega} "+$ "there is a surjection from $\mathcal{P}\left(\aleph_{\omega}\right)$ onto $\aleph_{\alpha} "$, for some fixed big ordinal α

This is a surjective failure of SCH , without requiring large cardinals. Injective failures possess high consistency strengths.

The forcing

Fix a ground model V of ZFC +GCH and let $\lambda=\aleph_{\alpha}$ be some cardinal in V.
The forcing $P_{0}=\left(P_{0}, \supseteq, \emptyset\right)$ adjoins one COHEN subset of \aleph_{n+1} for every $n<\omega$.

$$
P_{0}=\left\{p \mid \exists\left(\delta_{n}\right)_{n<\omega}\left(\forall n<\omega: \delta_{n} \in\left[\aleph_{n}, \aleph_{n+1}\right) \wedge p: \bigcup_{n<\omega}\left[\aleph_{n}, \delta_{n}\right) \rightarrow 2\right)\right\}
$$

The forcing $\left(P, \leqslant_{P}, \emptyset\right)$ is defined by

$$
\begin{aligned}
P=\left\{\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \mid\right. & \exists\left(\delta_{n}\right)_{n<\omega} \exists D \in[\lambda]^{<\omega}\left(\forall n<\omega: \delta_{n} \in\left[\aleph_{n}, \aleph_{n+1}\right),\right. \\
& p_{*}: \bigcup_{n<\omega}\left[\aleph_{n}, \delta_{n}\right)^{2} \rightarrow 2, \\
& \forall i \in D p_{i}: \bigcup_{n<\omega}\left[\aleph_{n}, \delta_{n}\right) \rightarrow 2 \wedge p_{i} \neq \emptyset, \\
& \forall i \in D a_{i} \in\left[\aleph_{\omega} \backslash \aleph_{0}\right]<\omega \wedge \forall n<\omega \operatorname{card}\left(a_{i} \cap\left[\aleph_{n}, \aleph_{n+1}\right)\right) \leqslant 1, \\
& \left.\left.\forall i \notin D a_{i}=p_{i}=\emptyset\right)\right\}
\end{aligned}
$$

P is partially ordered by

$$
p^{\prime}=\left(p_{*}^{\prime},\left(a_{i}^{\prime}, p_{i}^{\prime}\right)_{i<\lambda}\right) \leqslant_{P}\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right)=p
$$

iff
a) $p_{*}^{\prime} \supseteq p_{*}, \forall i<\lambda\left(a_{i}^{\prime} \supseteq a_{i} \wedge p_{i}^{\prime} \supseteq p_{i}\right)$,
b) $\forall i<\lambda \forall n<\omega \forall \xi \in a_{i} \cap\left[\aleph_{n}, \aleph_{n+1}\right) \forall \zeta \in \operatorname{dom}\left(p_{i}^{\prime} \backslash p_{i}\right) \cap\left[\aleph_{n}, \aleph_{n+1}\right) p_{i}^{\prime}(\zeta)=p_{*}^{\prime}(\xi)(\zeta)$, and
c) $\forall j \in \operatorname{supp}(p)\left(a_{j}^{\prime} \backslash a_{j}\right) \cap \bigcup_{i \in \operatorname{supp}(p), i \neq j} a_{i}^{\prime}=\emptyset$.

Lemma 16. P satisfies the $\aleph_{\omega+2}$-chain condition.

Let G be V-generic for P.

Define

$$
\begin{aligned}
G_{*} & =\left\{p_{*} \in P_{*} \mid\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in G\right\} \\
A_{*} & =\bigcup G_{*}: \bigcup_{n<\omega}\left[\aleph_{n}, \aleph_{n+1}\right)^{2} \rightarrow 2 \\
A_{*}(\xi) & =\left\{\left(\zeta, A_{*}(\xi, \zeta)\right) \mid \zeta \in\left[\aleph_{n}, \aleph_{n+1}\right)\right\}:\left[\aleph_{n}, \aleph_{n+1}\right) \rightarrow 2, \text { for } \aleph_{n} \leqslant \xi<\aleph_{n+1} \\
A_{i} & =\bigcup\left\{p_{i} \mid\left(p_{*},\left(a_{j}, p_{j}\right)_{j<\lambda}\right) \in G\right\}:\left[\aleph_{0}, \aleph_{\omega}\right) \rightarrow 2
\end{aligned}
$$

Fuzzifying the $\boldsymbol{A}_{\boldsymbol{i}}$

For functions $A, A^{\prime}:\left(\aleph_{\omega} \backslash \aleph_{0}\right) \rightarrow 2$ define an equivalence relation \sim by

$$
A \sim A^{\prime} \text { iff } \exists n<\omega\left(\left(A \Delta A^{\prime}\right) \upharpoonright \aleph_{n+1} \in V\left[G_{*}\right] \wedge\left(A \Delta A^{\prime}\right) \upharpoonright\left[\aleph_{n+1}, \aleph_{\omega}\right) \in V\right) .
$$

Let $\tilde{A}=\left\{A^{\prime} \mid A^{\prime} \sim A\right\}$ be the \sim-equivalence class of A.

The symmetric submodel

Set

$$
\begin{aligned}
& -\quad T_{*}=\mathcal{P}(<\kappa)^{V\left[A_{*}\right]}, \text { setting } \kappa=\aleph_{\omega}^{V} ; \\
& -\quad \vec{A}=\left(\tilde{A}_{i} \mid i<\lambda\right) .
\end{aligned}
$$

The final model is

$$
N=\operatorname{HOD}^{V[G]}\left(V \cup\left\{T_{*}, \vec{A}\right\} \cup T_{*} \cup \bigcup_{i<\lambda} \tilde{A}_{i}\right)
$$

consisting of all sets which, in $V[G]$ are hereditarily definable from parameters in the transitive closure of $V \cup\left\{T_{*}, \vec{A}\right\}$.

Lemma 17. Every set $X \in N$ is definable in $V[G]$ in the following form: there are an \in formula $\varphi, x \in V, n<\omega$, and $i_{0}, \ldots, i_{l-1}<\lambda$ such that

$$
X=\left\{u \in V[G] \mid V[G] \vDash \varphi\left(u, x, T_{*}, \vec{A}, A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right)\right\}
$$

Lemma 18. N is a model of ZF, and there is a surjection $f: \mathcal{P}(\kappa) \rightarrow \lambda$ in N defined by

$$
f(z)=\left\{\begin{array}{l}
i, \text { if } z \in \tilde{A}_{i} \\
0, \text { else }
\end{array}\right.
$$

Approximating N

Lemma 19. Let $X \in N$ and $X \subseteq$ Ord. Then there are $n<\omega$ and $i_{0}, \ldots, i_{l-1}<\lambda$ such that

$$
X \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{\left.i_{-1}\right]}\right] .
$$

Proof. Let

$$
X=\left\{u \in \operatorname{Ord} \mid V[G] \vDash \varphi\left(u, x, T_{*}, \vec{A}, A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right)\right\} .
$$

By taking n sufficiently large, we may assume that

$$
\forall j<k<l \forall m \in[n, \omega) \forall \delta \in\left[\aleph_{m}, \aleph_{m+1}\right): A_{i_{j}} \upharpoonright\left[\delta, \aleph_{m+1}\right) \neq A_{i_{k}} \upharpoonright\left[\delta, \aleph_{m+1}\right) .
$$

For $j<l$ set

$$
a_{i_{j}}^{*}=\left\{\xi \mid \exists m \leqslant n \exists \delta \in\left[\aleph_{m}, \aleph_{m+1}\right): A_{i_{j}} \upharpoonright\left[\delta, \aleph_{m+1}\right)=A_{*}(\xi) \upharpoonright\left[\delta, \aleph_{m+1}\right)\right\}
$$

where $A_{*}(\xi)=\left\{\left(\zeta, A_{*}(\xi, \zeta)\right) \mid(\xi, \zeta) \in \operatorname{dom}\left(A_{*}\right)\right\}$.

Define

$$
\begin{aligned}
X^{\prime}=\{u \in \text { Ord } \mid & \text { there is } p=\left(p_{*},\left(a_{i}, p_{i}\right)_{i<\lambda}\right) \in P \text { such that } \\
& p_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2} \subseteq A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, \\
& a_{i_{0}} \supseteq a_{i_{0}}^{*}, \ldots, a_{i_{l-1}} \supseteq a_{l_{-1}}^{*}, \\
& p_{i_{0}} \subseteq A_{i_{0}}, \ldots, p_{i_{l-1}} \subseteq A_{i_{l-1}}, \text { and } \\
& \left.p \Vdash \varphi\left(\tilde{u}, \check{x}, \sigma, \tau, \dot{A} \upharpoonright\left(\aleph_{n+1}\right)^{2}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right)\right\},
\end{aligned}
$$

where $\sigma, \tau, \dot{A}, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}$ are canonical names for $T_{*}, \vec{A}, A_{*}, A_{i_{0}}, \ldots, A_{i_{l-1}}$ resp.
Then $X^{\prime} \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]$ and $X \subseteq X^{\prime}$.
The converse direction, $X^{\prime} \subseteq X$, uses an automorphism argument to show: whenever $p=$ $\left(p_{i}\right)$ and $p^{\prime}=\left(p_{i}^{\prime}\right)$ are conditions as in the definition of X^{\prime} then we cannot have

$$
p \Vdash \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{-1}}\right) \text { and } p^{\prime} \Vdash \neg \varphi\left(\check{u}, \check{x}, \sigma, \tau, \dot{A}_{i_{0}}, \ldots, \dot{A}_{i_{l-1}}\right) \text {. }
$$

Wrapping up

Lemma 20. Let $n<\omega$ and $i_{0}, \ldots, i_{l-1}<\lambda$. Then cardinals are absolute between V and $V\left[A^{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]$.

Lemma 21. Cardinals are absolute between N and V, and in particular $\kappa=\aleph_{\omega}^{V}=\aleph_{\omega}^{N}$.

Proof. If not, then there is a function $f \in N$ which collapses a cardinal in V. By Lemma $19, f$ is an element of some model $V\left[A_{*}\left\lceil\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots, A_{i_{l-1}}\right]\right.$ as above. But this contradicts Lemma 20.

Lemma 22. GCH holds in N below \aleph_{ω}.

Proof. If $X \subseteq \aleph_{n}$ and $X \in N$ then X is an element of some model $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}, A_{i_{0}}, \ldots\right.$, $\left.A_{i_{l-1}}\right]$ as above. Since $A_{i_{0}}, \ldots, A_{i_{l-1}}$ do not adjoin new subsets of \aleph_{n} we have that

$$
X \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]
$$

Hence $\mathcal{P}\left(\aleph_{n}^{V}\right) \cap N \in V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$. GCH holds in $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$. Hence there is a bijection $\mathcal{P}\left(\aleph_{n}^{V}\right) \cap N \leftrightarrow \aleph_{n+1}^{V}$ in $V\left[A_{*} \upharpoonright\left(\aleph_{n+1}^{V}\right)^{2}\right]$ and hence in N.

Discussion and Remarks

To work with singular cardinals κ of uncountable cofinality, various finiteness properties in the construction have to be replaced by the property of being of cardinality $<\operatorname{cof}(\kappa)$. This yields choiceless violations of SILVER's theorem.

Theorem 23. Let V be any ground model of $\mathrm{ZFC}+\mathrm{GCH}$ and let λ be some cardinal in V. Then there is a model $N \supseteq V$ of the theory $\mathrm{ZF}+$ "GCH holds below $\aleph_{\omega_{1}}$ " + "there is a surjection from $\mathcal{P}\left(\aleph_{\omega_{1}}\right)$ onto λ ". Moreover, the axiom of dependent choices DC holds in N.

Conjecture 24. Let $E:$ Ord \rightarrow Ord be a sufficiently absolute function such that
$-\quad E(\alpha) \geqslant \alpha+2$
$-\quad \alpha<\beta \rightarrow E(\alpha) \leqslant E(\beta)$
Then there is a model $V[G]$ in which for all α

$$
\theta\left(\aleph_{\alpha}\right):=\sup \left\{\xi \mid \text { there is a surjection } \mathcal{P}\left(\aleph_{\alpha}\right) \rightarrow \xi\right\}=\aleph_{E(\alpha)}
$$

THANK YOU

