Characterizations of Pretameness

Regula Krapf

joint work with Peter Holy and Philipp Schlicht

University of Bonn

December 8, 2015

Regula Krapf (University of Bonn) Characterizations of Pretameness

Content

Motivation

Pretameness

- OPreservation of Separation
- The extension maximality principle
- 5 The forcing theorem
- 🜀 Niceness
- 🕖 Conclusion

Open questions

Let M be a countable transitive model of ZFC. In set forcing, we use a partial order $\mathbb{P} \in M$ to construct a new model M[G], where G is \mathbb{P} -generic over M.

Theorem

If M is a model of ZFC and G is \mathbb{P} -generic over M then $M[G] \models ZFC$.

Set forcing

The proof uses

Theorem (Forcing theorem)

- The forcing relation p ⊢^M_P φ(σ₀,...,σ_{n-1}) is definable over M (Definability lemma).
- If $M[G] \models \varphi(\sigma_0^G, \dots, \sigma_{n-1}^G)$ then there is $p \in G$ such that $p \Vdash_{\mathbb{P}}^M \varphi(\sigma_0, \dots, \sigma_{n-1})$ (Truth lemma).

One can generalize forcing and consider (definable) proper classes $\mathbb{P} \subseteq M$.

Observation

Let $\mathbb{P} = \operatorname{Col}(\omega, \operatorname{Ord}^M)$ denote the forcing notion whose conditions are finite functions $p : \operatorname{dom}(p) \to \operatorname{Ord}^M$, $\operatorname{dom}(p) \subseteq \omega$ finite, ordered by reverse inclusion. Then \mathbb{P} adds a cofinal function $\omega \to \operatorname{Ord}^M$. In particular, Replacement fails.

Class forcing

... but it can get even worse:

Theorem (Holy, K., Lücke, Njegomir, Schlicht 2015)

Let M be a countable transitive model of ZF^- . There is a partial order $\mathbb{P} \subseteq M$ which is definable over M such that \mathbb{P} does not satisfy the forcing theorem for atomic formulae over M.

... and even worse than that:

Theorem (Holy, K., Lücke, Njegomir, Schlicht 2015)

There are countable transitive models of ZF^- for which there is a partial order \mathbb{P} that is definable over M such that \mathbb{P} does not satisfy the truth lemma for atomic formulae over M.

Class forcing

... but it can get even worse:

Theorem (Holy, K., Lücke, Njegomir, Schlicht 2015)

Let M be a countable transitive model of ZF^- . There is a partial order $\mathbb{P} \subseteq M$ which is definable over M such that \mathbb{P} does not satisfy the forcing theorem for atomic formulae over M.

... and even worse than that:

Theorem (Holy, K., Lücke, Njegomir, Schlicht 2015)

There are countable transitive models of ZF^- for which there is a partial order \mathbb{P} that is definable over M such that \mathbb{P} does not satisfy the truth lemma for atomic formulae over M.

Motivation

Question

- O Under what conditions does a class forcing satisfy the forcing theorem?
- Output the preservation of the axioms of ZFC (resp. ZF(C)⁻?)

A general setting for class forcing

We study class forcing in a second-order context.

Definition

We denote by GB^- the theory in the two-sorted language with variables for sets and classes, with

- set axioms given by ZF⁻ with class parameters allowed in the schemata of Separation and Collection
- class axioms of extensionality, foundation and first-order class comprehension (i.e. involving only set quantifiers).

Somtimes we additionally assume that C contains a **good well-order** \prec of M, i.e. \prec is a global well-order such that $\{y \mid y \prec x\} \in M$ for each $x \in M$.

Examples are $\langle M, \text{Def}(M) \rangle$, where M is a countable transitive model of ZF⁻, and models of Kelley-Morse class theory KM.

A general setting for class forcing

We study class forcing in a second-order context.

Definition

We denote by GB^- the theory in the two-sorted language with variables for sets and classes, with

- set axioms given by ZF⁻ with class parameters allowed in the schemata of Separation and Collection
- class axioms of extensionality, foundation and first-order class comprehension (i.e. involving only set quantifiers).

Somtimes we additionally assume that C contains a **good well-order** \prec of M, i.e. \prec is a global well-order such that $\{y \mid y \prec x\} \in M$ for each $x \in M$.

Examples are $\langle M, \text{Def}(M) \rangle$, where M is a countable transitive model of ZF⁻, and models of Kelley-Morse class theory KM.

A general setting for class forcing

We study class forcing in a second-order context.

Definition

We denote by GB^- the theory in the two-sorted language with variables for sets and classes, with

- set axioms given by ZF⁻ with class parameters allowed in the schemata of Separation and Collection
- class axioms of extensionality, foundation and first-order class comprehension (i.e. involving only set quantifiers).

Somtimes we additionally assume that C contains a **good well-order** \prec of M, i.e. \prec is a global well-order such that $\{y \mid y \prec x\} \in M$ for each $x \in M$. Examples are $\langle M, \text{Def}(M) \rangle$, where M is a countable transitive model of

ZF⁻, and models of Kelley-Morse class theory KM.

Class forcing extensions

From now on, let $\mathbb{M} = \langle M, \mathcal{C} \rangle$ be a countable transitive model of GB⁻. A class forcing $\mathbb{P} = \langle P, \leq_{\mathbb{P}}, \mathbb{1}_{\mathbb{P}} \rangle$ is a preorder such that $\leq_{\mathbb{P}}, P \in \mathcal{C}$. \mathbb{P} -names are defined in the usual way by recursion.

• $M^{\mathbb{P}}$ denotes the set of \mathbb{P} -names which are in M (set names). • $\mathcal{C}^{\mathbb{P}}$ denotes the set of \mathbb{P} -names which are in \mathcal{C} (class names).

Class forcing extensions

From now on, let $\mathbb{M} = \langle M, \mathcal{C} \rangle$ be a countable transitive model of GB⁻. A class forcing $\mathbb{P} = \langle P, \leq_{\mathbb{P}}, \mathbb{1}_{\mathbb{P}} \rangle$ is a preorder such that $\leq_{\mathbb{P}}, P \in \mathcal{C}$. \mathbb{P} -names are defined in the usual way by recursion.

M^ℙ denotes the set of ℙ-names which are in *M* (set names). *C*^ℙ denotes the set of ℙ-names which are in *C* (class names).

A filter G is \mathbb{P} -generic over \mathbb{M} if it meets all dense subsets of M which are in C. Evaluations of names are defined as usual. We set $\mathbb{M}[G] = \langle M[G], C[G] \rangle$, where

The forcing theorem

Let \mathbb{P} be a class forcing. We write $p \Vdash_{\mathbb{P}} \varphi(\sigma, \Gamma)$ if for every \mathbb{P} -generic filter $G, \mathbb{M}[G] \models \varphi(\sigma^G, \Gamma^G)$.

Definition

We say that P satisfies the forcing theorem over M, if for every L_∈-formula φ(x, C) allowing class parameters and for every Γ ∈ C^P,
{⟨p,σ⟩ ∈ P × M^P | p ⊢_P φ(σ, Γ)} ∈ C (definability lemma)
whenever G is P-generic over M and σ ∈ M^P and Γ ∈ C^P such that M[G] ⊨ φ(σ^G, Γ^G) then there is p ∈ G with p ⊢_P φ(σ, Γ) (truth lemma).

The following notion was introduced by Sy Friedman.

Definition

We say that class forcing \mathbb{P} for \mathbb{M} is **pretame** for \mathbb{M} if for every $p \in \mathbb{P}$ and for every sequence of dense classes $\langle D_i | i \in I \rangle$ such that $I \in M$ and $\{\langle p, i \rangle | i \in I \land p \in D_i\} \in C$, there is $q \leq_{\mathbb{P}} p$ and $\langle d_i | i \in I \rangle \in M$ such that for every $i \in I$, $d_i \subseteq D_i$ and d_i is predense below q.

Theorem (S. Friedman)

Let \mathbb{M} be a model of GB^- such that either $M \models$ Power set, or \mathcal{C} contains a good well-order. Then the following statements hold for every notion of class forcing \mathbb{P} :

- **(**) If \mathbb{P} is pretame then \mathbb{P} satisfies the forcing theorem.
- **2** If \mathbb{P} is pretame and G is \mathbb{P} -generic over \mathbb{M} then $\mathbb{M}[G]$ satisfies GB^- .
- Suppose that for every p ∈ P there is a P-generic filter G such that p ∈ G and M[G] ⊨ GB⁻, then P is pretame.

2 If \mathbb{P} is pretame and G is \mathbb{P} -generic over \mathbb{M} then $\mathbb{M}[G]$ satisfies GB^- .

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^G \exists y \varphi(x, y, \Gamma^G)$. Take $p \in G$ such that $p \Vdash_{\mathbb{P}} \forall x \in \sigma \exists y \varphi(x, y, \Gamma)$. For $\langle \tau, q \rangle \in \sigma$ let

$$D_{\tau,q} = \{ r \leq_{\mathbb{P}} p \mid \exists \pi \in M^{\mathbb{P}}(r \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)) \lor r \bot_{\mathbb{P}} q \}.$$

Then each $D_{\tau,q}$ is dense below p. Take $r \in G$ and $\langle d_{\tau,q} \mid \langle \tau, q \rangle \in \sigma \rangle \in M$ such that each $d_{\tau,q} \subseteq D_{\tau,q}$ is predense below r. Let $\alpha \in \operatorname{Ord}^M$ minimal such that for each $\langle \tau, q \rangle \in \sigma$ and each $s \in d_{\tau,q}$ with $s \leq_{\mathbb{P}} q$ there is $\pi \in V_{\alpha}^M$ with $s \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)$.Put

$$\mu = \{ \langle \pi, s \rangle \mid \pi \in \mathsf{V}^{\mathcal{M}}_{\alpha} \land \exists \langle \tau, q \rangle \in \sigma(s \in d_{\tau,q} \land s \leq_{\mathbb{P}} q \land s \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)) \}.$$

2 If \mathbb{P} is pretame and G is \mathbb{P} -generic over \mathbb{M} then $\mathbb{M}[G]$ satisfies GB^- .

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^G \exists y \varphi(x, y, \Gamma^G)$. Take $p \in G$ such that $p \Vdash_{\mathbb{P}} \forall x \in \sigma \exists y \varphi(x, y, \Gamma)$. For $\langle \tau, q \rangle \in \sigma$ let

$$D_{\tau,q} = \{ r \leq_{\mathbb{P}} p \mid \exists \pi \in M^{\mathbb{P}}(r \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)) \lor r \bot_{\mathbb{P}} q \}.$$

Then each $D_{\tau,q}$ is dense below p. Take $r \in G$ and $\langle d_{\tau,q} \mid \langle \tau, q \rangle \in \sigma \rangle \in M$ such that each $d_{\tau,q} \subseteq D_{\tau,q}$ is predense below r. Let $\alpha \in \mathrm{Ord}^M$ minimal such that for each $\langle \tau, q \rangle \in \sigma$ and each $s \in d_{\tau,q}$ with $s \leq_{\mathbb{P}} q$ there is $\pi \in V^M_{\alpha}$ with $s \models_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)$.Put

 $\mu = \{ \langle \pi, s \rangle \mid \pi \in \mathsf{V}^{\mathcal{M}}_{\alpha} \land \exists \langle \tau, q \rangle \in \sigma(s \in d_{\tau,q} \land s \leq_{\mathbb{P}} q \land s \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)) \}.$

2 If \mathbb{P} is pretame and G is \mathbb{P} -generic over \mathbb{M} then $\mathbb{M}[G]$ satisfies GB^- .

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^G \exists y \varphi(x, y, \Gamma^G)$. Take $p \in G$ such that $p \Vdash_{\mathbb{P}} \forall x \in \sigma \exists y \varphi(x, y, \Gamma)$. For $\langle \tau, q \rangle \in \sigma$ let

$$D_{\tau,\boldsymbol{q}} = \{ \boldsymbol{r} \leq_{\mathbb{P}} \boldsymbol{p} \mid \exists \pi \in M^{\mathbb{P}}(\boldsymbol{r} \Vdash_{\mathbb{P}} \varphi(\tau,\pi,\Gamma)) \lor \boldsymbol{r} \bot_{\mathbb{P}} \boldsymbol{q} \}.$$

Then each $D_{\tau,q}$ is dense below p. Take $r \in G$ and $\langle d_{\tau,q} \mid \langle \tau, q \rangle \in \sigma \rangle \in M$ such that each $d_{\tau,q} \subseteq D_{\tau,q}$ is predense below r. Let $\alpha \in \operatorname{Ord}^M$ minimal such that for each $\langle \tau, q \rangle \in \sigma$ and each $s \in d_{\tau,q}$ with $s \leq_{\mathbb{P}} q$ there is $\pi \in V^M_\alpha$ with $s \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)$. Put

 $\mu = \{ \langle \pi, s \rangle \mid \pi \in \mathsf{V}^{\mathcal{M}}_{\alpha} \land \exists \langle \tau, q \rangle \in \sigma(s \in d_{\tau,q} \land s \leq_{\mathbb{P}} q \land s \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)) \}.$

2 If \mathbb{P} is pretame and G is \mathbb{P} -generic over \mathbb{M} then $\mathbb{M}[G]$ satisfies GB^- .

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^G \exists y \varphi(x, y, \Gamma^G)$. Take $p \in G$ such that $p \Vdash_{\mathbb{P}} \forall x \in \sigma \exists y \varphi(x, y, \Gamma)$. For $\langle \tau, q \rangle \in \sigma$ let

$$D_{\tau,\boldsymbol{q}} = \{ \boldsymbol{r} \leq_{\mathbb{P}} \boldsymbol{p} \mid \exists \pi \in M^{\mathbb{P}}(\boldsymbol{r} \Vdash_{\mathbb{P}} \varphi(\tau,\pi,\Gamma)) \lor \boldsymbol{r} \bot_{\mathbb{P}} \boldsymbol{q} \}.$$

Then each $D_{\tau,q}$ is dense below p. Take $r \in G$ and $\langle d_{\tau,q} \mid \langle \tau, q \rangle \in \sigma \rangle \in M$ such that each $d_{\tau,q} \subseteq D_{\tau,q}$ is predense below r. Let $\alpha \in \operatorname{Ord}^M$ minimal such that for each $\langle \tau, q \rangle \in \sigma$ and each $s \in d_{\tau,q}$ with $s \leq_{\mathbb{P}} q$ there is $\pi \in V^M_\alpha$ with $s \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)$.Put

$$u = \{ \langle \pi, s \rangle \mid \pi \in \mathsf{V}^{\mathcal{M}}_{\alpha} \land \exists \langle \tau, q \rangle \in \sigma(s \in d_{\tau,q} \land s \leq_{\mathbb{P}} q \land s \Vdash_{\mathbb{P}} \varphi(\tau, \pi, \Gamma)) \}.$$

Recall that in every $\operatorname{Col}(\omega, \operatorname{Ord})$ -generic extension $\mathbb{M}[G]$ there is a cofinal function $F : \omega \to \operatorname{Ord}^M$. Actually, even Separation fails: Let G be \mathbb{P} -generic over M for $\mathbb{P} = \operatorname{Col}(\omega, \operatorname{Ord})$. Consider

 $X = \{n \in \omega \mid F(n) \text{ even}\}.$

Let $\dot{F} \in C^{\mathbb{P}}$ be a class name for $F, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \sigma = \{n \in \check{\omega} \mid \dot{F}(\check{n}) \text{ even}\}$. Let $\alpha = \operatorname{rank}(\sigma)$ and $q \leq_{\mathbb{P}} p$ in G such that $q(n) = \alpha$ for some $n \in \omega$. Let $\pi : \mathbb{P} \to \mathbb{P}$ swap α and $\alpha + 1$. Then $\pi^*(\sigma) = \sigma$ where π^* is the map $M^{\mathbb{P}} \to M^{\mathbb{P}}$ derived from π . Note that $G' = \pi''G$ is \mathbb{P} -generic with $\pi(q) \in G'$ and $\sigma^G = \sigma^{G'}$. But

$$n\in\sigma^{\mathsf{G}}\Longleftrightarrow\alpha \text{ even } \Longleftrightarrow\alpha+1 \text{ odd } \Longleftrightarrow n\notin\sigma^{\mathsf{G}'}.$$

Observation

In $Col(\omega, Ord)$ -generic extensions Separation fails.

Regula Krapf (University of Bonn)

Recall that in every $\operatorname{Col}(\omega, \operatorname{Ord})$ -generic extension $\mathbb{M}[G]$ there is a cofinal function $F : \omega \to \operatorname{Ord}^M$. Actually, even Separation fails: Let G be \mathbb{P} -generic over M for $\mathbb{P} = \operatorname{Col}(\omega, \operatorname{Ord})$. Consider

 $X = \{n \in \omega \mid F(n) \text{ even}\}.$

Let $\dot{F} \in C^{\mathbb{P}}$ be a class name for $F, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \sigma = \{n \in \check{\omega} \mid \dot{F}(\check{n}) \text{ even}\}$. Let $\alpha = \operatorname{rank}(\sigma)$ and $q \leq_{\mathbb{P}} p$ in G such that $q(n) = \alpha$ for some $n \in \omega$. Let $\pi : \mathbb{P} \to \mathbb{P}$ swap α and $\alpha + 1$. Then $\pi^*(\sigma) = \sigma$ where π^* is the map $M^{\mathbb{P}} \to M^{\mathbb{P}}$ derived from π . Note that $G' = \pi''G$ is \mathbb{P} -generic with $\pi(q) \in G'$ and $\sigma^G = \sigma^{G'}$. But

$$n\in\sigma^{\mathsf{G}}\Longleftrightarrow\alpha \text{ even } \Longleftrightarrow\alpha+1 \text{ odd } \Longleftrightarrow n\notin\sigma^{\mathsf{G}'}.$$

Observation

In $Col(\omega, Ord)$ -generic extensions Separation fails.

Regula Krapf (University of Bonn)

Recall that in every $\operatorname{Col}(\omega, \operatorname{Ord})$ -generic extension $\mathbb{M}[G]$ there is a cofinal function $F : \omega \to \operatorname{Ord}^M$. Actually, even Separation fails: Let G be \mathbb{P} -generic over M for $\mathbb{P} = \operatorname{Col}(\omega, \operatorname{Ord})$. Consider

$$X = \{n \in \omega \mid F(n) \text{ even}\}.$$

Let $\dot{F} \in C^{\mathbb{P}}$ be a class name for $F, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \sigma = \{n \in \check{\omega} \mid \dot{F}(\check{n}) \text{ even}\}$. Let $\alpha = \operatorname{rank}(\sigma)$ and $q \leq_{\mathbb{P}} p$ in G such that $q(n) = \alpha$ for some $n \in \omega$. Let $\pi : \mathbb{P} \to \mathbb{P}$ swap α and $\alpha + 1$. Then $\pi^*(\sigma) = \sigma$ where π^* is the map $M^{\mathbb{P}} \to M^{\mathbb{P}}$ derived from π . Note that $G' = \pi''G$ is \mathbb{P} -generic with $\pi(q) \in G'$ and $\sigma^G = \sigma^{G'}$. But

$$n\in\sigma^{G}\Longleftrightarrow\alpha\text{ even }\Longleftrightarrow\alpha+1\text{ odd }\Longleftrightarrow n\notin\sigma^{G'}.$$

Observation

In $Col(\omega, Ord)$ -generic extensions Separation fails.

Regula Krapf (University of Bonn)

Recall that in every $\operatorname{Col}(\omega, \operatorname{Ord})$ -generic extension $\mathbb{M}[G]$ there is a cofinal function $F : \omega \to \operatorname{Ord}^M$. Actually, even Separation fails: Let G be \mathbb{P} -generic over M for $\mathbb{P} = \operatorname{Col}(\omega, \operatorname{Ord})$. Consider

$$X = \{n \in \omega \mid F(n) \text{ even}\}.$$

Let $\dot{F} \in C^{\mathbb{P}}$ be a class name for $F, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \sigma = \{n \in \check{\omega} \mid \dot{F}(\check{n}) \text{ even}\}$. Let $\alpha = \operatorname{rank}(\sigma)$ and $q \leq_{\mathbb{P}} p$ in G such that $q(n) = \alpha$ for some $n \in \omega$. Let $\pi : \mathbb{P} \to \mathbb{P}$ swap α and $\alpha + 1$. Then $\pi^*(\sigma) = \sigma$ where π^* is the map $M^{\mathbb{P}} \to M^{\mathbb{P}}$ derived from π . Note that $G' = \pi''G$ is \mathbb{P} -generic with $\pi(q) \in G'$ and $\sigma^G = \sigma^{G'}$. But

$$\textit{n} \in \sigma^{\textit{G}} \Longleftrightarrow \alpha \text{ even } \Longleftrightarrow \alpha + 1 \text{ odd } \Longleftrightarrow \textit{n} \notin \sigma^{\textit{G}'}.$$

Observation

In $Col(\omega, Ord)$ -generic extensions Separation fails.

Regula Krapf (University of Bonn)

Recall that in every $\operatorname{Col}(\omega, \operatorname{Ord})$ -generic extension $\mathbb{M}[G]$ there is a cofinal function $F : \omega \to \operatorname{Ord}^M$. Actually, even Separation fails: Let G be \mathbb{P} -generic over M for $\mathbb{P} = \operatorname{Col}(\omega, \operatorname{Ord})$. Consider

$$X = \{n \in \omega \mid F(n) \text{ even}\}.$$

Let $\dot{F} \in C^{\mathbb{P}}$ be a class name for $F, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \sigma = \{n \in \check{\omega} \mid \dot{F}(\check{n}) \text{ even}\}$. Let $\alpha = \operatorname{rank}(\sigma)$ and $q \leq_{\mathbb{P}} p$ in G such that $q(n) = \alpha$ for some $n \in \omega$. Let $\pi : \mathbb{P} \to \mathbb{P}$ swap α and $\alpha + 1$. Then $\pi^*(\sigma) = \sigma$ where π^* is the map $M^{\mathbb{P}} \to M^{\mathbb{P}}$ derived from π . Note that $G' = \pi''G$ is \mathbb{P} -generic with $\pi(q) \in G'$ and $\sigma^G = \sigma^{G'}$. But

$$\textit{n} \in \sigma^{\textit{G}} \Longleftrightarrow \alpha \text{ even } \Longleftrightarrow \alpha + 1 \text{ odd } \Longleftrightarrow \textit{n} \notin \sigma^{\textit{G}'}.$$

Observation

In $Col(\omega, Ord)$ -generic extensions Separation fails.

Regula Krapf (University of Bonn)

Characterizations of Pretameness

December 8, 2015 14 / 34

Recall that in every $\operatorname{Col}(\omega, \operatorname{Ord})$ -generic extension $\mathbb{M}[G]$ there is a cofinal function $F : \omega \to \operatorname{Ord}^M$. Actually, even Separation fails: Let G be \mathbb{P} -generic over M for $\mathbb{P} = \operatorname{Col}(\omega, \operatorname{Ord})$. Consider

$$X = \{n \in \omega \mid F(n) \text{ even}\}.$$

Let $\dot{F} \in C^{\mathbb{P}}$ be a class name for $F, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \sigma = \{n \in \check{\omega} \mid \dot{F}(\check{n}) \text{ even}\}$. Let $\alpha = \operatorname{rank}(\sigma)$ and $q \leq_{\mathbb{P}} p$ in G such that $q(n) = \alpha$ for some $n \in \omega$. Let $\pi : \mathbb{P} \to \mathbb{P}$ swap α and $\alpha + 1$. Then $\pi^*(\sigma) = \sigma$ where π^* is the map $M^{\mathbb{P}} \to M^{\mathbb{P}}$ derived from π . Note that $G' = \pi''G$ is \mathbb{P} -generic with $\pi(q) \in G'$ and $\sigma^G = \sigma^{G'}$. But

$$n \in \sigma^{\mathsf{G}} \iff \alpha \text{ even } \iff \alpha + 1 \text{ odd } \iff n \notin \sigma^{\mathsf{G}'}.$$

Question

Does the preservation of Separation in a class-generic extension already imply the preservation of Replacement?

Regula Krapf (University of Bonn)

Characterizations of Pretameness

December 8, 2015 15 / 34

Theorem

Let $\mathbb{M} = \langle M, C \rangle$ be a countable transitive model of GB^- such that C contains a good well-order \prec . Let $\mathbb{P} \in C$ be a class forcing which satisfies the forcing theorem and let G be \mathbb{P} -generic over \mathbb{M} . If $\mathbb{M}[G]$ satisifies Separation, then $\mathbb{M}[G]$ also satisfies Replacement.

To prove this, we first need

Lemma

Suppose that M satisfies Power Set, or C contains a good well-order. Let \mathbb{P} be a class forcing and G be \mathbb{P} -generic over \mathbb{M} . Then Replacement fails in $\mathbb{M}[G]$ if and only if there is $\kappa \in \operatorname{Ord}^M$ such that $\mathcal{C}[G]$ contains a cofinal function $\kappa \to \operatorname{Ord}^M$.

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^{G} \exists y \varphi(x, y, \Gamma^{G})$ and consider

 $F(x) = \min\{\alpha \in \operatorname{Ord}^{M} \mid \exists \mu \in (V_{\alpha})^{M} \cap M^{\mathbb{P}} \varphi(x, \mu^{G}, \Gamma^{G})\}$

for $x \in \sigma^{\mathsf{G}}$. If F is not cofinal in $\operatorname{Ord}^{\mathsf{M}}$ then $\operatorname{ran}(F) \subseteq \alpha$ for some $\alpha \in \operatorname{Ord}^{\mathsf{M}}$. But then $\mathbb{M}[G] \models \forall x \in \sigma^{\mathsf{G}} \exists y \in \tau^{\mathsf{G}} \varphi(x, y, \Gamma^{\mathsf{G}})$, where $\tau = \{ \langle \mu, \mathbb{1}_{\mathbb{P}} \rangle \mid \mu \in (\mathsf{V}_{\alpha})^{\mathsf{M}} \cap M^{\mathbb{P}} \}$. \dashv

Theorem

Let $\mathbb{M} = \langle M, C \rangle$ be a countable transitive model of GB^- such that C contains a good well-order \prec . Let $\mathbb{P} \in C$ be a class forcing which satisfies the forcing theorem and let G be \mathbb{P} -generic over \mathbb{M} . If $\mathbb{M}[G]$ satisifies Separation, then $\mathbb{M}[G]$ also satisfies Replacement.

To prove this, we first need

Lemma

Suppose that M satisfies Power Set, or C contains a good well-order. Let \mathbb{P} be a class forcing and G be \mathbb{P} -generic over \mathbb{M} . Then Replacement fails in $\mathbb{M}[G]$ if and only if there is $\kappa \in \operatorname{Ord}^{\mathcal{M}}$ such that $\mathcal{C}[G]$ contains a cofinal function $\kappa \to \operatorname{Ord}^{\mathcal{M}}$.

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^{G} \exists y \varphi(x, y, \Gamma^{G})$ and consider

 $F(x) = \min\{\alpha \in \operatorname{Ord}^{M} \mid \exists \mu \in (V_{\alpha})^{M} \cap M^{\mathbb{P}} \varphi(x, \mu^{G}, \Gamma^{G})\}$

for $x \in \sigma^{\mathsf{G}}$. If F is not cofinal in $\mathrm{Ord}^{\mathsf{M}}$ then $\mathrm{ran}(\mathsf{F}) \subseteq \alpha$ for some $\alpha \in \mathrm{Ord}^{\mathsf{M}}$. But then $\mathbb{M}[\mathsf{G}] \models \forall x \in \sigma^{\mathsf{G}} \exists y \in \tau^{\mathsf{G}} \varphi(x, y, \Gamma^{\mathsf{G}})$, where $\tau = \{ \langle \mu, \mathbb{1}_{\mathbb{P}} \rangle \mid \mu \in (\mathsf{V}_{\alpha})^{\mathsf{M}} \cap \mathsf{M}^{\mathbb{P}} \}$. \dashv

Theorem

Let $\mathbb{M} = \langle M, C \rangle$ be a countable transitive model of GB^- such that C contains a good well-order \prec . Let $\mathbb{P} \in C$ be a class forcing which satisfies the forcing theorem and let G be \mathbb{P} -generic over \mathbb{M} . If $\mathbb{M}[G]$ satisifies Separation, then $\mathbb{M}[G]$ also satisfies Replacement.

To prove this, we first need

Lemma

Suppose that M satisfies Power Set, or C contains a good well-order. Let \mathbb{P} be a class forcing and G be \mathbb{P} -generic over \mathbb{M} . Then Replacement fails in $\mathbb{M}[G]$ if and only if there is $\kappa \in \operatorname{Ord}^{\mathcal{M}}$ such that $\mathcal{C}[G]$ contains a cofinal function $\kappa \to \operatorname{Ord}^{\mathcal{M}}$.

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^{\mathsf{G}} \exists y \varphi(x, y, \Gamma^{\mathsf{G}})$ and consider

$$F(x) = \min\{\alpha \in \operatorname{Ord}^{M} \mid \exists \mu \in (V_{\alpha})^{M} \cap M^{\mathbb{P}}\varphi(x, \mu^{G}, \Gamma^{G})\}$$

for $\mathbf{x} \in \sigma^{\mathbf{G}}$. If F is not cofinal in Ord^{M} then $\mathrm{ran}(F) \subseteq \alpha$ for some $\alpha \in \mathrm{Ord}^{M}$. But then $\mathbb{M}[G] \models \forall x \in \sigma^{\mathbf{G}} \exists y \in \tau^{\mathbf{G}} \varphi(x, y, \Gamma^{\mathbf{G}})$, where $\tau = \{ \langle \mu, \mathbb{1}_{\mathbb{P}} \rangle \mid \mu \in (\mathbb{V}_{\alpha})^{M} \cap M^{\mathbb{P}} \}$. \dashv

Regula Krapf (University of Bonn)

Theorem

Let $\mathbb{M} = \langle M, C \rangle$ be a countable transitive model of GB^- such that C contains a good well-order \prec . Let $\mathbb{P} \in C$ be a class forcing which satisfies the forcing theorem and let G be \mathbb{P} -generic over \mathbb{M} . If $\mathbb{M}[G]$ satisifies Separation, then $\mathbb{M}[G]$ also satisfies Replacement.

To prove this, we first need

Lemma

Suppose that M satisfies Power Set, or C contains a good well-order. Let \mathbb{P} be a class forcing and G be \mathbb{P} -generic over \mathbb{M} . Then Replacement fails in $\mathbb{M}[G]$ if and only if there is $\kappa \in \operatorname{Ord}^{\mathcal{M}}$ such that $\mathcal{C}[G]$ contains a cofinal function $\kappa \to \operatorname{Ord}^{\mathcal{M}}$.

Sketch of the proof.

Suppose that $\mathbb{M}[G] \models \forall x \in \sigma^{\mathsf{G}} \exists y \varphi(x, y, \Gamma^{\mathsf{G}})$ and consider

$$F(x) = \min\{\alpha \in \operatorname{Ord}^{M} \mid \exists \mu \in (\mathsf{V}_{\alpha})^{M} \cap M^{\mathbb{P}}\varphi(x, \mu^{\mathsf{G}}, \Gamma^{\mathsf{G}})\}$$

for $x \in \sigma^{\mathsf{G}}$. If F is not cofinal in $\operatorname{Ord}^{\mathsf{M}}$ then $\operatorname{ran}(F) \subseteq \alpha$ for some $\alpha \in \operatorname{Ord}^{\mathsf{M}}$. But then $\mathbb{M}[G] \models \forall x \in \sigma^{\mathsf{G}} \exists y \in \tau^{\mathsf{G}} \varphi(x, y, \Gamma^{\mathsf{G}})$, where $\tau = \{ \langle \mu, \mathbb{1}_{\mathbb{P}} \rangle \mid \mu \in (\mathsf{V}_{\alpha})^{\mathsf{M}} \cap M^{\mathbb{P}} \}$. \dashv

Sketch of the proof.

WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. Let $\langle C_{\gamma} \mid \gamma \in \operatorname{Ord}^{M} \rangle \in \mathcal{C}$ be a sequence of classes of ordinals such that each C_{γ} has one of the forms

$$\begin{split} \boldsymbol{A}_{\boldsymbol{p},\alpha} &= \{\beta \in \operatorname{Ord}^{M} \mid \exists q \leq_{\mathbb{P}} \boldsymbol{p}(q \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\alpha}) = \check{\beta})\} \in \mathcal{C} \\ \boldsymbol{B}_{\boldsymbol{p},\alpha,\tau} &= \{\beta \in \operatorname{Ord}^{M} \mid \exists q \leq_{\mathbb{P}} \boldsymbol{p}(q \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\alpha}) = \check{\beta} \land q \Vdash_{\mathbb{P}} \check{\alpha} \in \tau)\} \in \mathcal{C} \end{split}$$

for $p \in \mathbb{P}, \alpha < \kappa$ and $\tau \in M^{\mathbb{P}}$ such that C_{γ} is a proper class, and each such $A_{p,\alpha}, B_{p,\alpha,\tau}$ appears unboundedly often in the enumeration. There is $D \in \mathcal{C}$ such that $C_{\gamma} \cap D$ and $C_{\gamma} \setminus D$ are proper classes for each $\gamma \in \mathrm{Ord}^{M}$. If Separation holds in $\mathbb{M}[G]$ then there is $\tau \in M^{\mathbb{P}}$ and $p \in G$ such that $p \Vdash_{\mathbb{P}} \tau = \{\alpha < \kappa \mid \dot{F}(\alpha) \in \check{D}\}$. Observe that there is $\alpha < \kappa$ such that $A_{p,\alpha}$ is a proper class. But then $A_{p,\alpha} \cap D = B_{p,\alpha,\tau}$ is a proper class. But then $B_{p,\alpha,\tau} \setminus D = \emptyset$, a contradiction.

Sketch of the proof.

WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. Let $\langle C_{\gamma} \mid \gamma \in \operatorname{Ord}^{M} \rangle \in \mathcal{C}$ be a sequence of classes of ordinals such that each C_{γ} has one of the forms

$$\begin{split} \boldsymbol{A}_{\boldsymbol{p},\boldsymbol{\alpha}} &= \{\boldsymbol{\beta} \in \operatorname{Ord}^{M} \mid \exists \boldsymbol{q} \leq_{\mathbb{P}} \boldsymbol{p}(\boldsymbol{q} \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\boldsymbol{\alpha}}) = \check{\boldsymbol{\beta}})\} \in \mathcal{C} \\ \boldsymbol{B}_{\boldsymbol{p},\boldsymbol{\alpha},\tau} &= \{\boldsymbol{\beta} \in \operatorname{Ord}^{M} \mid \exists \boldsymbol{q} \leq_{\mathbb{P}} \boldsymbol{p}(\boldsymbol{q} \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\boldsymbol{\alpha}}) = \check{\boldsymbol{\beta}} \land \boldsymbol{q} \Vdash_{\mathbb{P}} \check{\boldsymbol{\alpha}} \in \tau)\} \in \mathcal{C} \end{split}$$

for $p \in \mathbb{P}, \alpha < \kappa$ and $\tau \in M^{\mathbb{P}}$ such that C_{γ} is a proper class, and each such $A_{p,\alpha}, B_{p,\alpha,\tau}$ appears unboundedly often in the enumeration. There is $D \in \mathcal{C}$ such that $C_{\gamma} \cap D$ and $C_{\gamma} \setminus D$ are proper classes for each $\gamma \in \mathrm{Ord}^{M}$. If Separation holds in $\mathbb{M}[G]$ then there is $\tau \in M^{\mathbb{P}}$ and $p \in G$ such that $p \Vdash_{\mathbb{P}} \tau = \{\alpha < \kappa \mid F(\alpha) \in D\}$. Observe that there is $\alpha < \kappa$ such that $A_{p,\alpha}$ is a proper class. But then $A_{p,\alpha} \cap D = B_{p,\alpha,\tau}$ is a proper class. But then $B_{p,\alpha,\tau} \setminus D = \emptyset$, a contradiction.

Sketch of the proof.

WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. Let $\langle C_{\gamma} \mid \gamma \in \operatorname{Ord}^{M} \rangle \in \mathcal{C}$ be a sequence of classes of ordinals such that each C_{γ} has one of the forms

$$\begin{split} \boldsymbol{A}_{\boldsymbol{\rho},\alpha} &= \{\beta \in \operatorname{Ord}^{M} \mid \exists q \leq_{\mathbb{P}} \boldsymbol{\rho}(q \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\alpha}) = \check{\beta})\} \in \mathcal{C} \\ \boldsymbol{B}_{\boldsymbol{\rho},\alpha,\tau} &= \{\beta \in \operatorname{Ord}^{M} \mid \exists q \leq_{\mathbb{P}} \boldsymbol{\rho}(q \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\alpha}) = \check{\beta} \land q \Vdash_{\mathbb{P}} \check{\alpha} \in \tau)\} \in \mathcal{C} \end{split}$$

for $p \in \mathbb{P}, \alpha < \kappa$ and $\tau \in M^{\mathbb{P}}$ such that C_{γ} is a proper class, and each such $A_{p,\alpha}, B_{p,\alpha,\tau}$ appears unboundedly often in the enumeration. There is $D \in \mathcal{C}$ such that $C_{\gamma} \cap D$ and $C_{\gamma} \setminus D$ are proper classes for each $\gamma \in \mathrm{Ord}^{M}$. If Separation holds in $\mathbb{M}[G]$ then there is $\tau \in M^{\mathbb{P}}$ and $p \in G$ such that $p \Vdash_{\mathbb{P}} \tau = \{\alpha < \check{\kappa} \mid \dot{F}(\alpha) \in \check{D}\}$. Observe that there is $\alpha < \kappa$ such that $A_{p,\alpha}$ is a proper class. But then $A_{p,\alpha} \cap D = B_{p,\alpha,\tau}$ is a proper class. But then $B_{p,\alpha,\tau} \setminus D = \emptyset$, a contradiction.

Sketch of the proof.

WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. Let $\langle C_{\gamma} \mid \gamma \in \operatorname{Ord}^{M} \rangle \in \mathcal{C}$ be a sequence of classes of ordinals such that each C_{γ} has one of the forms

$$\begin{split} \boldsymbol{A}_{\boldsymbol{p},\boldsymbol{\alpha}} &= \{\boldsymbol{\beta} \in \operatorname{Ord}^{M} \mid \exists \boldsymbol{q} \leq_{\mathbb{P}} \boldsymbol{p}(\boldsymbol{q} \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\boldsymbol{\alpha}}) = \check{\boldsymbol{\beta}})\} \in \mathcal{C} \\ \boldsymbol{B}_{\boldsymbol{p},\boldsymbol{\alpha},\tau} &= \{\boldsymbol{\beta} \in \operatorname{Ord}^{M} \mid \exists \boldsymbol{q} \leq_{\mathbb{P}} \boldsymbol{p}(\boldsymbol{q} \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\boldsymbol{\alpha}}) = \check{\boldsymbol{\beta}} \land \boldsymbol{q} \Vdash_{\mathbb{P}} \check{\boldsymbol{\alpha}} \in \tau)\} \in \mathcal{C} \end{split}$$

for $p \in \mathbb{P}, \alpha < \kappa$ and $\tau \in M^{\mathbb{P}}$ such that C_{γ} is a proper class, and each such $A_{p,\alpha}, B_{p,\alpha,\tau}$ appears unboundedly often in the enumeration. There is $D \in \mathcal{C}$ such that $C_{\gamma} \cap D$ and $C_{\gamma} \setminus D$ are proper classes for each $\gamma \in \mathrm{Ord}^{M}$. If Separation holds in $\mathbb{M}[G]$ then there is $\tau \in M^{\mathbb{P}}$ and $p \in G$ such that $p \Vdash_{\mathbb{P}} \tau = \{\alpha < \check{\kappa} \mid \dot{F}(\alpha) \in \check{D}\}$. Observe that there is $\alpha < \kappa$ such that $A_{p,\alpha}$ is a proper class. But then $A_{p,\alpha} \cap D = B_{p,\alpha,\tau}$ is a proper class. But then $B_{p,\alpha,\tau} \setminus D = \emptyset$, a contradiction.

Sketch of the proof.

WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. Let $\langle C_{\gamma} \mid \gamma \in \operatorname{Ord}^{M} \rangle \in \mathcal{C}$ be a sequence of classes of ordinals such that each C_{γ} has one of the forms

$$\begin{split} \boldsymbol{A}_{\boldsymbol{\rho},\alpha} &= \{\beta \in \operatorname{Ord}^{M} \mid \exists \boldsymbol{q} \leq_{\mathbb{P}} \boldsymbol{\rho}(\boldsymbol{q} \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\alpha}) = \check{\beta})\} \in \mathcal{C} \\ \boldsymbol{B}_{\boldsymbol{\rho},\alpha,\tau} &= \{\beta \in \operatorname{Ord}^{M} \mid \exists \boldsymbol{q} \leq_{\mathbb{P}} \boldsymbol{\rho}(\boldsymbol{q} \Vdash_{\mathbb{P}} \dot{\boldsymbol{F}}(\check{\alpha}) = \check{\beta} \land \boldsymbol{q} \Vdash_{\mathbb{P}} \check{\alpha} \in \tau)\} \in \mathcal{C} \end{split}$$

for $p \in \mathbb{P}, \alpha < \kappa$ and $\tau \in M^{\mathbb{P}}$ such that C_{γ} is a proper class, and each such $A_{p,\alpha}, B_{p,\alpha,\tau}$ appears unboundedly often in the enumeration. There is $D \in \mathcal{C}$ such that $C_{\gamma} \cap D$ and $C_{\gamma} \setminus D$ are proper classes for each $\gamma \in \mathrm{Ord}^{M}$. If Separation holds in $\mathbb{M}[G]$ then there is $\tau \in M^{\mathbb{P}}$ and $p \in G$ such that $p \Vdash_{\mathbb{P}} \tau = \{\alpha < \check{\kappa} \mid \dot{F}(\alpha) \in \check{D}\}$. Observe that there is $\alpha < \kappa$ such that $A_{p,\alpha}$ is a proper class. But then $A_{p,\alpha} \cap D = B_{p,\alpha,\tau}$ is a proper class. But then $B_{p,\alpha,\tau} \setminus D = \emptyset$, a contradiction.

Motivation

In set forcing, if there is a dense embedding $\mathbb{P}\to\mathbb{Q}$ then \mathbb{P} and \mathbb{Q} have the same generic extensions.

Observation

Let $\operatorname{Col}_*(\omega, \operatorname{Ord})$ denote the suborder of $\operatorname{Col}(\omega, \operatorname{Ord})$ of conditions p with $\operatorname{dom}(p) \in \omega$. Clearly, $\operatorname{Col}_*(\omega, \operatorname{Ord})$ is dense in $\operatorname{Col}(\omega, \operatorname{Ord})$. However, $\operatorname{Col}(\omega, \operatorname{Ord})$ collapses all *M*-cardinals but $\operatorname{Col}_*(\omega, \operatorname{Ord})$ does not add any new sets.

Question

How can we characterize class forcings \mathbb{P} which have the same generic extensions as all other class forcings into which \mathbb{P} embeds densely?
In set forcing, if there is a dense embedding $\mathbb{P}\to\mathbb{Q}$ then \mathbb{P} and \mathbb{Q} have the same generic extensions.

Observation

Let $\operatorname{Col}_*(\omega, \operatorname{Ord})$ denote the suborder of $\operatorname{Col}(\omega, \operatorname{Ord})$ of conditions p with $\operatorname{dom}(p) \in \omega$. Clearly, $\operatorname{Col}_*(\omega, \operatorname{Ord})$ is dense in $\operatorname{Col}(\omega, \operatorname{Ord})$. However, $\operatorname{Col}(\omega, \operatorname{Ord})$ collapses all *M*-cardinals but $\operatorname{Col}_*(\omega, \operatorname{Ord})$ does not add any new sets.

Question

How can we characterize class forcings \mathbb{P} which have the same generic extensions as all other class forcings into which \mathbb{P} embeds densely?

In set forcing, if there is a dense embedding $\mathbb{P} \to \mathbb{Q}$ then \mathbb{P} and \mathbb{Q} have the same generic extensions.

Observation

Let $Col_*(\omega, Ord)$ denote the suborder of $Col(\omega, Ord)$ of conditions p with dom(p) $\in \omega$. Clearly, Col_{*}(ω , Ord) is dense in Col(ω , Ord). However, $Col(\omega, Ord)$ collapses all *M*-cardinals but $Col_*(\omega, Ord)$ does not add any new sets.

Question

How can we characterize class forcings \mathbb{P} which have the same generic extensions as all other class forcings into which \mathbb{P} embeds densely?

The extension maximality principle

Definition

A notion of class forcing \mathbb{P} satisfies the extension maximality principle (EMP) over $\mathbb{M} \models \mathsf{GB}^-$ if for every notion of class forcing \mathbb{Q} such that \mathbb{P} is dense in \mathbb{Q} and for every \mathbb{Q} -generic filter G over \mathbb{M} , $M[G] = M[G \cap \mathbb{P}]$.

Theorem

Suppose that $\mathbb{P} \in C$ is a notion of class forcing which satisfies the forcing theorem and that C contains a good well-order. Then \mathbb{P} is pretame if and only if \mathbb{P} satisfies the EMP.

The extension maximality principle

Definition

A notion of class forcing \mathbb{P} satisfies the extension maximality principle (EMP) over $\mathbb{M} \models \mathsf{GB}^-$ if for every notion of class forcing \mathbb{Q} such that \mathbb{P} is dense in \mathbb{Q} and for every \mathbb{Q} -generic filter G over \mathbb{M} , $M[G] = M[G \cap \mathbb{P}]$.

Theorem

Suppose that $\mathbb{P} \in C$ is a notion of class forcing which satisfies the forcing theorem and that C contains a good well-order. Then \mathbb{P} is pretame if and only if \mathbb{P} satisfies the EMP.

Sketch of the proof.

Suppose first that \mathbb{P} is pretame. Let \mathbb{P} be dense in \mathbb{Q} , G \mathbb{Q} -generic and $\sigma \in M^{\mathbb{Q}}$. For each $q \in tc(\sigma) \cap \mathbb{Q}$ consider the dense set

$$D_q = \{ p \in \mathbb{P} \mid p \leq_{\mathbb{Q}} q \lor p \perp_{\mathbb{Q}} q \}.$$

Take $p \in G \cap \mathbb{P}$ and $d_q \subseteq D_q$ in M predense below p. For each $\tau \in tc(\{\sigma\}) \cap M^{\mathbb{Q}}$ let

 $\bar{\tau} = \{ \langle \bar{\mu}, r \rangle \mid \exists s (\langle \mu, s \rangle \in \tau \land r \in d_s \land r \leq_{\mathbb{Q}} s) \}.$

Then $\bar{\sigma} \in M^{\mathbb{P}}$ and $\sigma^{G} = \bar{\sigma}^{G \cap \mathbb{P}} \in M[G \cap \mathbb{P}].$

Sketch of the proof.

Suppose first that \mathbb{P} is pretame. Let \mathbb{P} be dense in \mathbb{Q} , G \mathbb{Q} -generic and $\sigma \in M^{\mathbb{Q}}$. For each $q \in tc(\sigma) \cap \mathbb{Q}$ consider the dense set

$$D_q = \{ p \in \mathbb{P} \mid p \leq_{\mathbb{Q}} q \lor p \perp_{\mathbb{Q}} q \}.$$

Take $p \in G \cap \mathbb{P}$ and $d_q \subseteq D_q$ in M predense below p. For each $\tau \in tc(\{\sigma\}) \cap M^{\mathbb{Q}}$ let

$$\bar{\tau} = \{ \langle \bar{\mu}, r \rangle \mid \exists s (\langle \mu, s \rangle \in \tau \land r \in d_s \land r \leq_{\mathbb{Q}} s) \}.$$

Then $\bar{\sigma} \in M^{\mathbb{P}}$ and $\sigma^{G} = \bar{\sigma}^{G \cap \mathbb{P}} \in M[G \cap \mathbb{P}].$

Sketch of the proof, continued.

Suppose \mathbb{P} is non-pretame but satisfies the EMP. Let G be \mathbb{P} -generic such that Replacement fails in $\mathbb{M}[G]$. Then so does Separation. Take $\Gamma \in \mathcal{C}^{\mathbb{P}}, \sigma \in \mathcal{M}^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \Gamma \subseteq \sigma$ such that there is no $q \in G$ and $\tau \in \mathcal{M}^{\mathbb{P}}$ with $q \Vdash_{\mathbb{P}} \Gamma = \tau$. Let

 $\mathbb{Q} = \mathbb{P} \sqcup \{ \sup A_{\mu} \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \},\$

where $A_{\mu} = \{q \leq_{\mathbb{P}} p \mid q \Vdash_{\mathbb{P}} \mu \in \Gamma\}$. Now let

 $\tau = \{ \langle \mu, \sup A_{\mu} \rangle \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \}.$

Then $\tau^{H} = \Gamma^{H} = \Gamma^{G}$, where *H* is the upwards closure of *G* in \mathbb{Q} . Contradiction.

Sketch of the proof, continued.

Suppose \mathbb{P} is non-pretame but satisfies the EMP. Let G be \mathbb{P} -generic such that Replacement fails in $\mathbb{M}[G]$. Then so does Separation. Take $\Gamma \in \mathcal{C}^{\mathbb{P}}, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \Gamma \subseteq \sigma$ such that there is no $q \in G$ and $\tau \in M^{\mathbb{P}}$ with $q \Vdash_{\mathbb{P}} \Gamma = \tau$. Let

 $\mathbb{Q} = \mathbb{P} \sqcup \{ \sup A_{\mu} \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \},\$

where $A_{\mu} = \{q \leq_{\mathbb{P}} p \mid q \Vdash_{\mathbb{P}} \mu \in \Gamma\}$. Now let

 $\tau = \{ \langle \mu, \sup A_{\mu} \rangle \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \}.$

Then $\tau^H = \Gamma^H = \Gamma^G$, where *H* is the upwards closure of *G* in \mathbb{Q} . Contradiction.

Sketch of the proof, continued.

Suppose \mathbb{P} is non-pretame but satisfies the EMP. Let G be \mathbb{P} -generic such that Replacement fails in $\mathbb{M}[G]$. Then so does Separation. Take $\Gamma \in \mathcal{C}^{\mathbb{P}}, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \Gamma \subseteq \sigma$ such that there is no $q \in G$ and $\tau \in M^{\mathbb{P}}$ with $q \Vdash_{\mathbb{P}} \Gamma = \tau$. Let

$$\mathbb{Q} = \mathbb{P} \sqcup \{ \sup A_{\mu} \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \},\$$

where $A_{\mu} = \{q \leq_{\mathbb{P}} p \mid q \Vdash_{\mathbb{P}} \mu \in \Gamma\}$. Now let

 $\tau = \{ \langle \mu, \sup A_{\mu} \rangle \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \}.$

Then $\tau^{H} = \Gamma^{H} = \Gamma^{G}$, where *H* is the upwards closure of *G* in \mathbb{Q} . Contradiction.

Sketch of the proof, continued.

Suppose \mathbb{P} is non-pretame but satisfies the EMP. Let G be \mathbb{P} -generic such that Replacement fails in $\mathbb{M}[G]$. Then so does Separation. Take $\Gamma \in \mathcal{C}^{\mathbb{P}}, \sigma \in M^{\mathbb{P}}$ and $p \in G$ with $p \Vdash_{\mathbb{P}} \Gamma \subseteq \sigma$ such that there is no $q \in G$ and $\tau \in M^{\mathbb{P}}$ with $q \Vdash_{\mathbb{P}} \Gamma = \tau$. Let

$$\mathbb{Q} = \mathbb{P} \sqcup \{ \sup A_{\mu} \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \},$$

where $A_{\mu} = \{q \leq_{\mathbb{P}} p \mid q \Vdash_{\mathbb{P}} \mu \in \Gamma\}$. Now let

$$\tau = \{ \langle \mu, \sup A_{\mu} \rangle \mid \mu \in \mathsf{dom}(\sigma), A_{\mu} \neq \emptyset \}.$$

Then $\tau^H = \Gamma^H = \Gamma^G$, where *H* is the upwards closure of *G* in \mathbb{Q} . Contradiction.

As in set forcing, we are interested in preserving properties of forcing notions under dense embeddings.

Notation

Let Ψ be some property of notions of class forcing. We will say that a notion of class forcing \mathbb{P} satisfies Ψ densely, if every notion of class forcing \mathbb{Q} such that there is a dense embedding from \mathbb{P} into \mathbb{Q} satisfies the property Ψ .

We have seen that the forcing theorem may fail for class forcings. On the other hand, there are non-pretame forcings such as $Col(\omega, Ord)$ which do satisfy the forcing theorem.

Question

As in set forcing, we are interested in preserving properties of forcing notions under dense embeddings.

Notation

Let Ψ be some property of notions of class forcing. We will say that a notion of class forcing \mathbb{P} satisfies Ψ **densely**, if every notion of class forcing \mathbb{Q} such that there is a dense embedding from \mathbb{P} into \mathbb{Q} satisfies the property Ψ .

We have seen that the forcing theorem may fail for class forcings. On the other hand, there are non-pretame forcings such as $Col(\omega, Ord)$ which do satisfy the forcing theorem.

Question

As in set forcing, we are interested in preserving properties of forcing notions under dense embeddings.

Notation

Let Ψ be some property of notions of class forcing. We will say that a notion of class forcing \mathbb{P} satisfies Ψ **densely**, if every notion of class forcing \mathbb{Q} such that there is a dense embedding from \mathbb{P} into \mathbb{Q} satisfies the property Ψ .

We have seen that the forcing theorem may fail for class forcings. On the other hand, there are non-pretame forcings such as $Col(\omega, Ord)$ which do satisfy the forcing theorem.

Question

As in set forcing, we are interested in preserving properties of forcing notions under dense embeddings.

Notation

Let Ψ be some property of notions of class forcing. We will say that a notion of class forcing \mathbb{P} satisfies Ψ **densely**, if every notion of class forcing \mathbb{Q} such that there is a dense embedding from \mathbb{P} into \mathbb{Q} satisfies the property Ψ .

We have seen that the forcing theorem may fail for class forcings. On the other hand, there are non-pretame forcings such as $Col(\omega, Ord)$ which do satisfy the forcing theorem.

Question

As in set forcing, we are interested in preserving properties of forcing notions under dense embeddings.

Notation

Let Ψ be some property of notions of class forcing. We will say that a notion of class forcing \mathbb{P} satisfies Ψ **densely**, if every notion of class forcing \mathbb{Q} such that there is a dense embedding from \mathbb{P} into \mathbb{Q} satisfies the property Ψ .

We have seen that the forcing theorem may fail for class forcings. On the other hand, there are non-pretame forcings such as $Col(\omega, Ord)$ which do satisfy the forcing theorem.

Question

Pretameness and the forcing theorem

Theorem

Suppose that $\mathbb{M} \models \mathsf{GB}^-$ and \mathcal{C} contains a good well-order but no first-order truth predicate. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it densely satisfies the forcing theorem.

Theorem

Suppose that $\mathbb{M} \models \mathsf{GB}^-$ and \mathcal{C} contains a good well-order but no first-order truth predicate. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it densely satisfies the forcing theorem.

Recall

Lemma

Suppose that M satisfies Power Set, or C contains a good well-order. Let \mathbb{P} be a class forcing and G be \mathbb{P} -generic over \mathbb{M} . Then Replacement fails in $\mathbb{M}[G]$ if and only if there is $\kappa \in \operatorname{Ord}^M$ such that $\mathcal{C}[G]$ contains a cofinal function $\kappa \to \operatorname{Ord}^M$.

Theorem

Suppose that $\mathbb{M} \models GB^-$ and C contains a good well-order but no first-order truth predicate. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it densely satisfies the forcing theorem.

Sketch of the proof.

Suppose first that \mathbb{P} is pretame and \mathbb{P} is dense in \mathbb{Q} . Then \mathbb{Q} is pretame and therefore satisfies the forcing theorem.

Suppose that \mathbb{P} is non-pretame and satisfies the forcing theorem and WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. By modifying \dot{F} we may assume that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \check{M}$ bijective. Now we extend \mathbb{P} to

 $\mathbb{Q} = \mathbb{P} \sqcup \{ p_{\alpha\beta} \mid \alpha, \beta < \kappa \},\$

Theorem

Suppose that $\mathbb{M} \models GB^-$ and C contains a good well-order but no first-order truth predicate. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it densely satisfies the forcing theorem.

Sketch of the proof.

Suppose first that \mathbb{P} is pretame and \mathbb{P} is dense in \mathbb{Q} . Then \mathbb{Q} is pretame and therefore satisfies the forcing theorem.

Suppose that \mathbb{P} is non-pretame and satisfies the forcing theorem and WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. By modifying \dot{F} we may assume that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \check{M}$ bijective. Now we extend \mathbb{P} to

 $\mathbb{Q} = \mathbb{P} \sqcup \{ p_{\alpha\beta} \mid \alpha, \beta < \kappa \},\$

Theorem

Suppose that $\mathbb{M} \models \mathsf{GB}^-$ and \mathcal{C} contains a good well-order but no first-order truth predicate. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it densely satisfies the forcing theorem.

Sketch of the proof.

Suppose first that \mathbb{P} is pretame and \mathbb{P} is dense in \mathbb{Q} . Then \mathbb{Q} is pretame and therefore satisfies the forcing theorem.

Suppose that \mathbb{P} is non-pretame and satisfies the forcing theorem and WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. By modifying \dot{F} we may assume that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \check{M}$ bijective. Now we extend \mathbb{P} to

$\mathbb{Q} = \mathbb{P} \sqcup \{ p_{\alpha\beta} \mid \alpha, \beta < \kappa \},\$

Theorem

Suppose that $\mathbb{M} \models \mathsf{GB}^-$ and \mathcal{C} contains a good well-order but no first-order truth predicate. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it densely satisfies the forcing theorem.

Sketch of the proof.

Suppose first that \mathbb{P} is pretame and \mathbb{P} is dense in \mathbb{Q} . Then \mathbb{Q} is pretame and therefore satisfies the forcing theorem.

Suppose that \mathbb{P} is non-pretame and satisfies the forcing theorem and WLOG suppose that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \operatorname{Ord}^{M}$ cofinal. By modifying \dot{F} we may assume that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{F} : \check{\kappa} \to \check{M}$ bijective. Now we extend \mathbb{P} to

$$\mathbb{Q} = \mathbb{P} \sqcup \{ p_{\alpha\beta} \mid \alpha, \beta < \kappa \},\$$

Pretameness and the forcing theorem

Sketch of the proof, continued.

Now consider the \mathbb{Q} -name

$$\dot{\boldsymbol{E}} = \{ \langle \operatorname{op}(\check{\alpha}, \check{\beta}), \boldsymbol{p}_{\alpha, \beta} \rangle \mid \alpha, \beta < \kappa \} \in \boldsymbol{M}^{\mathbb{Q}}$$

If G is Q-generic over M then in M[G], $\langle M, \in \rangle$ is isomorphic to $\langle \kappa, E^G \rangle$, witnessed by F^G . We translate \mathcal{L}_{\in} -formulae in the forcing language of \mathbb{Q} to infinitary formulae by defining

$$(v_i = v_j)^*_{\vec{\alpha}} = (\check{\alpha}_i = \check{\alpha}_j)$$
$$(v_i \in v_j)^*_{\vec{\alpha}} = (\operatorname{op}(\check{\alpha}_i, \check{\alpha}_j) \in \dot{E})$$
$$(\neg \varphi)^*_{\vec{\alpha}} = (\neg \varphi^*_{\vec{\alpha}})$$
$$(\varphi \lor \psi)^*_{\vec{\alpha}} = (\varphi^*_{\vec{\alpha}} \lor \psi^*_{\vec{\alpha}})$$
$$(\exists v_k \varphi)^*_{\vec{\alpha}} = (\bigvee_{\beta < \kappa} \varphi^*_{\vec{\alpha}, \beta})$$

for \mathcal{L}_{\in} -formulae φ with free variables among $\{v_0, \ldots, v_{k-1}\}$ and $\vec{\alpha} \in \kappa^k$.

Characterizations of Pretameness

Pretameness and the forcing theorem

Sketch of the proof, continued.

Now consider the \mathbb{Q} -name

$$\dot{E} = \{ \langle \operatorname{op}(\check{\alpha},\check{\beta}), p_{\alpha,\beta} \rangle \mid \alpha, \beta < \kappa \} \in M^{\mathbb{Q}}.$$

If G is Q-generic over M then in M[G], $\langle M, \in \rangle$ is isomorphic to $\langle \kappa, \dot{E}^G \rangle$, witnessed by \dot{F}^G . We translate \mathcal{L}_{\in} -formulae in the forcing language of Q to infinitary formulae by defining

$$(v_i = v_j)^*_{\vec{\alpha}} = (\check{\alpha}_i = \check{\alpha}_j)$$
$$(v_i \in v_j)^*_{\vec{\alpha}} = (\operatorname{op}(\check{\alpha}_i, \check{\alpha}_j) \in \dot{E})$$
$$(\neg \varphi)^*_{\vec{\alpha}} = (\neg \varphi^*_{\vec{\alpha}})$$
$$(\varphi \lor \psi)^*_{\vec{\alpha}} = (\varphi^*_{\vec{\alpha}} \lor \psi^*_{\vec{\alpha}})$$
$$(\exists v_k \varphi)^*_{\vec{\alpha}} = (\bigvee_{\beta < \kappa} \varphi^*_{\vec{\alpha}, \beta})$$

for \mathcal{L}_{\in} -formulae φ with free variables among $\{v_0, \ldots, v_{k-1}\}$ and $\vec{\alpha} \in \kappa^k$.

Characterizations of Pretameness

Pretameness and the forcing theorem

Sketch of the proof, continued.

Now consider the \mathbb{Q} -name

$$\dot{E} = \{ \langle \operatorname{op}(\check{\alpha},\check{\beta}), p_{\alpha,\beta} \rangle \mid \alpha, \beta < \kappa \} \in M^{\mathbb{Q}}.$$

If G is Q-generic over M then in M[G], $\langle M, \in \rangle$ is isomorphic to $\langle \kappa, \dot{E}^G \rangle$, witnessed by \dot{F}^G . We translate \mathcal{L}_{\in} -formulae in the forcing language of Q to infinitary formulae by defining

$$(\mathbf{v}_{i} = \mathbf{v}_{j})_{\vec{\alpha}}^{*} = (\check{\alpha}_{i} = \check{\alpha}_{j})$$
$$(\mathbf{v}_{i} \in \mathbf{v}_{j})_{\vec{\alpha}}^{*} = (\operatorname{op}(\check{\alpha}_{i}, \check{\alpha}_{j}) \in \dot{E})$$
$$(\neg \varphi)_{\vec{\alpha}}^{*} = (\neg \varphi_{\vec{\alpha}}^{*})$$
$$(\varphi \lor \psi)_{\vec{\alpha}}^{*} = (\varphi_{\vec{\alpha}}^{*} \lor \psi_{\vec{\alpha}}^{*})$$
$$(\exists \mathbf{v}_{k} \varphi)_{\vec{\alpha}}^{*} = (\bigvee_{\beta < \kappa} \varphi_{\vec{\alpha},\beta}^{*})$$

for \mathcal{L}_{\in} -formulae φ with free variables among $\{v_0, \ldots, v_{k-1}\}$ and $\vec{\alpha} \in \kappa^k$.

Pretameness and the forcing theorem

Sketch of the proof, continued.

Recall that we have an assignment $\varphi(\mathbf{v}), \alpha \mapsto \varphi^*_{\alpha}$. Then we have

 $M \models \varphi(x) \Longleftrightarrow \forall \alpha < \kappa \forall p \in \mathbb{P}[p \Vdash_{\mathbb{P}} \dot{F}(\check{\alpha}) = \check{x} \to p \Vdash_{\mathbb{Q}} \varphi_{\alpha}^*].$

We use

Lemma (Holy, K., Luecke, Njegomir, Schlicht)

If $\mathbb Q$ satisfies the forcing theorem for atomic formulae, then it also satisfies the forcing theorem for infinitary quantifier-free formulae.

Sketch of the proof, continued.

Recall that we have an assignment $\varphi(\mathbf{v}), lpha \mapsto \varphi^*_{lpha}.$ Then we have

$$M\models\varphi(x)\Longleftrightarrow\forall\alpha<\kappa\forall p\in\mathbb{P}[p\Vdash_{\mathbb{P}}\dot{F}(\check{\alpha})=\check{x}\rightarrow\rho\Vdash_{\mathbb{Q}}\varphi_{\alpha}^{*}].$$

We use

Lemma (Holy, K., Luecke, Njegomir, Schlicht)

If $\mathbb Q$ satisfies the forcing theorem for atomic formulae, then it also satisfies the forcing theorem for infinitary quantifier-free formulae.

Sketch of the proof, continued.

Recall that we have an assignment $\varphi(\mathbf{v}), lpha \mapsto \varphi^*_{lpha}.$ Then we have

$$M\models\varphi(x)\Longleftrightarrow \forall \alpha<\kappa\forall p\in\mathbb{P}[p\Vdash_{\mathbb{P}}\dot{F}(\check{\alpha})=\check{x}\rightarrow p\Vdash_{\mathbb{Q}}\varphi_{\alpha}^{*}].$$

We use

Lemma (Holy, K., Luecke, Njegomir, Schlicht)

If \mathbb{Q} satisfies the forcing theorem for atomic formulae, then it also satisfies the forcing theorem for infinitary quantifier-free formulae.

Sketch of the proof, continued.

Recall that we have an assignment $\varphi(\mathbf{v}), lpha \mapsto \varphi^*_{lpha}.$ Then we have

$$M\models\varphi(x)\Longleftrightarrow \forall \alpha<\kappa\forall p\in\mathbb{P}[p\Vdash_{\mathbb{P}}\dot{F}(\check{\alpha})=\check{x}\rightarrow p\Vdash_{\mathbb{Q}}\varphi_{\alpha}^{*}].$$

We use

Lemma (Holy, K., Luecke, Njegomir, Schlicht)

If \mathbb{Q} satisfies the forcing theorem for atomic formulae, then it also satisfies the forcing theorem for infinitary quantifier-free formulae.

Let \mathbb{P} be a forcing notion. A **nice name** for a set of ordinals is a \mathbb{P} -name of the form $\bigcup_{\alpha < \gamma} {\check{\alpha}} \times A_{\alpha}$, where $A_{\alpha} \subseteq \mathbb{P}$ is a set-sized antichain and $\gamma \in \mathrm{Ord}^{M}$.

In set forcing, in $\mathbb{P}\text{-}\mathsf{generic}$ extensions every set of ordinals has a nice name. This motivates the following

Question

Does every set of ordinals in a class-generic extension have a nice name? If not, how can we characterize this property?

Let \mathbb{P} be a forcing notion. A **nice name** for a set of ordinals is a \mathbb{P} -name of the form $\bigcup_{\alpha < \gamma} {\check{\alpha}} \times A_{\alpha}$, where $A_{\alpha} \subseteq \mathbb{P}$ is a set-sized antichain and $\gamma \in \mathrm{Ord}^{M}$.

In set forcing, in $\mathbb{P}\text{-}\mathsf{generic}$ extensions every set of ordinals has a nice name. This motivates the following

Question

Does every set of ordinals in a class-generic extension have a nice name? If not, how can we characterize this property?

Motivation

Consider the forcing notion $\mathbb{P} = \text{Col}(\omega, \text{Ord})$ and $\sigma = \{\langle \check{n}, \{\langle n, 0 \rangle\} \rangle \mid n \in \omega\}$. There is a name for the complement of σ^G : Let

 $\tau_n = \check{n} \cup \{ \langle \check{m}, \{ \langle i, 0 \rangle \mid n \leq i < m \} \rangle \mid m > n \}.$

Then τ_n is a name for the least $m \ge n$ with $m \notin \sigma^G$. Hence $\tau = \{\langle \tau_n, \mathbb{1}_{\mathbb{P}} \rangle \mid n \in \omega\}$ is a name for $\omega \setminus \sigma^G$.

Suppose that $\mu = \bigcup_{n \in \omega} \{\check{n}\} \times A_n$ and $p \Vdash_{\mathbb{P}} \mu = \check{\omega} \setminus \sigma$. Take $n \notin \text{dom}(p)$ and $\alpha > \text{rank}(A_n)$ and put $q = p \cup \{\langle n, \alpha \rangle\}$. Then $q \Vdash_{\mathbb{P}} \check{n} \in \mu$ so there must be $r \in A_n$ which is compatible with q. But then $n \in \text{dom}(r)$ and so $r(n) = \alpha$, a contradiction.

Conclusion

 $\omega \setminus \sigma^{G}$ has a \mathbb{P} -name but no nice \mathbb{P} -name.

Motivation

Consider the forcing notion $\mathbb{P} = \text{Col}(\omega, \text{Ord})$ and $\sigma = \{\langle \check{n}, \{\langle n, 0 \rangle\} \rangle \mid n \in \omega\}$. There is a name for the complement of σ^{G} : Let

$$\tau_n = \check{n} \cup \{ \langle \check{m}, \{ \langle i, 0 \rangle \mid n \leq i < m \} \rangle \mid m > n \}.$$

Then τ_n is a name for the least $m \ge n$ with $m \notin \sigma^G$. Hence $\tau = \{ \langle \tau_n, \mathbb{1}_{\mathbb{P}} \rangle \mid n \in \omega \}$ is a name for $\omega \setminus \sigma^G$.

Suppose that $\mu = \bigcup_{n \in \omega} \{\check{n}\} \times A_n$ and $p \Vdash_{\mathbb{P}} \mu = \check{\omega} \setminus \sigma$. Take $n \notin \text{dom}(p)$ and $\alpha > \text{rank}(A_n)$ and put $q = p \cup \{\langle n, \alpha \rangle\}$. Then $q \Vdash_{\mathbb{P}} \check{n} \in \mu$ so there must be $r \in A_n$ which is compatible with q. But then $n \in \text{dom}(r)$ and so $r(n) = \alpha$, a contradiction.

Conclusion

 $\omega \setminus \sigma^{G}$ has a \mathbb{P} -name but no nice \mathbb{P} -name.

Motivation

Consider the forcing notion $\mathbb{P} = \text{Col}(\omega, \text{Ord})$ and $\sigma = \{\langle \check{n}, \{\langle n, 0 \rangle\} \rangle \mid n \in \omega\}$. There is a name for the complement of σ^G : Let

$$\tau_n = \check{n} \cup \{ \langle \check{m}, \{ \langle i, 0 \rangle \mid n \leq i < m \} \rangle \mid m > n \}.$$

Then τ_n is a name for the least $m \ge n$ with $m \notin \sigma^G$. Hence $\tau = \{ \langle \tau_n, \mathbb{1}_{\mathbb{P}} \rangle \mid n \in \omega \}$ is a name for $\omega \setminus \sigma^G$.

Suppose that $\mu = \bigcup_{n \in \omega} \{\check{n}\} \times A_n$ and $p \Vdash_{\mathbb{P}} \mu = \check{\omega} \setminus \sigma$. Take $n \notin \text{dom}(p)$ and $\alpha > \text{rank}(A_n)$ and put $q = p \cup \{\langle n, \alpha \rangle\}$. Then $q \Vdash_{\mathbb{P}} \check{n} \in \mu$ so there must be $r \in A_n$ which is compatible with q. But then $n \in \text{dom}(r)$ and so $r(n) = \alpha$, a contradiction.

Conclusion

 $\omega \setminus \sigma^{G}$ has a \mathbb{P} -name but no nice \mathbb{P} -name

Motivation

Consider the forcing notion $\mathbb{P} = \text{Col}(\omega, \text{Ord})$ and $\sigma = \{\langle \check{n}, \{\langle n, 0 \rangle\} \rangle \mid n \in \omega\}$. There is a name for the complement of σ^{G} : Let

$$\tau_n = \check{n} \cup \{ \langle \check{m}, \{ \langle i, 0 \rangle \mid n \leq i < m \} \rangle \mid m > n \}.$$

Then τ_n is a name for the least $m \ge n$ with $m \notin \sigma^G$. Hence $\tau = \{ \langle \tau_n, \mathbb{1}_{\mathbb{P}} \rangle \mid n \in \omega \}$ is a name for $\omega \setminus \sigma^G$.

Suppose that $\mu = \bigcup_{n \in \omega} \{\check{n}\} \times A_n$ and $p \Vdash_{\mathbb{P}} \mu = \check{\omega} \setminus \sigma$. Take $n \notin \text{dom}(p)$ and $\alpha > \text{rank}(A_n)$ and put $q = p \cup \{\langle n, \alpha \rangle\}$. Then $q \Vdash_{\mathbb{P}} \check{n} \in \mu$ so there must be $r \in A_n$ which is compatible with q. But then $n \in \text{dom}(r)$ and so $r(n) = \alpha$, a contradiction.

Conclusion

$$\omega \setminus \sigma^{\mathsf{G}}$$
 has a \mathbb{P} -name but no nice \mathbb{P} -name

Definition

A forcing notion \mathbb{P} is said to be **nice**, if for every $\gamma \in \operatorname{Ord}^M, \sigma \in M^{\mathbb{P}}$ and for every \mathbb{P} -generic filter G such that $\sigma^G \subseteq \gamma$ there is a nice name $\tau \in M^{\mathbb{P}}$ such that $\sigma^G = \tau^G$.

Let's consider some easy examples:

- Col(ω, Ord) is not nice.
- Every *M*-complete Boolean algebra is nice: Given σ, γ as above put $\tau = \{ \langle \check{\alpha}, \llbracket \check{\alpha} \in \sigma \rrbracket \rangle \mid \alpha < \gamma \}.$
- Pretame forcings $\mathbb P$ are nice: Suppose that $p \Vdash_{\mathbb P} \sigma \subseteq \check{\gamma}$ and consider

$$D_{\alpha} = \{ q \leq_{\mathbb{P}} p \mid q \parallel_{\mathbb{P}} \check{\alpha} \in \sigma \}$$

for each $\alpha < \gamma$. Then there are $q \leq_{\mathbb{P}} p$ and sets $d_{\alpha} \subseteq D_{\alpha}$ which are predense below q. Choose antichains $a_{\alpha} \subseteq d_{\alpha}$ maximal in d_{α} and let $A_{\alpha} = \{r \in a_{\alpha} \mid r \Vdash_{\mathbb{P}} \check{\alpha} \in \sigma\}$. Then $\tau = \bigcup_{\alpha < \gamma} \{\check{\alpha}\} \times A_{\alpha}$ is a nice name for σ , forced by q.

Definition

A forcing notion \mathbb{P} is said to be **nice**, if for every $\gamma \in \operatorname{Ord}^M, \sigma \in M^{\mathbb{P}}$ and for every \mathbb{P} -generic filter G such that $\sigma^G \subseteq \gamma$ there is a nice name $\tau \in M^{\mathbb{P}}$ such that $\sigma^G = \tau^G$.

Let's consider some easy examples:

- $Col(\omega, Ord)$ is not nice.
- Every *M*-complete Boolean algebra is nice: Given σ, γ as above put $\tau = \{ \langle \check{\alpha}, \llbracket \check{\alpha} \in \sigma \rrbracket \rangle \mid \alpha < \gamma \}.$
- Pretame forcings $\mathbb P$ are nice: Suppose that $p \Vdash_{\mathbb P} \sigma \subseteq \check{\gamma}$ and consider

$$D_{\alpha} = \{ q \leq_{\mathbb{P}} p \mid q \parallel_{\mathbb{P}} \check{\alpha} \in \sigma \}$$

for each $\alpha < \gamma$. Then there are $q \leq_{\mathbb{P}} p$ and sets $d_{\alpha} \subseteq D_{\alpha}$ which are predense below q. Choose antichains $a_{\alpha} \subseteq d_{\alpha}$ maximal in d_{α} and let $A_{\alpha} = \{r \in a_{\alpha} \mid r \Vdash_{\mathbb{P}} \check{\alpha} \in \sigma\}$. Then $\tau = \bigcup_{\alpha < \gamma} \{\check{\alpha}\} \times A_{\alpha}$ is a nice name for σ , forced by q.
Definition

A forcing notion \mathbb{P} is said to be **nice**, if for every $\gamma \in \operatorname{Ord}^M, \sigma \in M^{\mathbb{P}}$ and for every \mathbb{P} -generic filter G such that $\sigma^G \subseteq \gamma$ there is a nice name $\tau \in M^{\mathbb{P}}$ such that $\sigma^G = \tau^G$.

Let's consider some easy examples:

- Col(ω, Ord) is not nice.
- Every *M*-complete Boolean algebra is nice: Given σ, γ as above put $\tau = \{ \langle \check{\alpha}, \llbracket \check{\alpha} \in \sigma \rrbracket \rangle \mid \alpha < \gamma \}.$
- Pretame forcings $\mathbb P$ are nice: Suppose that $p \Vdash_{\mathbb P} \sigma \subseteq \check{\gamma}$ and consider

$$D_{\alpha} = \{ q \leq_{\mathbb{P}} p \mid q \parallel_{\mathbb{P}} \check{\alpha} \in \sigma \}$$

for each $\alpha < \gamma$. Then there are $q \leq_{\mathbb{P}} p$ and sets $d_{\alpha} \subseteq D_{\alpha}$ which are predense below q. Choose antichains $a_{\alpha} \subseteq d_{\alpha}$ maximal in d_{α} and let $A_{\alpha} = \{r \in a_{\alpha} \mid r \Vdash_{\mathbb{P}} \check{\alpha} \in \sigma\}$. Then $\tau = \bigcup_{\alpha < \gamma} \{\check{\alpha}\} \times A_{\alpha}$ is a nice name for σ , forced by q.

Definition

A forcing notion \mathbb{P} is said to be **nice**, if for every $\gamma \in \operatorname{Ord}^M, \sigma \in M^{\mathbb{P}}$ and for every \mathbb{P} -generic filter G such that $\sigma^G \subseteq \gamma$ there is a nice name $\tau \in M^{\mathbb{P}}$ such that $\sigma^G = \tau^G$.

Let's consider some easy examples:

- Col(ω, Ord) is not nice.
- Every *M*-complete Boolean algebra is nice: Given σ, γ as above put $\tau = \{ \langle \check{\alpha}, \llbracket \check{\alpha} \in \sigma \rrbracket \rangle \mid \alpha < \gamma \}.$
- Pretame forcings $\mathbb P$ are nice: Suppose that $p \Vdash_{\mathbb P} \sigma \subseteq \check{\gamma}$ and consider

$$D_{\alpha} = \{ q \leq_{\mathbb{P}} p \mid q \parallel_{\mathbb{P}} \check{\alpha} \in \sigma \}$$

for each $\alpha < \gamma$. Then there are $q \leq_{\mathbb{P}} p$ and sets $d_{\alpha} \subseteq D_{\alpha}$ which are predense below q. Choose antichains $a_{\alpha} \subseteq d_{\alpha}$ maximal in d_{α} and let $A_{\alpha} = \{r \in a_{\alpha} \mid r \Vdash_{\mathbb{P}} \check{\alpha} \in \sigma\}$. Then $\tau = \bigcup_{\alpha < \gamma} \{\check{\alpha}\} \times A_{\alpha}$ is a nice name for σ , forced by q.

We have shown that pretame forcings are nice. However, there are also non-pretame forcings that are nice:

Since $\operatorname{Col}(\omega, \operatorname{Ord})$ satisfies the forcing theorem, it has a Boolean completion \mathbb{B} . Then \mathbb{B} is nice but it is non-pretame, since it still adds a cofinal function $\omega \to \operatorname{Ord}^M$. Moreover, we have

Theorem

Let \mathbb{M} be a model of KM. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it is densely nice.

We have shown that pretame forcings are nice. However, there are also non-pretame forcings that are nice:

Since $\operatorname{Col}(\omega, \operatorname{Ord})$ satisfies the forcing theorem, it has a Boolean completion \mathbb{B} . Then \mathbb{B} is nice but it is non-pretame, since it still adds a cofinal function $\omega \to \operatorname{Ord}^M$. Moreover, we have

Theorem

Let $\mathbb M$ be a model of KM. Then a class forcing $\mathbb P$ for $\mathbb M$ is pretame if and only if it is densely nice.

We have shown that pretame forcings are nice. However, there are also non-pretame forcings that are nice:

Since $\operatorname{Col}(\omega, \operatorname{Ord})$ satisfies the forcing theorem, it has a Boolean completion \mathbb{B} . Then \mathbb{B} is nice but it is non-pretame, since it still adds a cofinal function $\omega \to \operatorname{Ord}^M$. Moreover, we have

Theorem

Let \mathbb{M} be a model of KM. Then a class forcing \mathbb{P} for \mathbb{M} is pretame if and only if it is densely nice.

Summary

We have seen that pretameness of a class forcing \mathbb{P} is - under sufficient conditions on the ground model \mathbb{M} - equivalent to each of the following properties:

- \mathbb{P} preserves Replacement.
- \mathbb{P} preserves Separation.
- \mathbb{P} does not add a cofinal function from some ordinal κ into Ord^M .
- $\mathbb P$ satisfies the EMP.
- \mathbb{P} densely satisfies the forcing theorem.
- P is densely nice.
- \mathbb{P} densely has a Boolean completion.

All properties above always hold for set forcings; this suggests that pretame forcings are the "right" class of class forcings to consider.

Summary

We have seen that pretameness of a class forcing \mathbb{P} is - under sufficient conditions on the ground model \mathbb{M} - equivalent to each of the following properties:

- \mathbb{P} preserves Replacement.
- \mathbb{P} preserves Separation.
- \mathbb{P} does not add a cofinal function from some ordinal κ into Ord^M .
- $\mathbb P$ satisfies the EMP.
- \mathbb{P} densely satisfies the forcing theorem.
- P is densely nice.
- \mathbb{P} densely has a Boolean completion.

All properties above always hold for set forcings; this suggests that pretame forcings are the "right" class of class forcings to consider.

Further results

A class forcing \mathbb{P} is said to satisfy the Ord-cc, if all its antichain are set-sized, i.e. elements of M.

We can strenghten many previously considered properties and obtain characterize class forcings $\mathbb P$ with the Ord -cc by

- P satisfies the strong extension maximality principle.
- $\mathbb P$ satisfies the maximality principle.
- $\mathbb P$ is densely very nice.
- ullet $\mathbb P$ has a unique Boolean completion.
- P has a Boolean completion B(P) such that every subclass of B(P)
 which is in C has a supremum in B(P).

A class forcing \mathbb{P} is said to satisfy the Ord-cc, if all its antichain are set-sized, i.e. elements of M.

We can strenghten many previously considered properties and obtain characterize class forcings $\mathbb P$ with the Ord-cc by

- ullet $\mathbb P$ satisfies the strong extension maximality principle.
- \mathbb{P} satisfies the maximality principle.
- \mathbb{P} is densely very nice.
- \mathbb{P} has a unique Boolean completion.
- P has a Boolean completion B(P) such that every subclass of B(P)
 which is in C has a supremum in B(P).

There remain many open questions related to (pretame) class forcing:

Question

- Is ZF⁻ enough to prove that pretame forcings satisfy the forcing theorem?
- Is ZF⁻ enough to characterize pretameness via the preservation of Replacement?

Question

Does every class forcing which preserves Separation satisfy the forcing theorem?

Question

Is there (in some substantially weaker theory than KM) a class forcing which is densely nice but not pretame?

Regula Krapf (University of Bonn)

Characterizations of Pretameness

December 8, 2015 33 / 34

There remain many open questions related to (pretame) class forcing:

Question

- Is ZF⁻ enough to prove that pretame forcings satisfy the forcing theorem?
- Is ZF⁻ enough to characterize pretameness via the preservation of Replacement?

Question

Does every class forcing which preserves Separation satisfy the forcing theorem?

Question

Is there (in some substantially weaker theory than KM) a class forcing which is densely nice but not pretame?

Regula Krapf (University of Bonn)

Characterizations of Pretameness

December 8, 2015 33 / 34

There remain many open questions related to (pretame) class forcing:

Question

- Is ZF⁻ enough to prove that pretame forcings satisfy the forcing theorem?
- Is ZF⁻ enough to characterize pretameness via the preservation of Replacement?

Question

Does every class forcing which preserves Separation satisfy the forcing theorem?

Question

Is there (in some substantially weaker theory than KM) a class forcing which is densely nice but not pretame?

Characterizations of Pretameness

There remain many open questions related to (pretame) class forcing:

Question

- Is ZF⁻ enough to prove that pretame forcings satisfy the forcing theorem?
- Is ZF⁻ enough to characterize pretameness via the preservation of Replacement?

Question

Does every class forcing which preserves Separation satisfy the forcing theorem?

Question

Is there (in some substantially weaker theory than KM) a class forcing which is densely nice but not pretame?

Characterizations of Pretameness

There remain many open questions related to (pretame) class forcing:

Question

- Is ZF⁻ enough to prove that pretame forcings satisfy the forcing theorem?
- Is ZF⁻ enough to characterize pretameness via the preservation of Replacement?

Question

Does every class forcing which preserves Separation satisfy the forcing theorem?

Question

Is there (in some substantially weaker theory than KM) a class forcing which is densely nice but not pretame?

Regula Krapf (University of Bonn)

Characterizations of Pretameness

Thank you for your attention!

- Sy D. Friedman. *Fine structure and class forcing*, Volume 3 of *de Gruyter Series in Logic and its Applications.* Walter de Gruyter & Co., Berlin, 2000.
- Peter Holy, Regula Krapf, Philipp Lücke, Ana Njegomir and Philipp Schlicht. *Class forcing, the forcing theorem and Boolean completions*. Submitted.
- Peter Holy, Regula Krapf and Philipp Schlicht. *Separation and Replacement in class forcing extensions*. In preparation.
- Peter Holy, Regula Krapf and Philipp Schlicht. *Equivalences of pretameness and the* Ord-*cc.* In preparation.