- 1. Let $M = (M, \omega)$ be a closed symplectic manifold and let J be a compatible almost-complex structure.
 - (i) Suppose that $A \in H_2(M; \mathbb{Z})$ has the property that $[\omega](A) < 0$ prove that $\overline{\mathcal{M}}_{a,n}^A(M, J) = \emptyset$ for any g, n.
 - (ii) Convince yourself that there is a canonical bijection of sets $\overline{\mathcal{M}}_{g,n}^A(M,J) = \overline{\mathcal{M}}_{g,n} \times M$. (In fact, this is also an isomorphism of topological spaces).
- 2. Let Σ_q denote a closed connected Riemann surface of genus $g \ge 0$.
 - (i) If $\mathbb{CP}^1 \to \Sigma_g$ is a non-constant holomorphic map, prove that g = 0. (Hint: look up the Riemann–Hurwicz formula).
 - (ii) Deduce that a (closed, connected) symplectic surface of positive genus has no nontrivial genus zero Gromov–Witten invariants.
- 3. A Kähler manifold is a Riemannian manifold (M, g) equipped with a compatible almost-complex structure I satisfying the following conditions:
 - (i) *I* is covariantly constant (with respect to the Riemannian connection)
 - (ii) $\omega := g(I-, -)$ is symplectic

We also say that an almost-complex structure I satisfying (i) and (ii) is Kähler. One would get an equivalent notion by replacing (i) with the condition that I is integrable.

A hyperkähler manifold is a Riemannian manifold (M, g) equipped with a triple of compatible almost-complex structures I, J, K satisfying the following conditions:

- (i) I, J, K are Kähler
- (ii) I,J,K satisfy the quaternionic relations: $I^2=J^2=K^2=IJK=-id$

Let us now fix a hyperkähler manifold (M, g, I, J, K).

 (i) verify that M has real dimension divisible by 4 Hint: the tangent space at any point is a module over the division algebra H.

Given a point $t = (t_x, t_y, t_z) \in S^2 \subset \mathbb{R}^3$ (i.e. $t_x^2 + t_y^2 + t_z^2 = 1$), we write $J_t := t_x I + t_y J + t_z J$. Similarly we write $\omega_t = t_x \omega_I + t_y \omega_J + t_z \omega_K$.

- (ii) Verify that J_t is a covariantly constant almost-complex structure.
- (iii) Verify that ω_t is symplectic and J_t is an ω_t -compatible almost-complex structure.
- (iv) Prove that all nontrivial Gromov–Witten invariants of (M, ω_t) vanish. In particular, the quantum cup product agrees with the ordinary cup product in cohomology.

In real dimension 4, all Kähler manifolds are automatically hyperkähler. The only compact examples are 4-tori and K3 surfaces. Beauville discovered that the Hilbert scheme of k points on a (compact) 4-dimensional hyperkähler is a 4k-dimensional (compact) hyperkähler. Many interesting examples of non-compact hyperkähler manifolds arise from geometric representation theory (such as hypertoric varieties, Nakajima quiver varieties, moduli spaces of Higgs bundles, ...)

4. Let $M = (M, \omega)$ be closed symplectic with compatible almost-complex structure J.

Given classes $a, b, c \in H^*(M)$ with $|a| + |b| + |c| = \operatorname{vdim} \overline{\mathcal{M}}_{0,3}^A(M, J)$, recall that $(a * b)_A \in H^{|a|+|b|-2c_1(A)}(M)$ is the unique class satisfying

$$\langle (a*b)_A \cup c, [M] \rangle = \mathrm{GW}_{0,3}^A(a,b,c) \tag{0.1}$$

(i) Give a geometric interpretation for the cycle

$$(\operatorname{ev}_0^* a \cup \operatorname{ev}_1^* b) \cap [\overline{\mathcal{M}}_{0,3}^A(M,J)] \in H_{|c|}(\overline{\mathcal{M}}_{0,3}^A(M,J))$$

- (ii) Explain why $(ev_{\infty})_*((ev_0^* a \cup ev_1^* b) \cap ev_*[\overline{\mathcal{M}}_{0,3}^A(M,J)]) = PD((a*b)_A)$
- 5. The purpose of this exercise is to compute the quantum cohomology of \mathbb{CP}^n . We will work over the Novikov field $\Lambda_{\mathbb{C}}$ and take the "pseudo-theorem" from class as an axiom.

The first step is to discuss the ordinary cohomology ring. Let $c \in H_2(\mathbb{CP}^n; \Lambda)$ be the Poincaré dual to the hyperplane class $H := [\mathbb{CP}^{n-1}] \in H^{2n-2}(\mathbb{CP}^n; \Lambda)$. Let $L = [\mathbb{CP}^1] \in H_2(\mathbb{CP}^n; \Lambda)$.

- (i) Verify that $c_1(\mathbb{CP}^n) = (n+1)c$
- (ii) Verify that $\mathrm{GW}_{0,3}^{\ell L}(a,b,c) = 0$ if $\ell \notin \{0,1\}$. Hint: recall the virtual dimension formula for $\overline{\mathcal{M}}_{0,3}^{\ell L}(\mathbb{CP}^n,j)$.

In class we saw that $(c^i * c^j)_0 = c^i \cup c^j$. It therefore remains to compute $(c^i * c^j)_L$. Recall from class (or the previous exercise...) that

$$PD((c^{i} * c^{j})_{L}) = (ev_{\infty})_{*}(([c]^{i} \cup [c]^{j}) \cap [\overline{\mathcal{M}}_{0,3}^{A}(\mathbb{CP}^{n}, j)])$$
$$= (\pi_{\infty})_{*}(PD(\pi_{0}^{*}[c]^{i}) \cap PD(\pi_{1}^{*}[c]^{j}) \cap ev_{*}[\overline{\mathcal{M}}_{0,3}^{A}(\mathbb{CP}^{n}, j)])$$

Using this formula:

- (iii) Convince yourself that $(\pi_{\infty})_*(PD(\pi_0^*[c]^i)\cap PD(\pi_1^*[c]^j)\cap ev_*[\overline{\mathcal{M}}_{0,3}^A(\mathbb{CP}^n, j)]) = [\mathbb{CP}^{n-i+n-j+1}]$. Hint: represent $PD(\pi_0^*[c]^i)$ by (the closure of) an (n-i)-dimension affine linear subspace of $\mathbb{C}^n \subset \mathbb{CP}^n$ and $PD(\pi_0[c]^j)$ by (the closure of) an (n-j)-dimensional affine linear subspaces is an n-i+n-j+1 dimensional affine linear subspace whose closure is precisely the cycle which you need to compute.
- (iv) Conclude that $\operatorname{GW}_{0,3}^{L}(c^{i}, c^{j}, c^{k}) = 1$ if i + j + l = 2n + 1 and 0 else.
- (v) Conclude that $QH^*(\mathbb{CP}^n) = \Lambda_{\mathbb{C}}[x,q]/(x^{n+1}-q).$