Prof. Dr. Daniel Huybrechts Dr. René Mboro Summer term 2020

Exercises, Algebra I (Commutative Algebra) – Week 11

Exercise 55. (Union of associated prime ideals, 3 points) Assume $\mathfrak{a} = \bigcap \mathfrak{q}_i$ is a minimal primary decomposition in a Noetherian ring A with associated prime ideals $\mathfrak{p}_i \coloneqq \sqrt{\mathfrak{q}_i}$. Show that then

$$\bigcup \mathfrak{p}_i = \{a \in A \mid (\mathfrak{a}: a) \neq \mathfrak{a}\} = \{a \in A \mid \overline{a} \in A / \mathfrak{a} \text{ is a zero divisor}\}.$$

Exercise 56. (Products of coprime ideals, 2 points) Assume \mathfrak{a}_i , $i = 1, \ldots, n$, are pairwise coprime ideals, i.e. $\mathfrak{a}_i + \mathfrak{a}_j = (1)$ for $i \neq j$. Show that then

$$\prod_{i=1}^{n} \mathfrak{a}_i = \bigcap_{i=1}^{n} \mathfrak{a}_i$$

(For n = 2 the argument has been given in the proof of Proposition 14.15.)

Exercise 57. (Primary decomposition, 4 points) Let A = k[x, y, z] and $\mathfrak{a} = (xy, x - yz)$.

- (i) Show that $V(\mathfrak{a}) = (V(x) \cup V(y)) \cap V(x yz) = V(x, y) \cup V(x, z).$
- (ii) Deduce that the set of isolated associated prime ideals is $\{(x, y), (x, z)\}$.
- (iii) Find a minimal primary decomposition of \mathfrak{a} .

Exercise 58. (Example of a primary ideal, 3 points) Show that $\mathfrak{m} = (2, x) \subset \mathbb{Z}[x]$ is a maximal ideal, that $\mathfrak{q} = (4, x)$ is \mathfrak{m} -primary, but $\mathfrak{q} \neq \mathfrak{m}^k$ for all k.

Exercise 59. (Case of radical ideals, 2 points) Show that an ideal $\mathfrak{a} \subset A$ which admits a primary decomposition and satisfies $\sqrt{\mathfrak{a}} = \mathfrak{a}$ has no embedded (i.e. non-minimal) associated prime ideals.

Exercise 60. (Primary decomposition, 3 points) Let A = k[x, y, z] and $\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2$ with $\mathfrak{p}_1 = (x, y)$, $\mathfrak{p}_2 = (x, z)$. Set $\mathfrak{m} = (x, y, z)$. Show that $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition of \mathfrak{a} . Which prime ideals are isolated and which are embedded?

Solutions to be handed in before Monday June 29, 4pm.