Exercises, Algebra I (Commutative Algebra) - Week 12

Exercise 61. (Graded rings and modules, 3 points)
(i) Let $A=\bigoplus A_{n}$ be a graded ring and $a_{i} \in A_{+}$homogenous elements. Then the $a_{i}, i \in I$, generate A as an A_{0}-algebra, i.e. $A=A_{0}\left[a_{i}\right]_{i \in I}$, if and only if they generate A_{+}as an ideal, i.e. $A_{+}=\left(a_{i}\right)_{i \in I}$.
(ii) Assume A is a graded ring such that A is a finitely generated A_{0}-algebra. If $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ is a graded A-module, which is a finite A-module in the usual sense, then each M_{n} is a finite A_{0}-module, see Remark 16.7.

Exercise 62. (Homogeneous ideals, 2 points)
Let A be a graded ring and $\mathfrak{a} \subset A$ a homogeneous ideal.

1. Show that A / \mathfrak{a} is a graded ring.
2. Show $\sqrt{\mathfrak{a}}$ is a homogeneous ideal.

Exercise 63. (Proj, 5 points)
(i) For a graded ring A, show that $\operatorname{Proj}(A)=\emptyset$ if and only if every element in A_{+}is nilpotent.
(ii) Show that $\mathbb{P}_{k}^{0}=\operatorname{Proj}(k[x])$ consists of just one point (namely the point corresponding to the zero ideal).
(iii) Show that for an algebraically closed field k there is a natural bijection between the set of closed points in \mathbb{P}_{k}^{n} and the set

$$
\left(\left\{\left(a_{0}, \ldots, a_{n}\right) \mid a_{i} \in k\right\} \backslash\{(0, \ldots, 0)\}\right) / \sim
$$

where \sim is defined by $\left(a_{0}, \ldots, a_{n}\right) \sim\left(\lambda a_{0}, \ldots, \lambda a_{n}\right)$ for all $\lambda \in k^{*}$. The map is given by $\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(a_{i} x_{j}-a_{j} x_{i}\right)_{i, j=0, \ldots, n}$.
(iv) Show that $\mathfrak{p} \mapsto \mathfrak{p} \cap A_{0}$ defines a continuous map

$$
\mathbb{P}_{A_{0}}^{n}:=\operatorname{Proj}\left(A_{0}\left[x_{0}, \ldots, x_{n}\right]\right) \rightarrow \operatorname{Spec}\left(A_{0}\right) .
$$

Exercise 64. (Numerical polynomials, 4 points)
A polynomial $P \in \mathbb{Q}[T]$ is called numerical if $P(n) \in \mathbb{Z}$ for all $n \gg 0$. Prove the following assertions:
(i) If $P \in \mathbb{Q}[T]$ is a numerical polynomial of degree r, then there exist $c_{0}, \ldots, c_{r} \in \mathbb{Z}$ such that

$$
P(T)=c_{0}\binom{T}{r}+c_{1}\binom{T}{r-1}+\ldots+c_{r}
$$

where $\binom{T}{k}=\frac{T(T-1) \ldots(T-k+1)}{k!}$.
(ii) Assume $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is such that the induced difference function

$$
\Delta f: \mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto f(n+1)-f(n)
$$

is polynomial, i.e. there exists a (numerical) polynomial $Q \in \mathbb{Q}[T]$ with $\Delta f(n)=Q(n)$ for $n \gg 0$. Show that then also f is polynomial, i.e. there exists a (numerical) polynomial $P \in \mathbb{Q}[T]$ with $f(n)=P(n)$ for $n \gg 0$. Moreover, $\operatorname{deg} P(T)=\operatorname{deg} Q(T)+1$.

Exercise 65. (Grothendieck group, 5 points)
The Grothendieck group of an abelian category \mathcal{C} is the quotient of the free abelian group generated by the objects of \mathcal{C} by the equivalence relation given by short exact sequences:

$$
K(\mathcal{C})=\left\{\sum_{i=1}^{n} a_{i}\left[M_{i}\right] \mid M_{i} \in \operatorname{Ob}(\mathcal{C}), a_{i} \in \mathbb{Z}\right\} / \sim,
$$

where $\left[M_{2}\right] \sim\left[M_{1}\right]+\left[M_{3}\right]$ whenever there exists a short exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow$ $M_{3} \rightarrow 0$. The interesting example for us is $\mathcal{C}=\bmod \left(A_{0}\right)$.
(i) Show that the datum of an additive (in short exact sequences) function λ on \mathcal{C} (see Definition 16.10) is equivalent to a group homomorphism $\lambda: K(\mathcal{C}) \rightarrow \mathbb{Z}$.
(ii) Show that $K\left(\operatorname{Vec}_{\mathrm{fd}}(k)\right) \cong \mathbb{Z}$.
(iii) Imitate the proof of Proposition 16.13 (lecture on Thursday) and show that for a finite graded module $M=\bigoplus_{n>0} M_{n}$ over a Noetherian graded ring A the Poincaré series $P(M, t)=$ $\sum_{n=0}^{\infty}\left[M_{n}\right] t^{n} \in K(\mathcal{C})[[t]]$ is of the form $f(t) / \prod\left(1-t^{d_{i}}\right)^{-1}$ with $f(t) \in K(\mathcal{C})[t]$.

