Exercises, Algebra I (Commutative Algebra) - Week 3

Exercise 9. (Adjunction, 3 points)
Assume $f: A \rightarrow B$ is a ring homomorphism. Show that for an A-module M and an B-module N there exists a natural isomorphism

$$
\operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right) \cong \operatorname{Hom}_{A}\left(M,{ }_{A} N\right)
$$

This can be viewed as an isomorphism of abelian groups or as an isomorphism of A or B modules. What is the B-module structure on the two sides? In categorical terms, this can be expressed by saying that the functor

$$
\otimes_{B}: \operatorname{Mod}(A) \rightarrow \operatorname{Mod}(B)
$$

is left adjoint to the functor

$$
\operatorname{Mod}(B) \rightarrow \operatorname{Mod}(A), N \mapsto{ }_{A} N
$$

Exercise 10. (Deducing exactness, 2 points)
Consider a sequence of A-module homomorphisms

$$
\begin{equation*}
M_{1} \xrightarrow{g} M_{2} \xrightarrow{f} M_{3} \longrightarrow 0 \tag{1}
\end{equation*}
$$

and assume that for all A-modules N the induced sequence

$$
0 \longrightarrow \operatorname{Hom}\left(M_{3}, N\right) \xrightarrow{\circ f} \operatorname{Hom}\left(M_{2}, N\right) \xrightarrow{\circ g} \operatorname{Hom}\left(M_{1}, N\right)
$$

is exact. Show at then (1) is exact.

Exercise 11. (Examples of exact sequences, 4 points)
Decide which of the following sequences of A-modules are exact:

$$
\begin{equation*}
0 \rightarrow M_{1} \cap M_{2} \xrightarrow{\alpha} M_{1} \oplus M_{2} \xrightarrow{\beta} M_{1}+M_{2} \rightarrow 0 \tag{i}
\end{equation*}
$$

for two A-sub-modules $M_{1}, M_{2} \subset M$ of an A-module M, with $\alpha: m \mapsto(m, m)$ and $\beta:\left(m_{1}, m_{2}\right) \mapsto m_{1}-m_{2}$.

For the next two questions, let A be the polynomial $\operatorname{ring} k[x, y, z], f \in A$ and $\mathfrak{a} \subset A$ the ideal generated by $(x+z, y, f)$. Consider the following sequence of A-modules:

$$
0 \rightarrow \wedge^{3} A^{3} \xrightarrow{\varphi_{3}} \wedge^{2} A^{3} \xrightarrow{\varphi_{2}} A^{3} \xrightarrow{\varphi_{1}} \mathfrak{a} \rightarrow 0
$$

where, denoting $\left(e_{1}, e_{2}, e_{3}\right)$ a basis of the free A-module A^{3}, φ_{1} defined by (extend linearly):

$$
e_{1} \mapsto x+z, e_{2} \mapsto y, e_{3} \mapsto f
$$

φ_{2} by:

$$
e_{1} \wedge e_{2} \mapsto(x+z) e_{2}-y e_{1}, e_{1} \wedge e_{3} \mapsto(x+z) e_{3}-f e_{1}, e_{2} \wedge e_{3} \mapsto y e_{3}-f e_{2}
$$

and φ_{3} by $e_{1} \wedge e_{2} \wedge e_{3} \mapsto(x+z) e_{2} \wedge e_{3}-y e_{1} \wedge e_{3}+f e_{1} \wedge e_{2}$.

[^0](ii) with $f=z$.
(iii) with $f=x-y^{2}+z$.

Exercise 12. (Flat, free, projective, 4 points)
Decide whether the following A-modules M are flat, free, or projective:
(i) A an integral domain, $a \in A \backslash\{0\}$ and $M=(a)$.
(ii) $A=k[x]$ and $M=k(x)$ the field of fractions of A.
(iii) k a field, $f \in k[x]$ a degree $d>0$ polynomial, $A=k[x] /(f) \times k$ with the product ring structure and $M=0 \times k$.

Exercise 13. (Long exact cohomology sequences, 2 points)
Consider short exact sequences

$$
0 \longrightarrow M^{i} \xrightarrow{f_{i}} N^{i} \xrightarrow{g_{i}} P^{i} \longrightarrow 0
$$

of A-modules and module homomorphisms

$$
a_{i}: M^{i} \rightarrow M^{i+1}, b_{i}: N^{i} \rightarrow N^{i+1}, \text { and } c_{i}: P^{i} \rightarrow P^{i+1}
$$

such that $a_{i+1} \circ a_{i}=b_{i+1} \circ b_{i}=c_{i+1} \circ c_{i}=0, b_{i} \circ f_{i}=f_{i+1} \circ a_{i}$ and $c_{i} \circ g_{i}=g_{i+1} \circ b_{i}$. (In short: 'a short exact sequences of complexes' $0 \rightarrow M^{\bullet} \rightarrow N^{\bullet} \rightarrow P^{\bullet} \rightarrow 0$.)
Define $H^{i}\left(M^{\bullet}\right):=\operatorname{Ker}\left(a_{i}\right) / \operatorname{Im}\left(a_{i-1}\right)$ (the 'cohomology of the complex M^{\bullet} ') and similarly for N^{\bullet} and P^{\bullet}. Imitate the proof of the snake lemma and prove that there exists a natural exact sequence

$$
H^{i}\left(M^{\bullet}\right) \rightarrow H^{i}\left(N^{\bullet}\right) \rightarrow H^{i}\left(P^{\bullet}\right) \rightarrow H^{i+1}\left(M^{\bullet}\right) \rightarrow H^{i+1}\left(N^{\bullet}\right) \rightarrow H^{i+1}\left(P^{\bullet}\right)
$$

Exercise 14. (Direct limit, 3 points)
Let I be a partially ordered directed set, i.e. for all $i, j \in I$ there exists $k \in I$ with $i, j \leq k$. Consider a family of A-modules $M_{i}, i \in I$ and homomorphisms $f_{i j}: M_{i} \rightarrow M_{j}$ for all $i \leq j$ such that $f_{i i}=$ id and $f_{i k}=f_{j k} \circ f_{i j}$ for all $i \leq j \leq k$. (This is called a 'directed system of A-modules'.)
Let $\underset{\longrightarrow}{\lim } M_{i}$ be the quotient of $\bigoplus M_{i}$ by the submodule generated by all elements of the form $m_{i}-f_{i j}\left(m_{i}\right)$, where $m_{i} \in M_{i}$ and $f_{i j}: M_{i} \rightarrow M_{j}$. In particular, there exist natural homomorphisms $f_{i}: M_{i} \rightarrow \underset{\longrightarrow}{\lim } M_{i}$.
(i) Show that every element of $\underset{\longrightarrow}{\lim } M_{i}$ is the image of an element of the form $m_{i} \in M_{i} \subset$ $\bigoplus M_{i}$.
(ii) Show that $\lim M_{i}$ has the following universal property: For an A-module N and homomorphisms $\overrightarrow{g_{i}}: M_{i} \rightarrow N$ there exists a unique $g: \underset{\longrightarrow}{\lim } M_{i} \rightarrow N$ with $g \circ f_{i}=g_{i}$ for all i if and only if $g_{j} \circ f_{i j}=g_{i}$ for all $i \leq j$.
(iii) Show that $\underset{\rightarrow}{\lim }$ is an exact functor. More precisely, this means the following: Assume $\left(M_{i}\right),\left(N_{i}\right), \overrightarrow{\left(P_{i}\right)}$ are three directed systems of A-modules over the same directed set I. Furthermore assume that for all i there exist short exact sequences $0 \rightarrow M_{i} \rightarrow N_{i} \rightarrow$ $P_{i} \rightarrow 0$ such that the maps commute with the homomorphisms in the directed systems. Then there exists a natural short exact sequence

$$
0 \rightarrow \xrightarrow{\lim } M_{i} \rightarrow \xrightarrow{\lim } N_{i} \rightarrow \underset{\longrightarrow}{\lim } P_{i} \rightarrow 0 .
$$

[^0]: Solutions to be handed in before Monday April 27, 4pm.

