Prof. Dr. Daniel Huybrechts Dr. René Mboro

Exercises, Algebra I (Commutative Algebra) – Week 4

Exercise 15. (Scalar extension of Ext and Tor, 3 points)

Assume $A \to B$ is a ring homomorphism with B flat over A. Let M and N be A-modules. Show that there exist natural isomorphisms $\operatorname{Tor}_i^A(M, N) \otimes_A B \cong \operatorname{Tor}_i^B(M \otimes_A B, N \otimes_A B)$. (There was a mistake in the previous version of the Exercise) Assume moreover that A is Noetherian and M is finitely generated. Show that there exist

natural isomorphisms $\operatorname{Ext}^{i}(M, N) \otimes_{A} B \cong \operatorname{Ext}^{i}_{B}(M \otimes_{A} B, N \otimes_{A} B).$

Exercise 16. (Properties of elements in polynomial rings, 4 points) Consider the polynomial ring A[x] for an arbitrary ring A and let $0 \neq f = a_0 + a_1 x + \ldots a_n x^n \in A[x]$. Prove the following assertions

- (i) Prove that if $a \in A$ is nilpotent and $b \in A^{\times}$ is a unit, a + b is a unit.
- (ii) f is a unit if and only if a_0 is a unit and a_i , i > 0 are nilpotent (hint: if $g = \sum_{i=0}^d b_i x^i$ is an inverse of f, prove that $a_n^{k+1}b_{d-k} = 0$ for any $k \ge 0$).
- (iii) f is nilpotent if and only if all a_i are nilpotent.
- (iv) f is a zero divisor if and only if there exists an $0 \neq a \in A$ with af = 0.

Exercise 17. (Short exact sequences, 1 point)

Assume $0 \longrightarrow M_1 \longrightarrow M_2 \xrightarrow{\pi} M_3 \longrightarrow 0$ is a short exact sequence of A-modules. Show that for any A-submodule $N_3 \subset M_3$ also $0 \longrightarrow M_1 \longrightarrow N_2 \xrightarrow{\pi} N_3 \longrightarrow 0$ is exact. Here, $N_2 \coloneqq \pi^{-1}(N_3)$.

Exercise 18. (Examples of nilradicals, 4 points)

Describe the nilradical \mathfrak{N} and the Jacobson radical \mathfrak{R} for the following rings (k denotes a field): A = k[x]; A = k[x]; $A = k[x]/(x^3)$; $A = \mathbb{Z}/(18)$.

Exercise 19. (Rings with one prime ideal, 2 points)

Let A be a ring and $\mathfrak{N} \subset A$ its nilradical. Show that the following conditions are equivalent:

- (i) A has exactly one prime ideal.
- (ii) Every element in A is either a unit or nilpotent.
- (iii) A/\mathfrak{N} is a field.

Exercise 20. (Radical $\sqrt{\mathfrak{a}}$, 3 points) Let $\mathfrak{a}, \mathfrak{b} \subset A$ ideals. Prove the following assertions:

- (i) $\sqrt{\mathfrak{a}\mathfrak{b}} = \sqrt{\mathfrak{a}\cap\mathfrak{b}} = \sqrt{\mathfrak{a}}\cap\sqrt{\mathfrak{b}}.$
- (ii) $\sqrt{\mathfrak{a}} = (1)$ if and only if $\mathfrak{a} = (1)$.
- (iii) Assume $\mathfrak{a} \neq (1)$. Then $\mathfrak{a} = \sqrt{\mathfrak{a}}$ if and only if \mathfrak{a} is an intersection of prime ideals

Exercise 21. (Faithfully flatness, 3 points)

An A-module M is called *faithfully flat* if M is flat and for all A-modules N_1, N_2 the natural map $\text{Hom}(N_1, N_2) \to \text{Hom}(M \otimes N_1, M \otimes N_2)$ is injective. Show that every free module is faithfully flat. Recall that every projective module is flat. Is it also faithfully flat?

Solutions to be handed in before Monday May 4, 4pm.