Exercises, Algebra I (Commutative Algebra) - Week 4

Exercise 15. (Scalar extension of Ext and Tor, 3 points)
Assume $A \rightarrow B$ is a ring homomorphism with B flat over A. Let M and N be A-modules. Show that there exist natural isomorphisms $\operatorname{Tor}_{i}^{A}(M, N) \otimes_{A} B \cong \operatorname{Tor}_{i}^{B}\left(M \otimes_{A} B, N \otimes_{A} B\right)$.
(There was a mistake in the previous version of the Exercise)
Assume moreover that A is Noetherian and M is finitely generated. Show that there exist natural isomorphisms $\operatorname{Ext}^{i}(M, N) \otimes_{A} B \cong \operatorname{Ext}_{B}^{i}\left(M \otimes_{A} B, N \otimes_{A} B\right)$.

Exercise 16. (Properties of elements in polynomial rings, 4 points)
Consider the polynomial ring $A[x]$ for an arbitrary ring A and let $0 \neq f=a_{0}+a_{1} x+\ldots a_{n} x^{n} \in$
$A[x]$. Prove the following assertions
(i) Prove that if $a \in A$ is nilpotent and $b \in A^{\times}$is a unit, $a+b$ is a unit.
(ii) f is a unit if and only if a_{0} is a unit and $a_{i}, i>0$ are nilpotent (hint: if $g=\sum_{i=0}^{d} b_{i} x^{i}$ is an inverse of f, prove that $a_{n}^{k+1} b_{d-k}=0$ for any $k \geq 0$).
(iii) f is nilpotent if and only if all a_{i} are nilpotent.
(iv) f is a zero divisor if and only if there exists an $0 \neq a \in A$ with $a f=0$.

Exercise 17. (Short exact sequences, 1 point)
Assume $0 \longrightarrow M_{1} \longrightarrow M_{2} \xrightarrow{\pi} M_{3} \longrightarrow 0$ is a short exact sequence of A-modules. Show that for any A-submodule $N_{3} \subset M_{3}$ also $0 \longrightarrow M_{1} \longrightarrow N_{2} \xrightarrow{\pi} N_{3} \longrightarrow 0$ is exact. Here, $N_{2}:=\pi^{-1}\left(N_{3}\right)$.

Exercise 18. (Examples of nilradicals, 4 points)
Describe the nilradical \mathfrak{N} and the Jacobson radical \mathfrak{R} for the following rings (k denotes a field): $A=k[x] ; A=k[[x]] ; A=k[x] /\left(x^{3}\right) ; A=\mathbb{Z} /(18)$.

Exercise 19. (Rings with one prime ideal, 2 points)
Let A be a ring and $\mathfrak{N} \subset A$ its nilradical. Show that the following conditions are equivalent:
(i) A has exactly one prime ideal.
(ii) Every element in A is either a unit or nilpotent.
(iii) A / \mathfrak{N} is a field.

Exercise 20. (Radical $\sqrt{\mathfrak{a}}, 3$ points)
Let $\mathfrak{a}, \mathfrak{b} \subset A$ ideals. Prove the following assertions:
(i) $\sqrt{\mathfrak{a} \mathfrak{b}}=\sqrt{\mathfrak{a} \cap \mathfrak{b}}=\sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$.
(ii) $\sqrt{\mathfrak{a}}=(1)$ if and only if $\mathfrak{a}=(1)$.
(iii) Assume $\mathfrak{a} \neq(1)$. Then $\mathfrak{a}=\sqrt{\mathfrak{a}}$ if and only if \mathfrak{a} is an intersection of prime ideals

Exercise 21. (Faithfully flatness, 3 points)
An A-module M is called faithfully flat if M is flat and for all A-modules N_{1}, N_{2} the natural map $\operatorname{Hom}\left(N_{1}, N_{2}\right) \rightarrow \operatorname{Hom}\left(M \otimes N_{1}, M \otimes N_{2}\right)$ is injective. Show that every free module is faithfully flat. Recall that every projective module is flat. Is it also faithfully flat?

[^0]
[^0]: Solutions to be handed in before Monday May 4, 4pm.

