Exercises, Algebra I (Commutative Algebra) - Week 5

Exercise 22. (Annihilator, 2 pts)
For an A-module M one defines its annihilator $\operatorname{Ann}(M) \subset A$ as the ideal of all elements $a \in A$ such that $a m=0$ in M for all $m \in M$. Now consider a multiplicative set $S \subset A$, assume that M is finite, and prove the following assertions:
(i) $S^{-1} \operatorname{Ann}(M)=\operatorname{Ann}\left(S^{-1} M\right)$.
(ii) $S^{-1} M=0$ if and only if $\operatorname{Ann}(M) \cap S \neq \emptyset$.

Exercise 23. (Nakayama lemma, 3 points)
Let A be a ring and $\mathfrak{a} \subset A$ an ideal. Prove the following consequences of the Nakayama lemma:
(i) Let $N \rightarrow M$ be a homomorphism of A-modules such that the induced homomorphism $N / \mathfrak{a} N \rightarrow M / \mathfrak{a} M$ is surjective. If M is a finite A-module and $\mathfrak{a} \subset \mathfrak{R}$, then $N \rightarrow M$ is surjective.
(ii) Let $N \rightarrow M$ be a homomorphism of A-modules such that the induced homomorphism $N / \mathfrak{a} N \rightarrow M / \mathfrak{a} M$ is surjective. If M is a finite A-module, then there exists an element of the form $b=1+a$ with $a \in \mathfrak{a}$, such that the induced homomorphism $N_{b} \rightarrow M_{b}$ of A_{b}-modules is surjective.
(iii) Assume that $m_{1}, \ldots, m_{n} \in M$ generate $M / \mathfrak{a} M$. If M is finite, then there exists an element $b=1+a$ with $a \in \mathfrak{a}$, such that m_{1}, \ldots, m_{n} generate the A_{b}-module M_{b}.

Exercise 24. (Non-zero divisors as multiplicative set, 3 points)
Let $S \subset A$ be the multiplicative set of all elements in A that are not zero divisors.
(i) Show that the natural map $A \rightarrow S^{-1} A$ is injective and that S is maximal with this property
(ii) Show that every element in $S^{-1} A$ is either a zero-divisor or a unit.
(ii) Assume every element in A is a zero-divisor or a unit. Show that then the natural ring homomorphism $A \rightarrow S^{-1} A$ is already an isomorphism.

Exercise 25. (Flat scalar extensions, 4 points)
Consider the following ring homomorphisms $A \rightarrow B$ and decide in which cases B is A-flat:
(i) $\mathbb{Z} \rightarrow \mathbb{F}_{p}$; (ii) $\mathbb{Z} \rightarrow \mathbb{Q}$: (iii) $A \rightarrow A[x]$; (iv) $\mathbb{Z} \rightarrow \mathbb{Q}[x, y] /\left(y^{2}-x\right)$.

Exercise 26. (Localization, 4 points)
(i) Let k be a field and $A:=k\left[x_{1}, x_{2}\right] /\left(x_{2}^{2}\right)$. Show that $S:=\left\{f\left(x_{1}\right)+x_{2} \cdot g\left(x_{1}\right) \mid f\left(x_{1}\right) \neq 0\right\}$ is a multiplicative set and prove that there exists an isomorphism of rings

$$
S^{-1} A \cong k\left(x_{1}\right)\left[x_{2}\right] /\left(x_{2}^{2}\right)
$$

(ii) Let A and B be rings. Consider the multiplicative set $S=\{(1,1),(1,0)\} \subset A \times B$. Show that there exists an isomorphism of rings

$$
S^{-1}(A \times B) \cong A
$$

(iii) Let $S \subset A$ be a multiplicative set and M an A-module. Show that the natural map $M \rightarrow S^{-1} M$ is bijective if and only if for every element $s \in S$ multiplication $M \xrightarrow{\cdot s} M$ is bijective.

[^0]
[^0]: Solutions to be handed in before Monday May 11, 4pm.

