Exercises, Algebra I (Commutative Algebra) - Week 6

Exercise 27. (Basic open sets, 3 pts)
Let $a \in A \backslash \mathfrak{N}$. Show that the map $\varphi: \operatorname{Spec}\left(A_{a}\right) \rightarrow \operatorname{Spec}(A)$ induced by the natural ring homomorphism $f: A \rightarrow A_{a}$ describes a homeomorphism $\psi: \operatorname{Spec}\left(A_{a}\right) \rightarrow D(a)$ (i.e. ψ and ψ^{-1} are both bijective and continuous).

Exercise 28. (Consecutive localization, 2 points)
Let $\mathfrak{p}_{1} \subset \mathfrak{p}_{2} \subset A$ be two prime ideals. Show that the localization of $A_{\mathfrak{p}_{2}}$ in the prime ideal corresponding to \mathfrak{p}_{1} is isomorphic to $A_{\mathfrak{p}_{1}}$.

Exercise 29. (Comparing basic open sets, 3 points)
Let A be a ring and $a, b \in A \backslash \mathfrak{N}$. Show that $D(a) \subset D(b)$ if and only if $\frac{b}{1} \in A_{a}$ is a unit. Furthermore, show that in this case the natural ring homomorphism $A \rightarrow A_{a}$ factorizes via a ring homomorphism $A_{b} \rightarrow A_{a}$. Conclude from this that $D(a)=D(b)$ if and only if $A_{a} \cong A_{b}$.

Exercise 30. (Disconnected $\operatorname{Spec}(A)$ and idempotents, 4 points)
A topological space X is called disconnected if X is the disjoint union of two non-empty open subsets (or, equivalently, of two non-empty closed subsets).
Show that $\operatorname{Spec}(A)$ with the Zariski topology is disconnected if and only if there exists an element $0,1 \neq e \in A$ with $e^{2}=e$. (Such an element is called idempotent.) Hint: For the if' consider $e^{\prime}:=1-e$ and observe $e \cdot e^{\prime}=0$. For the 'only if' use the standard properties of $V(\mathfrak{a})$ and the description of the nilradical to construct idempotents in this way.

Exercise 31. (Irreducible $\operatorname{Spec}(A), 2$ points)
A topological space X is called irreducible if X is non-empty and the intersection $U \cap V$ of any two non-empty open subsets $U, V \subset X$ is again non-empty. Equivalently, X is not the union of two proper closed subsets.
Show that $\operatorname{Spec}(A)$ with the Zariski topology is irreducible if and only if the nilradical $\mathfrak{N} \subset A$ is a prime ideal.

Exercise 32. (Idempotent ideals, 5 points)
Show that for an ideal $\mathfrak{a} \subset A$ the following conditions are equivalent:
(i) A / \mathfrak{a} is a projective A-module.
(ii) A / \mathfrak{a} is a flat A-module and \mathfrak{a} is finitely generated.
(iii) \mathfrak{a} is finite and idempotent (i.e. $\mathfrak{a} \cdot \mathfrak{a}=\mathfrak{a}$).
(iv) $\mathfrak{a}=(e)$ for some idempotent e.
(v) \mathfrak{a} is a direct summand of A.

For your convenience we collect a few standard facts concerning tensor products. You may want to revise the arguments how to prove those.

1. Let A be a ring and M, N, and P be A-modules. Then there exist natural isomorphisms

$$
M \otimes_{A} N \cong N \otimes_{A} M \text { and }\left(M \otimes_{A} N\right) \otimes_{A} P \cong M \otimes_{A}\left(N \otimes_{A} P\right)
$$

2. Let $f: A \rightarrow B$ be a ring homomorphism and M an A-module and N a B-module. Then there is natural isomorphism

$$
M \otimes_{A} N \cong M \otimes_{A} B \otimes_{B} N
$$

3. Let $f: A \rightarrow B$ be a ring homomorphism and M and N be A-modules. Then there are natural isomorphisms

$$
\left(M \otimes_{A} N\right) \otimes_{A} B \cong\left(B \otimes_{A} M\right) \otimes_{A} N \cong M \otimes_{A}\left(N \otimes_{A} B\right) \cong\left(M \otimes_{A} B\right) \otimes_{B}\left(N \otimes_{A} B\right)
$$

4. For an A-module M and an ideal $\mathfrak{a} \subset A$, there is a natural isomorphism

$$
M \otimes_{A} A / \mathfrak{a} \cong M / \mathfrak{a} M
$$

where $\mathfrak{a} M \subset M$ is the submodule generated by elements of the form $a m$ with $a \in \mathfrak{a}$ and $m \in M$.
5. Let $\mathfrak{a}, \mathfrak{b} \subset A$ be two ideals of A. Show that there is an isomorphism of rings

$$
A / \mathfrak{a} \otimes_{A} A / \mathfrak{b} \cong A /(\mathfrak{a}+\mathfrak{b})
$$

6. For an A-module M and a multiplicative set $S \subset A$ there exists a natural isomorphism

$$
M \otimes_{A} S^{-1} A \cong S^{-1} M
$$

