Exercises, Algebra I (Commutative Algebra) – Week 7

Exercise 33. (Extension under flat ring homomorphisms, 3 points) Let $f: A \to B$ be a flat ring homomorphism for which the induced map $\varphi: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is surjective. Show that an A-module M is zero if and only if $M \otimes_A B = 0$. In fact, it suffices to assume that $\operatorname{MaxSpec}(A) \subset \operatorname{im}(\varphi)$. Give an example that shows that the assumption on the surjectivity of φ cannot be dropped.

Exercise 34. (Surjectivity of maps induced by flat ring homomorphisms, 5 points) Let $f: A \to B$ be a flat ring homomorphism.

- (i) Given N a B-module, define the B-module $N_B := B \otimes_A {}_A N$ (where ${}_A N$ denotes the restriction of scalars). Show that the homomorphism of A-modules $g : N \to N_B$ given by $n \mapsto 1 \otimes n$ is injective and that $\operatorname{im}(g) \subset N_B$ is a direct summand of N_B . Remark: flatness of B is not needed.
- (ii) Show that φ: Spec(B) → Spec(A) is surjective if and only if for all maximal ideals m ⊂ A one has m^e ≠ (1).
 Hint: For the 'if' direction, show that MaxSpec(A) ⊂ im(φ), then use the previous exercise to show that the other prime ideals of A are contained in im(φ).
- (iii) Let $\mathfrak{q} \subset B$ be a prime ideal and $\mathfrak{p} := \mathfrak{q}^c \subset A$. Show that the induced ring homomorphism $A_{\mathfrak{p}} \to B_{\mathfrak{q}}$ yields surjective map $\operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$.

Exercise 35. (Algebras of invariants, 2 points)

Let A be a Noetherian ring and B a finite type A-algebra. Suppose $G = \{g_i\}$ is a finite group of A-algebra homomorphisms $g_i \colon B \to B$. Show that $B^G \coloneqq \{b \in B \mid \forall i \colon g_i(b) = b\}$ is a finite type A-algebra.

Exercise 36. (Localization of integral ring homomorphisms, 3 points)

Suppose $A \to B$ is integral. For a maximal ideal $\mathfrak{n} \subset B$ let $\mathfrak{m} := \mathfrak{n}^c \subset A$ (which is again maximal, as will be shown in class). Is then the induced ring homomorphism $A_{\mathfrak{m}} \to B_{\mathfrak{n}}$ always integral? *Hint*: Consider $k[x^2 - 1] \subset k[x]$ (char(k) $\neq 2$) and $\mathfrak{n} = (x - 1)$.

Exercise 37. (Noetherian topological spaces, 3 points)

A topological space X is *Noetherian* if every ascending chain of open subsets $U_1 \subset U_2 \subset \ldots$ becomes stationary (i.e. $\bigcup U_i = U_n$ for $n \gg 0$) or, equivalently, if every descending chain of closed sets $V_1 \supset V_2 \supset \ldots$ becomes stationary (i.e. $\bigcap V_i = V_n$ for $n \gg 0$).

- (i) Show that Spec(A) of a Noetherian ring is a Noetherian topological space and find a counter-example for the converse.
- (ii) Show that for a finite type A-algebra B the fibres $\varphi^{-1}(\mathfrak{p})$ of φ : Spec(B) \rightarrow Spec(A) are Noetherian topological spaces.

Solutions to be handed in before Monday May 25, 4pm.