## Exercises, Algebra I (Commutative Algebra) - Week 9

Exercise 43. (Noether normalization over rings, 3 points)
Assume an injective ring homomorphism $A \hookrightarrow B$ makes an integral domain $B$ a finite type $A$-algebra. Show that then there exist $0 \neq a \in A$ and elements $y_{1}, \ldots, y_{n} \in B$ that are algebraically independent over $A$ such that the localizaion $B_{a}$ is integral over $A\left[y_{1}, \ldots, y_{n}\right]_{a}$.

Exercise 44. (Finite type $\mathbb{Z}$-algebras are Jacobson, 3 points)
Assume $A$ is a Jacobson ring and $B$ is an $A$-algebra. Show that $B$ is a Jacobson ring as well if $B$ is of finite type over $A$ or integral over $A$.

Exercise 45. (Finite fields, 3 points)
Show that any field that is finitely generated as a $\mathbb{Z}$-algebra is in fact a finite field.
Hint: One might need to show that there is no surjective $\mathbb{Z}$-algebra homomorphism $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \rightarrow$ $\mathbb{Q}$.

Exercise 46. (Family of polynomials without common zeros, 3 points)
Let $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials without any common zero $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$. Show that there exist $g_{1}, \ldots, g_{k} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ with $0 \neq g_{1} f_{1}+\ldots+g_{k} f_{k} \in \mathbb{Z}$. Is this still true if $\mathbb{C}^{n}$ is replaced by $\mathbb{R}^{n}$ ?

Exercise 47. (Noether normalization via linear projections, 4 points)
Let $V(\mathfrak{a}) \subset \mathbb{A}_{k}^{3}$ with $\mathfrak{a}=\left(y-z^{2}, x z-y^{2}\right) \subset k[x, y, z]$. Determine explicitly a linear projection $V(\mathfrak{a}) \rightarrow \mathbb{A}_{k}^{1}$ which is finite, closed, and surjective.

Exercise 48. (Valuation rings, 3 points)
Consider a field extension $K \subset L, B$ a valuation ring with quotient field $L$, and let $A:=K \cap B$. Prove the following statements:
(i) $A$ is a valuation ring with quotient field $K$.
(ii) If $L / K$ is algebraic and $B$ is not a field, then also $A$ is not a field.

Am Donnerstag, den 11.06.2020 findet eine Versammlung aller Mathematikstudierenden (Fachschaftsvollversammlung) statt. Alle weiteren Informationen findet ihr unter www.fsmath. uni-bonn.de

On Thursday, 11.06.2020 there will be an online-meeting of all math students (Fachschaftsvollversammlung). All further information can be found at www.fsmath.uni-bonn.de

Solutions to be handed in before Tuesday June 15, 4pm.

