Exam solutions: Commutative Algebra (V3A1, Algebra I)

Exercise A. (Points: 3+2)

Assume A is a commutative ring such that for every element $a \in A$ there exists an integer n(a) > 1such that $a^{n(a)} = a$.

(i) Show that $\dim(A) = 0$.

(ii) Describe an explicit example of such a ring that is not a field.

Solution:

(i) Let $\mathfrak{p} \in \operatorname{Spec}(A)$. Then for any $\bar{a} \in A/\mathfrak{p}$, we have $\bar{a}^{n(a)} = \bar{a}$, i.e. $\bar{a} \cdot (\bar{a}^{n(a)-1}-1) = 0$. Thus, as A/\mathfrak{p} is an integral domain, $\bar{a} = 0$ or $\bar{a} \cdot \bar{a}^{n(a)-2} = \bar{a}^{n(a)-1} = 1$. Hence, any non-zero element in A/\mathfrak{p} is invertible, i.e. A/\mathfrak{p} is a field and \mathfrak{p} is a maximal ideal. (2) Hence, any chain of prime ideals in A can contain only one element, so dim(A) = 0. (1)

(ii) Consider $A := \mathbb{Z}/(2) \times \mathbb{Z}/(2)$ which consists of four elements. Note $(1,1)^2 = (1,1)$, $(1,0)^2 = (1,0)$, $(0,1)^2 = (0,1)$, and $(0,0)^2 = (0,0)$. Hence, $a^2 = a$ for all $a \in A$ and A is not a field, it is not even an integral domain, as $(1,0) \cdot (0,1) = (0,0)$. (2)

Exercise B. (Points: 5)

Consider the ring $A \coloneqq k[x, y]/(x(y+1), x(y+x^2))$ with char $(k) \neq 2$. Describe all connected components of Spec(A), decide which ones consist of just one closed point and which ones have a non-empty intersection with Spec (A_{x+y}) .

Solution:

We have (1.5)

$$\begin{split} V((x(y+1), x(y+x^2))) &= V((x) \cdot (y+1, y+x^2)) = V(x) \cup V(y+1, x^2-1) \\ &= V(x) \cup (V(y+1) \cap (V(x-1) \cup V(x+1))) \\ &= V(x) \cup V(y+1, x-1) \cup V(y+1, x+1). \end{split}$$

The ideal $(x) \subset k[x, y]$ is prime and, therefore, V(x) is irreducible and in particular connected. (0.5) The ideals (y + 1, x - 1) and (y + 1, x + 1) are maximal ideals so that V(y + 1, x - 1) and V(y + 1, x + 1) are closed points (1) which are not contained in V(x) (as $x \notin (y + 1, x - 1)$, (y + 1, x + 1)). (0.5) Thus, the connected components of Spec(A) are V(x), V(y + 1, x - 1) and V(y + 1, x + 1).

Recall that $\operatorname{Spec}(A_{x+y})$ can be identified with $\{\mathfrak{p} \in \operatorname{Spec}(A), x+y \notin \mathfrak{p}\}$. As $x+y \in (y+1,x-1)$, we have $V(y+1,x-1) \cap \operatorname{Spec}(A_{x+y}) = \emptyset$. (0.5) Suppose $x+y \in (y+1,x+1)$. Then one can write x+y = (y+1)f + (x+1)g, which by evaluating at x = -1 = y yields -2 = 0 contradicting char $(k) \neq 2$. Hence, $V(y+1,x+1) = \{(y+1,x+1)\} \subset \operatorname{Spec}(A_{x+y})$. (0.5) Finally, we have $(x) \subset (x,y+1)$ so that the maximal ideal (x,y+1) belongs to V(x). As above, one checks that $x+y \notin (x,y+1)$ (evaluate the corresponding equality at x = 0, y = -1) and, therefore, $V(x) \cap \operatorname{Spec}(A_{x+y}) \neq \emptyset$. (0.5)

Exercise C. (Points: 2+4)

Consider the ring $A = k[x, y, z]/(xyz, y^2)$.

(i) Show that the ideals $(\bar{x}) \subset A$ and $(\bar{z}) \subset A$ are both primary ideals and determine their radicals.

(ii) Determine a primary decomposition of the zero ideal in A and decide which associated prime ideals are isolated and which are embedded.

Solution:

(i) We have $A/(\bar{x}) \simeq k[x, y, z]/(x, xyz, y^2) \simeq k[x, y, z]/(x, y^2) \simeq k[y, z]/(y^2)$. (0.5) As k[y, z] is an integral domain, the only zero divisors in $A/(\bar{x})$ are the elements of the ideal generated by \bar{y} , which are nilpotent as $\bar{y}^2 = \bar{0}$. So (\bar{x}) is a primary ideal. (0.5) Moreover, the nilradical of $A/(\bar{x})$ is generated by \bar{y} and, therefore, $\sqrt{(\bar{x})} = (\bar{x}, \bar{y})$ in A. (0.5) Analogously, $(\bar{z}) \subset A$ is a primary ideal with radical (\bar{y}, \bar{z}) . (0.5)

(ii) Let us prove that $(xyz, y^2) = (x, y^2) \cap (z, y^2) \cap (y)$ in k[x, y, z]. The inclusion ' \subset ' is clear. (0.5) Conversely, take $g \in (x, y^2)$ and write $g = xf_1 + y^2f_2$ for some polynomials f_1, f_2 . Then $g \in (y)$ if and only if $xf_1 \in (y)$ which means that $f_1 = yf_3$ (as k[x, y, z] is factorial). Now $g \in (z, y^2)$ if and only if $xyf_3 \in (z, y^2)$, i.e. $xyf_3 = zh_1 + y^2h_2$ for some $h_i \in k[x, y, z]$. Hence, $y|zh_1$ and, thus, $h_1 = yh_3$. Dividing by y yields $xf_3 = zh_3 + yh_2$. Evaluating the later at y = 0 = z yields $f_3(x, 0, 0) = 0$, which shows that we can write $f_3 = yf_4 + zf_5$. Hence, $g = xy^2f_4 + xyzf_5 + y^2f_2 \in (xyz, y^2)$, proving the other inclusion. (1.5) Moreover, the decomposition is minimal, since $xy \in (x, y^2) \cap (y) \setminus (xyz, y^2)$, $zy \in (z, y^2) \cap (y) \setminus (xyz, y^2)$ and $xz \in (x, y^2) \cap (z, y^2) \setminus (xyz, y^2)$. (0.5)

Passing to the quotient (notice that (y) is a prime ideal containing (xyz, y^2) so (\bar{y}) is a prime hence primary ideal) we get $(\overline{0}) = (\overline{x}) \cap (\overline{z}) \cap (\overline{y})$ in A, which is a minimal primary decomposition by (i). (0.5)

Hence, $\operatorname{Ass}((\bar{0})) = \{(\bar{x}, \bar{y}), (\bar{y}, \bar{z}), (\bar{y})\}$. We have $(\bar{y}) \subsetneq (\bar{x}, \bar{y})$ and $(\bar{y}) \subsetneq (\bar{y}, \bar{z})$ so that (\bar{y}) is an isolated associated prime and the two others are embedded. (1)

Exercise D. (Points: 4+4)

Consider A = k[x, y, z]/(xy, xz) as a graded ring with $\deg(\bar{x}) = \deg(\bar{y}) = \deg(\bar{z}) = 1$.

(i) Compute the Poincaré series P(A, t) and determine the dimension of A.

(ii) Is $A_{(x,y,z)}$ regular or Cohen–Macaulay?

Solution:

(i) We have the exact sequence $0 \to \mathfrak{a} \to k[x, y, z] \to A \to 0$ with $\mathfrak{a} := (xy, xz)$ a homogeneous ideal. So to compute $\dim_k(A_n)$ it is sufficient to compute $\dim_k(\mathfrak{a}_n)$ and the monomials contained in \mathfrak{a}_n form a basis of \mathfrak{a}_n . We have $\dim_k(\mathfrak{a}_0) = 0 = \dim_k(\mathfrak{a}_1)$ and $\mathfrak{a}_2 = \langle xy, xz \rangle$. For $n \geq 3$, the monomials of degree n which are in (xy) are of the form $xy \times \text{monomial}$ of deg n-2. Likewise, the monomials of degree n which are in (xz) are of the form $xz \times \text{monomial}$ of deg n-2. Moreover, a monomial of degree n is contained in $(xy) \cap (xz)$ if and only if it can be written $xyz \times \text{monomial of deg } n-3$. As a consequence, for $n \geq 3$

$$\dim_k(\mathfrak{a}_n) = 2 \cdot \binom{2+n-2}{2} - \binom{2+n-3}{2} = (n-1) \cdot \left(n - \frac{n-2}{2}\right) = \frac{(n-1)(n+2)}{2}$$

and hence

$$\dim_k(A_n) = \binom{2+n}{2} - \frac{(n-1)(n+2)}{2} = n+2.$$
(2)

Thus

$$P(A,t) = 1 + 3t + \sum_{n=2}^{\infty} (n+2)t^n = 1 + 3t + \sum_{n=2}^{\infty} (n+1)t^n + \sum_{n=2}^{\infty} t^n$$
$$= 1 + 3t + \left(\frac{1}{(1-t)^2} - 2t - 1\right) + \left(\frac{1}{(1-t)} - t - 1\right)$$
$$= \frac{1 + t - t^2}{(1-t)^2}.$$
 (0.5)

Localizing at $(\overline{x}, \overline{y}, \overline{z})$ we can form the graded ring

$$\mathfrak{gr}_{(\overline{x},\overline{y},\overline{z})}(A_{(\overline{x},\overline{y},\overline{z})}) = \bigoplus_{n\geq 0} \overline{(x,y,z)}^n / \overline{(x,y,z)}^{n+1} \simeq \bigoplus_{n\geq 0} (x,y,z)^n / (\mathfrak{a}_n + (x,y,z)^{n+1})$$

from which we see that the polynomial that have been computed is also $P(A_{\overline{(x,y,z)}}, t)$. (0.5) As 1 is not a root of the numerator, we get that the degree of the Hilbert–Samuel polynomial of $(A_{\overline{(x,y,z)}}, \overline{(x,y,z)})$, which is equal to the dimension of $A_{\overline{(x,y,z)}}$, is 2. (0.5) Since any maximal ideal $\overline{\mathfrak{m}}$ of A is induced by a maximal ideal \mathfrak{m} of k[x, y, z] and the latter (and its localization) is an integral domain and $\frac{xy}{1} \neq 0$, we get that

$$\dim(A_{\overline{\mathfrak{m}}}) \leq \dim(k[x, y, z]_{\mathfrak{m}} / \left(\frac{xy}{1}\right)) = \dim(k[x, y, z]_{\mathfrak{m}}) - 1 = 2.$$

Hence, $\dim(A) = 2$. (0.5)

(ii) We have $\overline{(x,y,z)}/\overline{(x,y,z)}^2 \simeq (x,y,z)/((xy,xz)+(x,y,z)^2)$. But since $(xy,xz) \subset (x,y,z)^2$, we get $\dim_k(\overline{(x,y,z)}/\overline{(x,y,z)}^2) = \dim_k((x,y,z)/(x,y,z)^2) = 3 > \dim(A_{(x,y,z)}) = 2$. Therefore, $A_{(x,y,z)}$ and hence A is not regular. (1)

We claim that $\frac{\bar{x}+\bar{y}}{1}$ is not a zero divisor in $A_{(x,y,z)}$. Indeed, if $\frac{x+y}{1}\frac{f}{g} = \frac{xy}{1}\frac{f_1}{g_1} + \frac{xz}{1}\frac{f_2}{g_2}$ in $k[x,y,z]_{(x,y,z)}$, then

$$(x+y)g_1g_2f = xygf_1g_2 + xzgf_2g_1$$

in k[x, y, z]. Note that $g(0, 0, 0) \neq 0 \neq g_i(0, 0, 0)$. Thus, x divides $(x + y)g_1g_2f$. However, since the g_i have non-zero constant term, x divides (x + y)f and hence f, i.e. f = xh. Dividing by x, we get $(x + y)g_1g_2h = ygf_1g_2 + zgf_2g_1$. Evaluating at y = 0 = z, we get $xg_1(x, 0, 0)g_2(x, 0, 0)h(x, 0, 0) = 0$. Thus, using again $g_1(0, 0, 0) \neq 0$ and $g_2(0, 0, 0) \neq 0$, one finds h(x, 0, 0) = 0, i.e. $h = yh_1 + zh_2$. Hence, $f = xyh_1 + xzh_2$, i.e. $\frac{\overline{f}}{q} = 0$ in $A_{(x,y,z)}$. (1)

Now $(A/(\bar{x}+\bar{y}))_{\overline{(x,y,z)}} \simeq (k[x,y,z]/(x+y,xy,xz))_{(x,y,z)}$ and let us show that in this ring any element of $\overline{(x,y,z)}_{\overline{(x,y,z)}}$ is a zero divisor. Consider $\frac{f}{g} \in \overline{(x,y,z)}_{\overline{(x,y,z)}}$ and write $\frac{f}{g} = \bar{x}\frac{f_1}{g_1} + \bar{y}\frac{f_2}{g_2} + \bar{z}\frac{f_3}{g_3}$. Taking the product with $\bar{x} \neq 0$, we get $\bar{x}\frac{f}{g} = \bar{x}^2\frac{f_1}{g_1}$. However, $x^2 \in (x+y,xy,xz)$ and hence $\bar{x}\frac{f}{g} = 0$. (1) As any regular sequence can be extended to a regular sequence of maximal length depth $(A_{(x,y,z)})$ (0.5) and $(\bar{x}+\bar{y}) \subset A_{(x,y,z)}$ cannot be further extended, we get depth $(A_{(x,y,z)}) = 1 < 2 = \dim(A_{(x,y,z)})$. Hence, $A_{(x,y,z)}$ is not Cohen–Macaulay. (0.5)

Exercise E. (Points: 4) Consider the ring $A \coloneqq k[x]$ and the A-module $M \coloneqq \operatorname{coker}(\psi)$, where $\psi \colon A^{\oplus 2} \to A^{\oplus 2}$ is given by the matrix $\psi = \begin{pmatrix} x - 1 & 1 - x \\ 1 - x & x - 1 \end{pmatrix}$. Determine $\operatorname{Ass}(M)$ and $\operatorname{Supp}(M)$.

Solution:

Let us calculate the image of the canonical basis under ψ :

$$\psi(e_1) = (x-1)e_1 + (1-x)e_2 = (x-1)(e_1-e_2)$$
 and $\psi(e_2) = (1-x)e_1 + (x-1)e_2 = -(x-1)(e_1-e_2)$
So that writing $A^{\oplus 2} \simeq A(e_1-e_2) \oplus A(e_1+e_2)$, we get

$$M = \operatorname{coker}(\psi) \simeq k[x]/(x-1) \oplus k[x].$$
(1.5)

Hence,

$$Ass(M) = Ass(k[x]/(x-1)) \cup Ass(k[x]) = \{(x-1)\} \cup \{(0)\}.$$
(1.5)

As M is a finite A-module,

$$\operatorname{Supp}(M) = \overline{\operatorname{Ass}(M)} = \overline{\{(0), (x-1)\}} = V((0)) = \operatorname{Spec}(A). (1).$$

Exercise F. (Points: 2+2)

Describe explicitly Noether normalization for the k-algebras k[x, y, z]/(xy) and $k[x, x^{-1}]$.

Solution:

(i) Assume A = k[x, y, z]/(xy) and consider the change of variables x = u + v and y = u - v. Then $k[x, y, z] \simeq k[u, v, z]$ and $A \simeq k[u, v, z]/(u^2 - v^2)$. Consider the natural ring homomorphism $i: k[u, z] \to A$. We claim it is injective. Indeed, if $f \in k[u, z]$ is contained in $(u^2 - v^2)$, then $f(u, z) = (u^2 - v^2) \cdot g(u, v, z)$ and evaluating at v = u, we get f(u, z) = 0. (1) Furthermore, $\overline{v} \in A$ is integral over i(k[u, z]), since $\overline{v}^2 - \overline{u}^2 = 0$. Thus, $i(k[u, z])[\overline{v}] \simeq A$ is finite over i(k[u, z]), which proves that $k[u, z] \hookrightarrow A$ is a Noether normalization of A. (1)

(ii) For $A = k[x, x^{-1}] \simeq k[x, y]/(xy-1)$: Consider the change of variables x = u+v, y = u-v to get $A \simeq k[u, v]/(u^2 - v^2 - 1)$. Consider the natural ring homomorphism $i: k[u] \to A$. We claim it is injective. If $f = \sum_{i=0}^{d} a_i u^i \in k[u]$ is contained in $(u^2 - v^2 - 1)$, we can write $f = (u^2 - v^2 - 1) \cdot g(u, v)$. Evaluating at u = 0, we get $a_0 = -(v^2 + 1) \cdot g(0, v)$, which, for degree reason, yields g(0, v) = 0. Hence, $a_0 = 0$ and $g(u, v) = u \cdot g_1(u, v)$. Dividing by u, we get $\sum_{i=1}^{d} a_i u^{i-1} = (u^2 - v^2 - 1)g_1(u, v)$. Again evaluating at u = 0, we get $a_1 = 0$ and $g_1 = ug_2$. By induction we get f = 0, i.e. i is injective. (1) Furthermore, $\bar{v} \in A$ is integral over i(k[u]) since $\bar{v}^2 + (1 - \bar{u}^2) = 0$; thus $i(k[u])[\bar{v}] \simeq A$, which proves that $k[u] \hookrightarrow A$ is a Noether normalization of A. (1)

Exercise G. (Points: 3)

Let $\mathfrak{a} \subset A$ be an ideal and $f: M \to N$ an A-module homomorphism such that the induced A/\mathfrak{a} -module homomorphism $M/\mathfrak{a}M \to N/\mathfrak{a}N$ is surjective. Assume that N is a finite A-module and show that there exists an $a \in \mathfrak{a}$ for which $M_b \to N_b$ is surjective, where b = 1 + a.

Solution:

Let $P := \operatorname{coker}(f)$ and consider the exact sequence $M \xrightarrow{f} N \to P \to 0$. Tensoring with A/\mathfrak{a} yields the exact sequence $M/\mathfrak{a}M \xrightarrow{\overline{f}} N/\mathfrak{a}N \to P/\mathfrak{a}P \to 0$, i.e. $P/\mathfrak{a}P$ is isomorphic to the cokernel of $\overline{f}: M/\mathfrak{a}M \to N/\mathfrak{a}N$, which is trivial by assumption. (1) Thus, $P = \mathfrak{a}P$. Hence, by Nakayama lemma, there is a b = 1 + a, with $a \in \mathfrak{a}$ such that bP = 0. (1) Now, localizing the first exact sequence with respect to b yields the exact sequence $M_b \xrightarrow{f_b} N_b \to P_b \to 0$. However, since $\frac{b}{1}$ is a unit in A_b , the vanishing bP = 0 implies $P_b = 0$, proving surjectivity of $M_b \to N_b$. (1)