Exam solutions: Commutative Algebra (V3A1, Algebra I)

Exercise A. (Points: 3+2)
Assume A is a commutative ring such that for every element $a \in A$ there exists an integer $n(a)>1$ such that $a^{n(a)}=a$.
(i) Show that $\operatorname{dim}(A)=0$.
(ii) Describe an explicit example of such a ring that is not a field.

Solution:

(i) Let $\mathfrak{p} \in \operatorname{Spec}(A)$. Then for any $\bar{a} \in A / \mathfrak{p}$, we have $\bar{a}^{n(a)}=\bar{a}$, i.e. $\bar{a} \cdot\left(\bar{a}^{n(a)-1}-1\right)=0$. Thus, as A / \mathfrak{p} is an integral domain, $\bar{a}=0$ or $\bar{a} \cdot \bar{a}^{n(a)-2}=\bar{a}^{n(a)-1}=1$. Hence, any non-zero element in A / \mathfrak{p} is invertible, i.e. A / \mathfrak{p} is a field and \mathfrak{p} is a maximal ideal. (2) Hence, any chain of prime ideals in A can contain only one element, so $\operatorname{dim}(A)=0$. (1)
(ii) Consider $A:=\mathbb{Z} /(2) \times \mathbb{Z} /(2)$ which consists of four elements. Note $(1,1)^{2}=(1,1)$, $(1,0)^{2}=(1,0),(0,1)^{2}=(0,1)$, and $(0,0)^{2}=(0,0)$. Hence, $a^{2}=a$ for all $a \in A$ and A is not a field, it is not even an integral domain, as $(1,0) \cdot(0,1)=(0,0)$. (2)

Exercise B. (Points: 5)
Consider the ring $A:=k[x, y] /\left(x(y+1), x\left(y+x^{2}\right)\right)$ with $\operatorname{char}(k) \neq 2$. Describe all connected components of $\operatorname{Spec}(A)$, decide which ones consist of just one closed point and which ones have a non-empty intersection with $\operatorname{Spec}\left(A_{x+y}\right)$.

Solution:

We have (1.5)

$$
\begin{aligned}
V\left(\left(x(y+1), x\left(y+x^{2}\right)\right)\right) & =V\left((x) \cdot\left(y+1, y+x^{2}\right)\right)=V(x) \cup V\left(y+1, x^{2}-1\right) \\
& =V(x) \cup(V(y+1) \cap(V(x-1) \cup V(x+1))) \\
& =V(x) \cup V(y+1, x-1) \cup V(y+1, x+1) .
\end{aligned}
$$

The ideal $(x) \subset k[x, y]$ is prime and, therefore, $V(x)$ is irreducible and in particular connected. (0.5) The ideals $(y+1, x-1)$ and $(y+1, x+1)$ are maximal ideals so that $V(y+1, x-1)$ and $V(y+1, x+1)$ are closed points (1) which are not contained in $V(x)($ as $x \notin(y+1, x-$ 1), $(y+1, x+1))$. (0.5) Thus, the connected components of $\operatorname{Spec}(A)$ are $V(x), V(y+1, x-1)$ and $V(y+1, x+1)$.
Recall that $\operatorname{Spec}\left(A_{x+y}\right)$ can be identified with $\{\mathfrak{p} \in \operatorname{Spec}(A), x+y \notin \mathfrak{p}\}$. As $x+y \in$ $(y+1, x-1)$, we have $V(y+1, x-1) \cap \operatorname{Spec}\left(A_{x+y}\right)=\emptyset$. (0.5) Suppose $x+y \in(y+1, x+1)$. Then one can write $x+y=(y+1) f+(x+1) g$, which by evaluating at $x=-1=y$ yields $-2=0$ contradicting char $(k) \neq 2$. Hence, $V(y+1, x+1)=\{(y+1, x+1)\} \subset \operatorname{Spec}\left(A_{x+y}\right)$. (0.5) Finally, we have $(x) \subset(x, y+1)$ so that the maximal ideal $(x, y+1)$ belongs to $V(x)$. As above, one checks that $x+y \notin(x, y+1)$ (evaluate the corresponding equality at $x=0, y=-1$) and, therefore, $V(x) \cap \operatorname{Spec}\left(A_{x+y}\right) \neq \emptyset$. (0.5)

Exercise C. (Points: $2+4$)
Consider the ring $A=k[x, y, z] /\left(x y z, y^{2}\right)$.
(i) Show that the ideals $(\bar{x}) \subset A$ and $(\bar{z}) \subset A$ are both primary ideals and determine their radicals.
(ii) Determine a primary decomposition of the zero ideal in A and decide which associated prime ideals are isolated and which are embedded.
Solution:
(i) We have $A /(\bar{x}) \simeq k[x, y, z] /\left(x, x y z, y^{2}\right) \simeq k[x, y, z] /\left(x, y^{2}\right) \simeq k[y, z] /\left(y^{2}\right)$. (0.5) As $k[y, z]$ is an integral domain, the only zero divisors in $A /(\bar{x})$ are the elements of the ideal generated by \bar{y}, which are nilpotent as $\bar{y}^{2}=\overline{0}$. So (\bar{x}) is a primary ideal. (0.5) Moreover, the nilradical of $A /(\bar{x})$ is generated by \bar{y} and, therefore, $\sqrt{(\bar{x})}=(\bar{x}, \bar{y})$ in A. (0.5) Analogously, $(\bar{z}) \subset A$ is a primary ideal with radical (\bar{y}, \bar{z}). (0.5)
(ii) Let us prove that $\left(x y z, y^{2}\right)=\left(x, y^{2}\right) \cap\left(z, y^{2}\right) \cap(y)$ in $k[x, y, z]$. The inclusion ' \subset ' is clear. (0.5) Conversely, take $g \in\left(x, y^{2}\right)$ and write $g=x f_{1}+y^{2} f_{2}$ for some polynomials f_{1}, f_{2}. Then $g \in(y)$ if and only if $x f_{1} \in(y)$ which means that $f_{1}=y f_{3}$ (as $k[x, y, z]$ is factorial). Now $g \in\left(z, y^{2}\right)$ if and only if $x y f_{3} \in\left(z, y^{2}\right)$, i.e. $x y f_{3}=z h_{1}+y^{2} h_{2}$ for some $h_{i} \in k[x, y, z]$. Hence, $y \mid z h_{1}$ and, thus, $h_{1}=y h_{3}$. Dividing by y yields $x f_{3}=z h_{3}+y h_{2}$. Evaluating the later at $y=0=z$ yields $f_{3}(x, 0,0)=0$, which shows that we can write $f_{3}=y f_{4}+z f_{5}$. Hence, $g=x y^{2} f_{4}+x y z f_{5}+y^{2} f_{2} \in\left(x y z, y^{2}\right)$, proving the other inclusion. (1.5)
Moreover, the decomposition is minimal, since $x y \in\left(x, y^{2}\right) \cap(y) \backslash\left(x y z, y^{2}\right), z y \in\left(z, y^{2}\right) \cap$ $(y) \backslash\left(x y z, y^{2}\right)$ and $x z \in\left(x, y^{2}\right) \cap\left(z, y^{2}\right) \backslash\left(x y z, y^{2}\right)$. (0.5)
Passing to the quotient (notice that (y) is a prime ideal containing ($x y z, y^{2}$) so (\bar{y}) is a prime hence primary ideal) we get $(\overline{0})=(\bar{x}) \cap(\bar{z}) \cap(\bar{y})$ in A, which is a minimal primary decomposition by (i). (0.5)
Hence, $\operatorname{Ass}((\overline{0}))=\{(\bar{x}, \bar{y}),(\bar{y}, \bar{z}),(\bar{y})\}$. We have $(\bar{y}) \subsetneq(\bar{x}, \bar{y})$ and $(\bar{y}) \subsetneq(\bar{y}, \bar{z})$ so that (\bar{y}) is an isolated associated prime and the two others are embedded. (1)

Exercise D. (Points: $4+4$)
Consider $A=k[x, y, z] /(x y, x z)$ as a graded ring with $\operatorname{deg}(\bar{x})=\operatorname{deg}(\bar{y})=\operatorname{deg}(\bar{z})=1$.
(i) Compute the Poincaré series $P(A, t)$ and determine the dimension of A.
(ii) Is $A_{(x, y, z)}$ regular or Cohen-Macaulay?

Solution:

(i) We have the exact sequence $0 \rightarrow \mathfrak{a} \rightarrow k[x, y, z] \rightarrow A \rightarrow 0$ with $\mathfrak{a}:=(x y, x z)$ a homogeneous ideal. So to compute $\operatorname{dim}_{k}\left(A_{n}\right)$ it is sufficient to compute $\operatorname{dim}_{k}\left(\mathfrak{a}_{n}\right)$ and the monomials contained in \mathfrak{a}_{n} form a basis of \mathfrak{a}_{n}. We have $\operatorname{dim}_{k}\left(\mathfrak{a}_{0}\right)=0=\operatorname{dim}_{k}\left(\mathfrak{a}_{1}\right)$ and $\mathfrak{a}_{2}=\langle x y, x z\rangle$.
For $n \geq 3$, the monomials of degree n which are in $(x y)$ are of the form $x y \times$ monomial of deg $n-$ 2. Likewise, the monomials of degree n which are in $(x z)$ are of the form $x z \times$ monomial of $\operatorname{deg} n-$ 2. Moreover, a monomial of degree n is contained in $(x y) \cap(x z)$ if and only if it can be written $x y z \times$ monomial of $\operatorname{deg} n-3$. As a consequence, for $n \geq 3$

$$
\operatorname{dim}_{k}\left(\mathfrak{a}_{n}\right)=2 \cdot\binom{2+n-2}{2}-\binom{2+n-3}{2}=(n-1) \cdot\left(n-\frac{n-2}{2}\right)=\frac{(n-1)(n+2)}{2}
$$

and hence

$$
\begin{equation*}
\operatorname{dim}_{k}\left(A_{n}\right)=\binom{2+n}{2}-\frac{(n-1)(n+2)}{2}=n+2 \tag{2}
\end{equation*}
$$

Thus

$$
\begin{align*}
P(A, t) & =1+3 t+\sum_{n=2}^{\infty}(n+2) t^{n}=1+3 t+\sum_{n=2}^{\infty}(n+1) t^{n}+\sum_{n=2}^{\infty} t^{n} \\
& =1+3 t+\left(\frac{1}{(1-t)^{2}}-2 t-1\right)+\left(\frac{1}{(1-t)}-t-1\right) \\
& =\frac{1+t-t^{2}}{(1-t)^{2}} . \tag{0.5}
\end{align*}
$$

Localizing at $(\bar{x}, \bar{y}, \bar{z})$ we can form the graded ring

$$
\mathfrak{g r}_{(\bar{x}, \bar{y}, \bar{z})}\left(A_{(\bar{x}, \bar{y}, \bar{z})}\right)=\bigoplus_{n \geq 0} \overline{(x, y, z)}^{n} /{\left.\overline{(x, y, z)^{n+1}} \simeq \bigoplus_{n \geq 0}(x, y, z)^{n} /\left(\mathfrak{a}_{n}+(x, y, z)^{n+1}\right)\right) .}^{n+1}
$$

from which we see that the polynomial that have been computed is also $P\left(A_{\overline{(x, y, z)}}, t\right)$. (0.5) As 1 is not a root of the numerator, we get that the degree of the Hilbert-Samuel polynomial of $\left(A_{\overline{(x, y, z)}}, \overline{(x, y, z)}\right)$, which is equal to the dimension of $A_{\overline{(x, y, z)}}$, is 2. (0.5)
Since any maximal ideal $\overline{\mathfrak{m}}$ of A is induced by a maximal ideal \mathfrak{m} of $k[x, y, z]$ and the latter (and its localization) is an integral domain and $\frac{x y}{1} \neq 0$, we get that

$$
\operatorname{dim}\left(A_{\overline{\mathfrak{m}}}\right) \leq \operatorname{dim}\left(k[x, y, z]_{\mathfrak{m}} /\left(\frac{x y}{1}\right)\right)=\operatorname{dim}\left(k[x, y, z]_{\mathfrak{m}}\right)-1=2 .
$$

Hence, $\operatorname{dim}(A)=2$. (0.5)
(ii) We have $\overline{(x, y, z)} / \overline{(x, y, z)}^{2} \simeq(x, y, z) /\left((x y, x z)+(x, y, z)^{2}\right)$. But since $(x y, x z) \subset(x, y, z)^{2}$, we get $\operatorname{dim}_{k}\left(\overline{(x, y, z)} /{\overline{(x, y, z})^{2}}^{2}\right)=\operatorname{dim}_{k}\left((x, y, z) /(x, y, z)^{2}\right)=3>\operatorname{dim}\left(A_{(x, y, z)}\right)=2$. Therefore, $A_{(x, y, z)}$ and hence A is not regular. (1)
We claim that $\frac{\bar{x}+\bar{y}}{1}$ is not a zero divisor in $A_{(x, y, z)}$. Indeed, if $\frac{x+y}{1} \frac{f}{g}=\frac{x y}{1} \frac{f_{1}}{g_{1}}+\frac{x z}{1} \frac{f_{2}}{g_{2}}$ in $k[x, y, z]_{(x, y, z)}$, then

$$
(x+y) g_{1} g_{2} f=x y g f_{1} g_{2}+x z g f_{2} g_{1}
$$

in $k[x, y, z]$. Note that $g(0,0,0) \neq 0 \neq g_{i}(0,0,0)$. Thus, x divides $(x+y) g_{1} g_{2} f$. However, since the g_{i} have non-zero constant term, x divides $(x+y) f$ and hence f, i.e. $f=x h$. Dividing by x, we get $(x+y) g_{1} g_{2} h=y g f_{1} g_{2}+z g f_{2} g_{1}$. Evaluating at $y=0=z$, we get $x g_{1}(x, 0,0) g_{2}(x, 0,0) h(x, 0,0)=0$. Thus, using again $g_{1}(0,0,0) \neq 0$ and $g_{2}(0,0,0) \neq 0$, one finds $h(x, 0,0)=0$, i.e. $h=y h_{1}+z h_{2}$. Hence, $f=x y h_{1}+x z h_{2}$, i.e. $\frac{\bar{f}}{g}=0$ in $A_{(x, y, z)}$.

Now $(A /(\bar{x}+\bar{y}))_{(x, y, z)} \simeq(k[x, y, z] /(x+y, x y, x z))_{(x, y, z)}$ and let us show that in this ring any element of $\overline{(x, y, z)} \frac{(x, y, z)}{}$ is a zero divisor. Consider $\frac{f}{g} \in \overline{(x, y, z)} \overline{(x, y, z)}$ and write $\frac{f}{g}=$ $\bar{x} \frac{f_{1}}{g_{1}}+\bar{y} \frac{f_{2}}{g_{2}}+\bar{z} \frac{f_{3}}{g_{3}}$. Taking the product with $\bar{x} \neq 0$, we get $\bar{x} \frac{f}{g}=\bar{x}^{2} \frac{f_{1}}{g_{1}}$. However, $x^{2} \in(x+y, x y, x z)$ and hence $\bar{x} \frac{f}{g}=0$. (1) As any regular sequence can be extended to a regular sequence of maximal length depth $\left(A_{(x, y, z)}\right)$ (0.5) and ($\left.\bar{x}+\bar{y}\right) \subset A_{(x, y, z)}$ cannot be further extended, we get depth $\left(A_{(x, y, z)}\right)=1<2=\operatorname{dim}\left(A_{(x, y, z)}\right)$. Hence, $A_{(x, y, z)}$ is not Cohen-Macaulay. (0.5)

Exercise E. (Points: 4)
Consider the ring $A:=k[x]$ and the A-module $M:=\operatorname{coker}(\psi)$, where $\psi: A^{\oplus 2} \rightarrow A^{\oplus 2}$ is given by the matrix $\psi=\left(\begin{array}{ll}x-1 & 1-x \\ 1-x & x-1\end{array}\right)$. Determine $\operatorname{Ass}(M)$ and $\operatorname{Supp}(M)$.

Solution:

Let us calculate the image of the canonical basis under ψ :
$\psi\left(e_{1}\right)=(x-1) e_{1}+(1-x) e_{2}=(x-1)\left(e_{1}-e_{2}\right)$ and $\psi\left(e_{2}\right)=(1-x) e_{1}+(x-1) e_{2}=-(x-1)\left(e_{1}-e_{2}\right)$.
So that writing $A^{\oplus 2} \simeq A\left(e_{1}-e_{2}\right) \oplus A\left(e_{1}+e_{2}\right)$, we get

$$
\begin{equation*}
M=\operatorname{coker}(\psi) \simeq k[x] /(x-1) \oplus k[x] . \tag{1.5}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{Ass}(M)=\operatorname{Ass}(k[x] /(x-1)) \cup \operatorname{Ass}(k[x])=\{(x-1)\} \cup\{(0)\} \tag{1.5}
\end{equation*}
$$

As M is a finite A-module,

$$
\operatorname{Supp}(M)=\overline{\operatorname{Ass}(M)}=\overline{\{(0),(x-1)\}}=V((0))=\operatorname{Spec}(A) .(\mathbf{1})
$$

Exercise F. (Points: $2+2$)
Describe explicitly Noether normalization for the k-algebras $k[x, y, z] /(x y)$ and $k\left[x, x^{-1}\right]$.

Solution:

(i) Assume $A=k[x, y, z] /(x y)$ and consider the change of variables $x=u+v$ and $y=$ $u-v$. Then $k[x, y, z] \simeq k[u, v, z]$ and $A \simeq k[u, v, z] /\left(u^{2}-v^{2}\right)$. Consider the natural ring homomorphism $i: k[u, z] \rightarrow A$. We claim it is injective. Indeed, if $f \in k[u, z]$ is contained in $\left(u^{2}-v^{2}\right)$, then $f(u, z)=\left(u^{2}-v^{2}\right) \cdot g(u, v, z)$ and evaluating at $v=u$, we get $f(u, z)=0$.
(1) Furthermore, $\bar{v} \in A$ is integral over $i(k[u, z])$, since $\bar{v}^{2}-\bar{u}^{2}=0$. Thus, $i(k[u, z])[\bar{v}] \simeq A$ is finite over $i(k[u, z])$, which proves that $k[u, z] \hookrightarrow A$ is a Noether normalization of A. (1)
(ii) For $A=k\left[x, x^{-1}\right] \simeq k[x, y] /(x y-1)$: Consider the change of variables $x=u+v, y=u-v$ to get $A \simeq k[u, v] /\left(u^{2}-v^{2}-1\right)$. Consider the natural ring homomorphism $i: k[u] \rightarrow A$. We claim it is injective. If $f=\sum_{i=0}^{d} a_{i} u^{i} \in k[u]$ is contained in $\left(u^{2}-v^{2}-1\right)$, we can write $f=\left(u^{2}-v^{2}-1\right) \cdot g(u, v)$. Evaluating at $u=0$, we get $a_{0}=-\left(v^{2}+1\right) \cdot g(0, v)$, which, for degree reason, yields $g(0, v)=0$. Hence, $a_{0}=0$ and $g(u, v)=u \cdot g_{1}(u, v)$. Dividing by u, we get $\sum_{i=1}^{d} a_{i} u^{i-1}=\left(u^{2}-v^{2}-1\right) g_{1}(u, v)$. Again evaluating at $u=0$, we get $a_{1}=0$ and $g_{1}=u g_{2}$. By induction we get $f=0$, i.e. i is injective. (1) Furthermore, $\bar{v} \in A$ is integral over $i(k[u])$ since $\bar{v}^{2}+\left(1-\bar{u}^{2}\right)=0$; thus $i(k[u])[\bar{v}] \simeq A$, which proves that $k[u] \hookrightarrow A$ is a Noether normalization of A. (1)

Exercise G. (Points: 3)
Let $\mathfrak{a} \subset A$ be an ideal and $f: M \rightarrow N$ an A-module homomorphism such that the induced A / \mathfrak{a}-module homomorphism $M / \mathfrak{a} M \rightarrow N / \mathfrak{a} N$ is surjective. Assume that N is a finite A-module and show that there exists an $a \in \mathfrak{a}$ for which $M_{b} \rightarrow N_{b}$ is surjective, where $b=1+a$.

Solution:

Let $P:=\operatorname{coker}(f)$ and consider the exact sequence $M \xrightarrow{f} N \rightarrow P \rightarrow 0$. Tensoring with A / \mathfrak{a} yields the exact sequence $M / \mathfrak{a} M \xrightarrow{\bar{f}} N / \mathfrak{a} N \rightarrow P / \mathfrak{a} P \rightarrow 0$, i.e. $P / \mathfrak{a} P$ is isomorphic to the cokernel of $\bar{f}: M / \mathfrak{a} M \rightarrow N / \mathfrak{a} N$, which is trivial by assumption. (1) Thus, $P=\mathfrak{a} P$. Hence, by Nakayama lemma, there is a $b=1+a$, with $a \in \mathfrak{a}$ such that $b P=0$. (1) Now, localizing the first exact sequence with respect to b yields the exact sequence $M_{b} \xrightarrow{f_{b}} N_{b} \rightarrow P_{b} \rightarrow 0$. However, since $\frac{b}{1}$ is a unit in A_{b}, the vanishing $b P=0$ implies $P_{b}=0$, proving surjectivity of $M_{b} \rightarrow N_{b}$. (1)

