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Exam solutions: Commutative Algebra (V3A1, Algebra I)

Exercise A. (Points: 3+2)
Assume A is a commutative ring such that for every element a ∈ A there exists an integer n(a) > 1
such that an(a) = a.

(i) Show that dim(A) = 0.

(ii) Describe an explicit example of such a ring that is not a field.

Solution:

(i) Let p ∈ Spec(A). Then for any ā ∈ A/p, we have ān(a) = ā, i.e. ā · (ān(a)−1− 1) = 0. Thus,

as A/p is an integral domain, ā = 0 or ā · ān(a)−2 = ān(a)−1 = 1. Hence, any non-zero element
in A/p is invertible, i.e. A/p is a field and p is a maximal ideal. (2) Hence, any chain of prime
ideals in A can contain only one element, so dim(A) = 0. (1)

(ii) Consider A := Z/(2) × Z/(2) which consists of four elements. Note (1, 1)2 = (1, 1),
(1, 0)2 = (1, 0), (0, 1)2 = (0, 1), and (0, 0)2 = (0, 0). Hence, a2 = a for all a ∈ A and A is not
a field, it is not even an integral domain, as (1, 0) · (0, 1) = (0, 0). (2)

Exercise B. (Points: 5)
Consider the ring A := k[x, y]/(x(y+1), x(y+x2)) with char(k) 6= 2. Describe all connected components
of Spec(A), decide which ones consist of just one closed point and which ones have a non-empty
intersection with Spec(Ax+y).

Solution:
We have (1.5)

V ((x(y + 1), x(y + x2))) = V ((x) · (y + 1, y + x2)) = V (x) ∪ V (y + 1, x2 − 1)

= V (x) ∪ (V (y + 1) ∩ (V (x− 1) ∪ V (x+ 1)))

= V (x) ∪ V (y + 1, x− 1) ∪ V (y + 1, x+ 1).

The ideal (x) ⊂ k[x, y] is prime and, therefore, V (x) is irreducible and in particular connected.
(0.5) The ideals (y + 1, x− 1) and (y + 1, x+ 1) are maximal ideals so that V (y + 1, x− 1)
and V (y+ 1, x+ 1) are closed points (1) which are not contained in V (x) (as x /∈ (y+ 1, x−
1), (y+1, x+1)). (0.5) Thus, the connected components of Spec(A) are V (x), V (y+1, x−1)
and V (y + 1, x+ 1).

Recall that Spec(Ax+y) can be identified with {p ∈ Spec(A), x + y /∈ p}. As x + y ∈
(y+ 1, x− 1), we have V (y+ 1, x− 1)∩Spec(Ax+y) = ∅. (0.5) Suppose x+ y ∈ (y+ 1, x+ 1).
Then one can write x + y = (y + 1)f + (x + 1)g, which by evaluating at x = −1 = y yields
−2 = 0 contradicting char(k) 6= 2. Hence, V (y + 1, x + 1) = {(y + 1, x + 1)} ⊂ Spec(Ax+y).
(0.5) Finally, we have (x) ⊂ (x, y + 1) so that the maximal ideal (x, y + 1) belongs to
V (x). As above, one checks that x + y /∈ (x, y + 1) (evaluate the corresponding equality at
x = 0, y = −1) and, therefore, V (x) ∩ Spec(Ax+y) 6= ∅. (0.5)



Exercise C. (Points: 2+4)
Consider the ring A = k[x, y, z]/(xyz, y2).

(i) Show that the ideals (x̄) ⊂ A and (z̄) ⊂ A are both primary ideals and determine their radicals.

(ii) Determine a primary decomposition of the zero ideal in A and decide which associated prime
ideals are isolated and which are embedded.

Solution:
(i) We have A/(x̄) ' k[x, y, z]/(x, xyz, y2) ' k[x, y, z]/(x, y2) ' k[y, z]/(y2). (0.5) As k[y, z]
is an integral domain, the only zero divisors in A/(x̄) are the elements of the ideal generated
by ȳ, which are nilpotent as ȳ2 = 0̄. So (x̄) is a primary ideal. (0.5) Moreover, the nilradical

of A/(x̄) is generated by ȳ and, therefore,
√

(x̄) = (x̄, ȳ) in A. (0.5) Analogously, (z̄) ⊂ A is
a primary ideal with radical (ȳ, z̄). (0.5)

(ii) Let us prove that (xyz, y2) = (x, y2)∩ (z, y2)∩ (y) in k[x, y, z]. The inclusion ‘⊂’ is clear.
(0.5) Conversely, take g ∈ (x, y2) and write g = xf1 + y2f2 for some polynomials f1, f2.
Then g ∈ (y) if and only if xf1 ∈ (y) which means that f1 = yf3 (as k[x, y, z] is factorial).
Now g ∈ (z, y2) if and only if xyf3 ∈ (z, y2), i.e. xyf3 = zh1 + y2h2 for some hi ∈ k[x, y, z].
Hence, y|zh1 and, thus, h1 = yh3. Dividing by y yields xf3 = zh3 + yh2. Evaluating the later
at y = 0 = z yields f3(x, 0, 0) = 0, which shows that we can write f3 = yf4 + zf5. Hence,
g = xy2f4 + xyzf5 + y2f2 ∈ (xyz, y2), proving the other inclusion. (1.5)
Moreover, the decomposition is minimal, since xy ∈ (x, y2) ∩ (y) \ (xyz, y2), zy ∈ (z, y2) ∩
(y) \ (xyz, y2) and xz ∈ (x, y2) ∩ (z, y2) \ (xyz, y2). (0.5)
Passing to the quotient (notice that (y) is a prime ideal containing (xyz, y2) so (ȳ) is a
prime hence primary ideal) we get (0̄) = (x̄) ∩ (z̄) ∩ (ȳ) in A, which is a minimal primary
decomposition by (i). (0.5)
Hence, Ass((0̄)) = {(x̄, ȳ), (ȳ, z̄), (ȳ)}. We have (ȳ) ( (x̄, ȳ) and (ȳ) ( (ȳ, z̄) so that (ȳ) is an
isolated associated prime and the two others are embedded. (1)

Exercise D. (Points: 4+4)
Consider A = k[x, y, z]/(xy, xz) as a graded ring with deg(x̄) = deg(ȳ) = deg(z̄) = 1.

(i) Compute the Poincaré series P (A, t) and determine the dimension of A.

(ii) Is A(x,y,z) regular or Cohen–Macaulay?

Solution:
(i) We have the exact sequence 0 → a → k[x, y, z] → A → 0 with a := (xy, xz) a homoge-
neous ideal. So to compute dimk(An) it is sufficient to compute dimk(an) and the monomials
contained in an form a basis of an. We have dimk(a0) = 0 = dimk(a1) and a2 = 〈xy, xz〉.
For n ≥ 3, the monomials of degree n which are in (xy) are of the form xy×monomial of deg n−
2. Likewise, the monomials of degree n which are in (xz) are of the form xz×monomial of deg n−
2. Moreover, a monomial of degree n is contained in (xy)∩(xz) if and only if it can be written
xyz ×monomial of deg n− 3. As a consequence, for n ≥ 3

dimk(an) = 2 ·
(

2 + n− 2

2

)
−
(

2 + n− 3

2

)
= (n− 1) ·

(
n− n− 2

2

)
=

(n− 1)(n+ 2)

2

and hence

dimk(An) =

(
2 + n

2

)
− (n− 1)(n+ 2)

2
= n+ 2. (2)
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Thus

P (A, t) = 1 + 3t+

∞∑
n=2

(n+ 2)tn = 1 + 3t+

∞∑
n=2

(n+ 1)tn +

∞∑
n=2

tn

= 1 + 3t+

(
1

(1− t)2
− 2t− 1

)
+

(
1

(1− t)
− t− 1

)
=

1 + t− t2

(1− t)2
. (0.5)

Localizing at (x, y, z) we can form the graded ring

gr(x,y,z)(A(x,y,z)) =
⊕
n≥0

(x, y, z)
n
/(x, y, z)

n+1 '
⊕
n≥0

(x, y, z)n/(an + (x, y, z)n+1)

from which we see that the polynomial that have been computed is also P (A
(x,y,z)

, t). (0.5)

As 1 is not a root of the numerator, we get that the degree of the Hilbert–Samuel polynomial
of (A

(x,y,z)
, (x, y, z)), which is equal to the dimension of A

(x,y,z)
, is 2. (0.5)

Since any maximal ideal m of A is induced by a maximal ideal m of k[x, y, z] and the latter
(and its localization) is an integral domain and xy

1 6= 0, we get that

dim(Am) ≤ dim(k[x, y, z]m/
(xy

1

)
) = dim(k[x, y, z]m)− 1 = 2.

Hence, dim(A) = 2. (0.5)

(ii) We have (x, y, z)/(x, y, z)
2 ' (x, y, z)/((xy, xz)+(x, y, z)2). But since (xy, xz) ⊂ (x, y, z)2,

we get dimk((x, y, z)/(x, y, z)
2
) = dimk((x, y, z)/(x, y, z)2) = 3 > dim(A(x,y,z)) = 2. Therefo-

re, A(x,y,z) and hence A is not regular. (1)

We claim that x̄+ȳ
1 is not a zero divisor in A(x,y,z). Indeed, if x+y

1
f
g = xy

1
f1
g1

+ xz
1

f2
g2

in

k[x, y, z](x,y,z), then
(x+ y)g1g2f = xygf1g2 + xzgf2g1

in k[x, y, z]. Note that g(0, 0, 0) 6= 0 6= gi(0, 0, 0). Thus, x divides (x + y)g1g2f . However,
since the gi have non-zero constant term, x divides (x + y)f and hence f , i.e. f = xh.
Dividing by x, we get (x + y)g1g2h = ygf1g2 + zgf2g1. Evaluating at y = 0 = z, we get
xg1(x, 0, 0)g2(x, 0, 0)h(x, 0, 0) = 0. Thus, using again g1(0, 0, 0) 6= 0 and g2(0, 0, 0) 6= 0, one

finds h(x, 0, 0) = 0, i.e. h = yh1 + zh2. Hence, f = xyh1 + xzh2, i.e. f
g = 0 in A(x,y,z). (1)

Now (A/(x̄ + y))
(x,y,z)

' (k[x, y, z]/(x + y, xy, xz))(x,y,z) and let us show that in this ring

any element of (x, y, z)
(x,y,z)

is a zero divisor. Consider f
g ∈ (x, y, z)

(x,y,z)
and write f

g =

x̄f1
g1

+y f2
g2

+z̄ f3g3 . Taking the product with x̄ 6= 0, we get xf
g = x̄2 f1

g1
. However, x2 ∈ (x+y, xy, xz)

and hence x̄f
g = 0. (1) As any regular sequence can be extended to a regular sequence of

maximal length depth(A(x,y,z)) (0.5) and (x + y) ⊂ A(x,y,z) cannot be further extended, we
get depth(A(x,y,z)) = 1 < 2 = dim(A(x,y,z)). Hence, A(x,y,z) is not Cohen–Macaulay. (0.5)

Exercise E. (Points: 4)
Consider the ring A := k[x] and the A-module M := coker(ψ), where ψ : A⊕2 → A⊕2 is given by the

matrix ψ =

(
x− 1 1− x
1− x x− 1

)
. Determine Ass(M) and Supp(M).
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Solution:
Let us calculate the image of the canonical basis under ψ:

ψ(e1) = (x−1)e1+(1−x)e2 = (x−1)(e1−e2) and ψ(e2) = (1−x)e1+(x−1)e2 = −(x−1)(e1−e2).

So that writing A⊕2 ' A(e1 − e2)⊕A(e1 + e2), we get

M = coker(ψ) ' k[x]/(x− 1)⊕ k[x]. (1.5)

Hence,
Ass(M) = Ass(k[x]/(x− 1)) ∪Ass(k[x]) = {(x− 1)} ∪ {(0)}. (1.5)

As M is a finite A-module,

Supp(M) = Ass(M) = {(0), (x− 1)} = V ((0)) = Spec(A). (1).

Exercise F. (Points: 2+2)
Describe explicitly Noether normalization for the k-algebras k[x, y, z]/(xy) and k[x, x−1].

Solution:
(i) Assume A = k[x, y, z]/(xy) and consider the change of variables x = u + v and y =
u − v. Then k[x, y, z] ' k[u, v, z] and A ' k[u, v, z]/(u2 − v2). Consider the natural ring
homomorphism i : k[u, z] → A. We claim it is injective. Indeed, if f ∈ k[u, z] is contained in
(u2 − v2), then f(u, z) = (u2 − v2) · g(u, v, z) and evaluating at v = u, we get f(u, z) = 0.
(1) Furthermore, v ∈ A is integral over i(k[u, z]), since v̄2 − ū2 = 0. Thus, i(k[u, z])[v̄] ' A
is finite over i(k[u, z]), which proves that k[u, z] ↪→ A is a Noether normalization of A. (1)

(ii) For A = k[x, x−1] ' k[x, y]/(xy−1): Consider the change of variables x = u+v, y = u−v
to get A ' k[u, v]/(u2 − v2 − 1). Consider the natural ring homomorphism i : k[u] → A. We

claim it is injective. If f =
∑d

i=0 aiu
i ∈ k[u] is contained in (u2 − v2 − 1), we can write

f = (u2 − v2 − 1) · g(u, v). Evaluating at u = 0, we get a0 = −(v2 + 1) · g(0, v), which, for
degree reason, yields g(0, v) = 0. Hence, a0 = 0 and g(u, v) = u · g1(u, v). Dividing by u,

we get
∑d

i=1 aiu
i−1 = (u2 − v2 − 1)g1(u, v). Again evaluating at u = 0, we get a1 = 0 and

g1 = ug2. By induction we get f = 0, i.e. i is injective. (1) Furthermore, v̄ ∈ A is integral
over i(k[u]) since v̄2 + (1 − ū2) = 0; thus i(k[u])[v̄] ' A, which proves that k[u] ↪→ A is a
Noether normalization of A. (1)

Exercise G. (Points: 3)
Let a ⊂ A be an ideal and f : M → N an A-module homomorphism such that the induced A/a-module
homomorphism M/aM → N/aN is surjective. Assume that N is a finite A-module and show that
there exists an a ∈ a for which Mb → Nb is surjective, where b = 1 + a.

Solution:

Let P := coker(f) and consider the exact sequence M
f→ N → P → 0. Tensoring with A/a

yields the exact sequence M/aM
f̄→ N/aN → P/aP → 0, i.e. P/aP is isomorphic to the

cokernel of f : M/aM → N/aN , which is trivial by assumption. (1) Thus, P = aP . Hence,
by Nakayama lemma, there is a b = 1 + a, with a ∈ a such that bP = 0. (1) Now, localizing

the first exact sequence with respect to b yields the exact sequence Mb
fb→ Nb → Pb → 0.

However, since b
1 is a unit in Ab, the vanishing bP = 0 implies Pb = 0, proving surjectivity of

Mb → Nb. (1)
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