Retry exam solutions: Commutative Algebra (V3A1, Algebra I)

Exercise A. (Points: 3)

Let M be an A-module and $\mathfrak{a} \subset A$ an ideal such that $M_{\mathfrak{m}}=0$ for all maximal ideals $\mathfrak{a} \subset \mathfrak{m} \subset A$. Show that then $M=\mathfrak{a} M$.

Solution:

Let $N:=M / \mathfrak{a} M$ and consider the exact sequence $0 \rightarrow \mathfrak{a} M \rightarrow M \rightarrow N \rightarrow 0$. For a maximal ideal \mathfrak{m}, tensoring the exact sequence with $A_{\mathfrak{m}}$, by exactness of localization, we get the exact sequence $0 \rightarrow \mathfrak{a}_{\mathfrak{m}} M_{\mathfrak{m}} \rightarrow M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}} \rightarrow 0$ (right exactness is sufficient for what follows).(0.5) If $\mathfrak{a} \not \subset \mathfrak{m}$ then $\mathfrak{a} \cap A \backslash \mathfrak{m} \neq \emptyset$ so that $\mathfrak{a}_{\mathfrak{m}}=(1) \subset A_{\mathfrak{m}}$. As $1 \in \mathfrak{a}_{\mathfrak{m}}$, the first homomorphism of the above sequence is surjective. Hence $N_{\mathfrak{m}}=0$. (1)
If $\mathfrak{a} \subset \mathfrak{m}$ then $N_{\mathfrak{m}}=0$ as quotient of the trivial (by assumption) module $M_{\mathfrak{m}}=0$. (0.5) As a conclusion, $N_{\mathfrak{m}}=0$ for any $\mathfrak{m} \in \operatorname{MaxSpec}(A)$, which yields $N=0$ i.e. $M=\mathfrak{a} M$. (1) Alternatively, one can consider N as a module over A / \mathfrak{a} and use the natural bijection between $V(\mathfrak{a}) \cap \operatorname{MaxSpec}(A)$ and $\operatorname{MaxSpec}(A / \mathfrak{a})$.

Exercise B. (Points: 3)
Show that a finitely generated ideal $\mathfrak{a} \subset A$ is a principal ideal and generated by an idempotent element if and only if $\mathfrak{a}^{2}=\mathfrak{a}$.

Solution:

If $\mathfrak{a} \cdot \mathfrak{a}=\mathfrak{a}^{2}=\mathfrak{a}$ then by Nakayama lemma, there is a $b=1-a$ with $a \in \mathfrak{a}$ such that $b \mathfrak{a}=0$. (1) Hence for any $x \in \mathfrak{a},(1-a) x=0$, which can be written $x=a x$. So we get $\mathfrak{a} \subset(a)$. The converse inclusion is clear as $a \in \mathfrak{a}$. Moreover, we get $a=a \cdot a=a^{2}$. So a is idempotent. (1)
Conversely, if $\mathfrak{a}=(e)$ with $e^{2}=e$, we have $\mathfrak{a}^{2}=\left(e^{2}\right)=(e)=\mathfrak{a}$. (1)

Exercise C. (Points: 5)
Consider the ring $A:=k[x, y, z] /\left(x y, z^{2}-(x+y)\right)$. Describe all irreducible components of $\operatorname{Spec}(A)$, i.e. the maximal closed irreducible subsets, and decide which of them have a non-empty intersection with $\operatorname{Spec}\left(A_{x}\right)$.

Solution:

We have (1.5)

$$
\begin{aligned}
& V\left(x y, z^{2}-(x+y)\right)=V(x y) \cap V\left(z^{2}-(x+y)\right)=(V(x) \cup V(y)) \cap V\left(z^{2}-(x+y)\right) \\
& =V\left(x, z^{2}-(x+y)\right) \cup V\left(y, z^{2}-(x+y)\right)=V\left(x, z^{2}-y\right) \cup V\left(y, z^{2}-x\right)
\end{aligned}
$$

Moreover, $k[x, y, z] /\left(x, z^{2}-y\right) \simeq k[z]$ is an integral domain. Hence, $\left(x, z^{2}-y\right)$ is a prime ideal and $V\left(x, z^{2}-y\right)$ is irreducible. (0.5) Likewise $k[x, y, z] /\left(y, z^{2}-x\right) \simeq k[z]$, thus $\left(y, z^{2}-x\right)$ is a prime ideal and $V\left(y, z^{2}-x\right)$ is irreducible. (0.5)
Since $y \in\left(y, z^{2}-x\right) \backslash\left(x, z^{2}-y\right), V\left(x, z^{2}-y\right) \not \subset V\left(y, z^{2}-x\right)$. Likewise, as $x \in\left(x, z^{2}-y\right) \backslash\left(y, z^{2}-x\right)$, $V\left(y, z^{2}-x\right) \not \subset V\left(x, z^{2}-y\right) .(\mathbf{0 . 5})$
Since any irreducible closed subset is of the form $V(\overline{\mathfrak{p}})$ for a $\overline{\mathfrak{p}} \in \operatorname{Spec}(A) \simeq V\left(x, z^{2}-y\right) \cup V\left(y, z^{2}-x\right)$ i.e. either $\left(x, z^{2}-y\right) \subset \mathfrak{p}$ or $\left(y, z^{2}-x\right) \subset \mathfrak{p}$, which yields $V(\mathfrak{p}) \subset V\left(x, z^{2}-y\right)$ or $V(\mathfrak{p}) \subset V\left(y, z^{2}-x\right)$ so $V\left(x, z^{2}-y\right)$ and $V\left(y, z^{2}-x\right)$ are the irreducible components of $\operatorname{Spec}(A)$. (1)

Recall that $\operatorname{Spec}\left(A_{x}\right)$ can be identified with $\{\mathfrak{p} \in \operatorname{Spec}(A), x \notin \mathfrak{p}\}$. As $(x) \subset\left(x, z^{2}-y\right)$ we have $V\left(x, z^{2}-y\right) \cap \operatorname{Spec}\left(A_{x}\right)=\emptyset$. (0.5) Clearly, $x \notin(y, z-1, x-1) \in V\left(y, z^{2}-x\right)$ and, therefore, $V\left(y, z^{2}-x\right) \cap \operatorname{Spec}\left(A_{x}\right) \neq \emptyset$.

All rings are commutative with a unit and $1 \neq 0$.

Exercise D. (Points: 2+2)
Describe explicitly a Noether normalization for the two k-algebras $k[x, y] /\left(x^{2}+y^{2}\right)$ and $k[x, y, z] /(y-$ $\left.z^{2}, x z-y^{2}\right)$.
Solution:
(i) Let us consider the natural homomorphism $i: k[x] \rightarrow k[x, y] /\left(x^{2}+y^{2}\right)=A$: if $f=\sum_{i=0}^{d} a_{i} x^{i} \in$ $k[x] \subset k[x, y]$ belongs to $\left(x^{2}+y^{2}\right)$, i.e. $i(f)=0$, we can write $f=\left(x^{2}+y^{2}\right) g(x, y)$. Evaluating at $x=0$, we get $a_{0}=y^{2} g(0, y)$, which yields $g(0, y)=0$, for degree reason; so $a_{0}=0$ and $g(x, y)=x g_{1}(x, y)$. Dividing by x, we get $\sum_{i=1}^{d} a_{i} x^{i-1}=\left(x^{2}+y^{2}\right) g_{1}(x, y)$; evaluating at $x=0, a_{1}=y^{2} g_{1}(0, y)$ which, for degree reason, yields, $g_{1}(0, y)=0$; so $a_{1}=0$ and $g_{1}(x, y)=x g_{2}(x, y)$. An easy induction proves $a_{i}=0$ for any $i \geq 0$ i.e. $f=0$. So i is injective. (1)
Moreover, $\bar{y} \in A$ is integral over $i(k[x])$ since $\bar{y}^{2}+\bar{x}^{2}=0$; so $i(k[x])[\bar{y}] \simeq A$ is finite over $i(k[x])$.
(ii) We have $A=k[x, y, z] /\left(y-z^{2}, x z-y^{2}\right) \simeq k[x, z] /\left(x z-z^{4}\right)$. Consider the ring homomorphism $i: k[x] \rightarrow A:$ if $f \in k[x] \subset k[x, z]$ belongs to $\left(x z-z^{4}\right)$, we can write $f=\left(x z-z^{4}\right) g=z\left(x-z^{3}\right) g$. Evaluating at $z^{3}=x$, we get $f\left(z^{3}\right)=0 \in k[z]$ i.e. $f=0$ so i is injective. (1)
Moreover, $\bar{x} \in A$ is integral over $i(k[z])$ since $\bar{z}^{4}-\overline{z x}=0$; so $i(k[x])[\bar{z}] \simeq A$ is finite over $i(k[x])$.

Exercise E. (Points: 2+4)
Consider the ring $A=k[x, y, z] /\left(x y^{2}-x z^{2}, x^{2}\right)$ where $\operatorname{char}(k) \neq 2$.
(i) Show that the ideals $(\bar{z}-\bar{y}) \subset A$ and $(\bar{z}+\bar{y}) \subset A$ are both primary ideals and determine their radicals.
(ii) Determine a primary decomposition of the ideal (0) $\subset A$ and decide which associated prime ideals are isolated and which are embedded.

Solution:

(i) We have $A /(\bar{z}-\bar{y}) \simeq k[x, y, z] /\left(z-y, x(y-z)(z+y), x^{2}\right) \simeq k[x, y, z] /\left(z-y, x^{2}\right) \simeq k[x, y] /\left(x^{2}\right)$. As $k[x, y]$ is an integral domain, the elements of (\bar{x}) are the only zero-divisors of $A /(\bar{z}-\bar{y})$ and they are also nilpotent since $\bar{x}^{2}=0$. So $(\bar{z}-\bar{y})$ is primary. (0.5)
Moreover, in $A /(\bar{z}-\bar{y}), \sqrt{(0)}=(\bar{x})$ so in $A, \sqrt{(\bar{z}-\bar{y})}=(\bar{z}-\bar{y}, \bar{x})$. (0.5)
Likewise $A /(\bar{x}+\bar{y}) \simeq k[x, y, z] /\left(z+y, x(y-z)(z+y), x^{2}\right) \simeq k[x, y, z] /\left(z+y, x^{2}\right) \simeq k[x, y] /\left(x^{2}\right)$ which shows that $(\bar{z}+\bar{y})$ is a primary ideal. (0.5) Moreover in $A /(\bar{z}+\bar{y}), \sqrt{(0)}=(\bar{x})$ so that, in A, $\sqrt{(\bar{z}+\bar{y})}=(\bar{z}+\bar{y}, \bar{x}) . \mathbf{(0 . 5)}$
(ii) Let us prove that $\left(x(y+z)(y-z), x^{2}\right)=\left(z-y, x^{2}\right) \cap\left(z+y, x^{2}\right) \cap(x)$ in $k[x, y, z]$. The inclusion ' \subset ' is clear. (0.5) Conversely, take a $g \in\left(z+y, x^{2}\right)$ and write $g=(z+y) g_{1}+x^{2} g_{2}$ for some $g_{1}, g_{2} \in k[x, y, z]$. Then $g \in(x)$ if and only if $(z+y) g_{1} \in(x)$, which yields $(k[x, y, z]$ being factorial) $x \mid g_{1}$ i.e. $g_{1}=x g_{3}$ for some $g_{3} \in k[x, y, z]$. We further have $g \in\left(z-y, x^{2}\right)$ if and only if $(z+y) x g_{3} \in$ $\left(z-y, x^{2}\right)$ i.e. if we can write $(z+y) x g_{3}=(z-y) g_{4}+x^{2} g_{5}$ for some g_{4}, g_{5}. In which case, $x \mid g_{4}$ ($k[x, y, z]$ factorial); write $g_{4}=x g_{6}$. Dividing by x, we get $(z+y) g_{3}=(z-y) g_{6}+x g_{5}$. Evaluating at $x=0$ and $z=y$, we get $2 g_{3}(0, y, y)=0$ so $(\operatorname{char}(k) \neq 2) g_{3}=x g_{7}+(z-y) g_{8}$ for some g_{7}, g_{8}. Putting everything together, an element g in the intersection of the three ideals, can be written $g=x(z+y)(z-y) g_{8}+x^{2}(z+y) g_{7}+x^{2} g_{2} \in\left(x(z+y)(z-y), x^{2}\right)$, proving the other inclusion. (1.5) Moreover, $(z-y)(z+y) \in\left(z-y, x^{2}\right) \cap\left(z+y, x^{2}\right) \backslash\left(x(z+y)(z-y), x^{2}\right)$ and $x(z-y) \in\left(z-y, x^{2}\right) \cap$ $(x) \backslash\left(x(z+y)(z-y), x^{2}\right)$ and $x(z+y) \in\left(z+y, x^{2}\right) \cap(x) \backslash\left(x(z+y)(z-y), x^{2}\right)$. So the decomposition is minimal. (0.5)
Since $\left(x(z+y)(z-y), x^{2}\right) \subset(x)$ and the later is a prime (hence primary) ideal, $(\bar{x}) \in \operatorname{Spec}(A)$.
Passing to the quotient in the above equality yields the decomposition $(0)=(\bar{x}) \cap(\bar{z}-\bar{y}) \cap(\bar{z}+\bar{y})$ which is a minimal primary decomposition by (i). (0.5)
So $\operatorname{Ass}((0))=\{(\bar{z}-\bar{y}, \bar{x}),(\bar{z}+\bar{y}, \bar{x}),(\bar{x})\}$. We have $(\bar{x}) \subsetneq(\bar{z}-\bar{y}, \bar{x}),(\bar{x}) \subsetneq(\bar{z}+\bar{y}, \bar{x})$ so (\bar{x}) is an isolated associated prime and the two others are embedded associated primes. (1)

Exercise F. (Points: 5)
Compute $\operatorname{Ass}(M)$ and $\operatorname{Ann}(M)$ of the kernel $\operatorname{ker}(\psi)$ of the following A-module homomorphism $\psi: A^{\oplus 2} \rightarrow$ $A,(a, b) \mapsto a \bar{x}+b \bar{y}$, where $A:=k[x, y] /\left(x^{2} y\right)$.

Solution:

Let us find generators for $M:$ let $(\bar{a}, \bar{b}) \in \operatorname{ker}(\psi)$, then there is a f such that $a x+b y=x^{2} y f$ in $k[x, y]$.

Thus $y \mid a$ and $x \mid b$ i.e. we can write $a=y a_{1}$ and $b=x b_{1}$. Dividing by $x y$, we get $a_{1}+b_{1}=x f$. So $b_{1}=-a_{1}+x f$. So $(a, b)=a_{1}(y,-x)+f\left(0, x^{2}\right)$. Conversely $(\bar{y},-\bar{x}),\left(0, \bar{x}^{2}\right) \in \operatorname{ker}(\psi)$. So those two elements form a set of generators of M. (1.5)
We have $\operatorname{Ann}\left(\left(0, \bar{x}^{2}\right)\right)=(\bar{y})$ which is a prime ideal (as image of $\left.(y) \in V\left(x^{2} y\right) \subset \operatorname{Spec}(k[x, y])\right)$. (0.5) We also have $(\overline{x y}, 0)=\bar{x}(\bar{y},-\bar{x})+\left(0, \bar{x}^{2}\right) \in M$ and $\operatorname{Ann}((\overline{x y}, 0))=(\bar{x})$ which is a prime ideal. (0.5) So $(\bar{x}),(\bar{y}) \in \operatorname{Ass}(M)$.
To show that those are the only ones, just observe that any prime ideal of the form $\mathfrak{p}=\operatorname{Ann}(m)$ for some $0 \neq m=\left(m_{1}, m_{2}\right) \in M$ satisfies: If $m_{1} \neq 0$, then $\mathfrak{p} \subset(x)$ and if $m_{2} \neq 0$, then $\mathfrak{p} \subset(y)$. To spell this out in detail, write $0 \neq m=\bar{\alpha}(\bar{y},-\bar{x})+\bar{\beta}\left(0, \bar{x}^{2}\right) \in M$, and $\bar{a} \in \operatorname{Ann}(m)$, then we can write $a \alpha y=x^{2} y f$ and $a\left(\beta x^{2}-\alpha x\right)=x^{2} y g$ for some $f, g \in k[x, y]$. Then either $x^{2} \mid \alpha$ or $x \mid a$. In the later case, we have $a \in(x)$ that we already know to be an associated prime. In the first case, write $\alpha=x^{2} \alpha_{1}$, we get $\overline{\alpha y}=0$ and $a\left(\beta-x \alpha_{1}\right)=y g$ so either $y \mid a$ (in which case, $a \in(y)$ that we already know to be an associated prime) or $y \mid\left(\beta-x \alpha_{1}\right)$; in the later case write we can write $\beta=x \alpha_{1}+y \beta_{1}$ so $m=\left(0,-\bar{x}^{3} \alpha_{1}+\bar{x}^{3} \alpha_{1}+\bar{x}^{2} \bar{y} \beta_{1}\right)=(0,0)$, contradiction. So in the case $x^{2} \mid \alpha$, we must have $a \in(y)$. In the other case $a \in(x)$. Hence $\operatorname{Ass}(M)=\{(\bar{x}),(\bar{y})\}$. (1.5)
If $\bar{a} \in \operatorname{Ann}(M)$, we have in particular that $\bar{a}(\bar{y},-\bar{x})=0$ i.e. $a y, a x \in\left(x^{2} y\right)$ in $k[x, y]$. So $x^{2} \mid a$ and $y \mid a$ so $a \in\left(x^{2} y\right)$ i.e. $\bar{a}=0$; hence $\operatorname{Ann}(M)=0$. (1)

Exercise G. (Points: $4+4$)
Consider $A=k[x, y, z] /\left(x y z, z^{2}\right)$ as a graded ring with $\operatorname{deg}(\bar{x})=\operatorname{deg}(\bar{y})=\operatorname{deg}(\bar{z})=1$.
(i) Compute the Poincaré series $P(A, t)$ and determine the dimension of A.
(ii) Is $A_{(x, y, z)}$ regular or Cohen-Macaulay?

Solution:

(i) We have the exact sequence $0 \rightarrow \mathfrak{a} \rightarrow k[x, y, z] \rightarrow A \rightarrow 0$ with $\mathfrak{a}=\left(x y z, z^{2}\right)$ a homogeneous ideal. So to compute $\operatorname{dim}_{k}\left(A_{n}\right)$ it is sufficient to compute $\operatorname{dim}_{k}\left(\mathfrak{a}_{n}\right)$ and the monomials of degree n form a basis of those spaces. We have $\operatorname{dim}_{k}\left(\mathfrak{a}_{0}\right)=0=\operatorname{dim}_{k}\left(\mathfrak{a}_{1}\right)$ and $\mathfrak{a}_{2}=\operatorname{Span}\left(z^{2}\right)$ and $\mathfrak{a}_{3}=\operatorname{Span}\left(x y z, x z^{2}, y z^{2}, z^{3}\right)$. For $n \geq 4$, the monomials of degree n which are in $(x y z)$ are of the form $x y z \times$ monomial of deg $=n-3$; the monomials of degree n which are in $\left(z^{2}\right)$ are of the form $z^{2} \times$ monomial of deg $=n-2$. Those monomials belong to both ideals if they can be written $x y z^{2} \times$ monomial of $\operatorname{deg}=n-4$. Hence

$$
\begin{aligned}
\operatorname{dim}_{k}\left(\mathfrak{a}_{n}\right) & =\binom{2+n-3}{2}+\binom{2+n-2}{2}-\binom{2+n-4}{2} \\
& =\frac{(n-1) n}{2}+\frac{(n-2)(n-1)}{2}-\frac{(n-3)(n-2)}{2} \\
& =\frac{n^{2}+n-4}{2}
\end{aligned}
$$

so that $\operatorname{dim}_{k}\left(A_{n}\right)=\binom{n+2}{2}-\frac{n^{2}+n-4}{2}=n+3$.
So

$$
\begin{aligned}
P(A, t) & =1+3 t+\sum_{n \geq 2}(n+3) t^{n}=1+3 t+\sum_{n \geq 2}(n+1) t^{n}+2 \sum_{n \geq 2} t^{n} \\
& =\frac{-t^{3}+t+1}{(1-t)^{2}} \mathbf{(0 . 5)}
\end{aligned}
$$

Localizing at $(\bar{x}, \bar{y}, \bar{z})$ we can form the graded ring

$$
\mathfrak{g r}_{(\bar{x}, \bar{y}, \bar{z})}\left(A_{(\bar{x}, \bar{y}, \bar{z})}\right)=\oplus_{n \geq 0} \overline{(x, y, z)}^{n} / \overline{(x, y, z)}^{n+1} \simeq \oplus_{n \geq 0}(x, y, z)^{n} /\left(\mathfrak{a}_{n}+(x, y, z)^{n+1}\right)
$$

from which we see that the polynomial that has been computed is also $P\left(A_{\overline{(x, y, z)}}, t\right)$. (0.5) As 1 is not a root of the numerator, we get that the degree of the Hilbert-Samuel polynomial of $\left(A_{(x, y, z)}, \overline{(x, y, z)}\right)$, which is equal to the dimension of $A_{\overline{(x, y, z)}}$, is 2 . (0.5)
Since any maximal ideal $\overline{\mathfrak{m}}$ of A is induced by a maximal ideal \mathfrak{m} of $k[x, y, z]$ and the later (and its localization) is an integral domain and $\frac{x y z}{1} \neq 0$, we get that

$$
\operatorname{dim}\left(A_{\overline{\mathfrak{m}}}\right) \leq \operatorname{dim}\left(k[x, y, z]_{\mathfrak{m}} /\left(\frac{x y z}{1}\right)\right)=\operatorname{dim}\left(k[x, y, z]_{\mathfrak{m}}\right)-1=2 .
$$

Hence $\operatorname{dim}(A)=2$. (0.5) Alternatively, $\operatorname{Spec}(A) \cong V\left(x y z, z^{2}\right)=V(x, z) \cup V(y, z) \cup V(z)$, which immediately yields $\operatorname{dim}(A)=2$.
(ii) We have $\overline{(x, y, z)} / \overline{(x, y, z)}^{2} \simeq(x, y, z) /\left(x y z, z^{2}\right)+(x, y, z)^{2}$. But since $\left(x y z, z^{2}\right) \subset(x, y, z)^{2}$, we get $\operatorname{dim}_{k}\left(\overline{(x, y, z)} / \overline{(x, y, z)}^{2}\right)=\operatorname{dim}_{k}\left((x, y, z) /(x, y, z)^{2}\right)=3>\operatorname{dim}\left(A_{(x, y, z)}\right)=2$. Therefore $A_{(x, y, z)}$ is not regular. (1)

We know that $\operatorname{depth}(A) \leq \operatorname{dim}(A / \mathfrak{p})$ for every associated prime ideal \mathfrak{p}. Consider $y z \in A$ and its annihilator $\operatorname{Ann}(y z)=(x, z)$, which is a prime ideal. As $A /(x, z)=k[y]$, one has $\operatorname{depth}(A) \leq 1<2=$ $\operatorname{dim}(A)$ and hence A is not CM.

