Solutions for exercises, Algebra I (Commutative Algebra) - Week 10

Exercise 49. (Associated primes, 4 points)

1. Let $\mathfrak{p} \in \operatorname{Ass}(N)$; there is a $n \in N$, such that $\operatorname{Ann}(n)=\mathfrak{p}$; since $n \in M$, we get $\mathfrak{p} \in \operatorname{Ass}(M)$ i.e. $\operatorname{Ass}(N) \subset \operatorname{Ass}(M)$.
Now, let $\mathfrak{p} \in \operatorname{Ass}(M)$ and $m \in M$ such that $\operatorname{Ann}(m)=\mathfrak{p}$. If $\bar{m}=0 \in M / N$, then $m \in N$ and we get $\mathfrak{p} \in \operatorname{Ass}(N)$. Otherwise, $\bar{m} \neq 0 \in M / N$ and $\forall a \in \mathfrak{p}, a \bar{m}=\overline{a m}=\overline{0}$ so $\mathfrak{p} \subset \operatorname{Ann}(\bar{m})$. Conversely if $\operatorname{Ann}(\bar{m})=\mathfrak{p}$, then $\mathfrak{p} \in \operatorname{Ass}(M / N)$. Otherwise, consider $a \in \operatorname{Ann}(\bar{m}) \backslash \mathfrak{p}$ then $a \bar{m}=0 \in M / N$ i.e. $a m \in N$; a direct calculation shows that $\mathfrak{p} \subset \operatorname{Ann}(a m)$. Now if $b \in \operatorname{Ann}(a m)$, bam $=0 \in M$ thus $b a \in \operatorname{Ann}(m)=\mathfrak{p}$; but since $a \notin \mathfrak{p}, b \in \mathfrak{p}$ i.e. $\mathfrak{p}=\operatorname{Ann}(\underbrace{a m}_{\in N}) ;$ thus $\mathfrak{p} \in \operatorname{Ass}(N)$ i.e. $\operatorname{Ass}(M) \subset \operatorname{Ass}(N) \cup \operatorname{Ass}(M / N)$.
2. Let $\mathfrak{p} \in \operatorname{Ass}(M)$ and consider $m \in M$ such that $\operatorname{Ann}(m)=\mathfrak{p}$. If $\frac{m}{1}=0 \in M_{\mathfrak{p}}$, there is a $a \notin \mathfrak{p}$, such that $a m=0 \in M$ i.e. $a \in \operatorname{Ann}(m)=\mathfrak{p}$. Contradiction. Thus $\frac{m}{1} \neq 0 \in M_{\mathfrak{p}}$. In particular $M_{\mathfrak{p}} \neq 0$ i.e. $\mathfrak{p} \in \operatorname{Supp}(M)$.
3. Let us denote $\varphi: M \rightarrow \prod_{\mathfrak{p} \in \operatorname{Ass}(M)} M_{\mathfrak{p}}$.

Let first prove that $\operatorname{Ass}(M) \neq \emptyset$ as soon as $M \neq 0$ (using Noetherianess of A): take $0 \neq m \in M$, then $0 \in \operatorname{Ann}(m) \neq A$. If $\operatorname{Ann}(m)$ is prime, we can find $a, b \in A \backslash \operatorname{Ann}(m)$ such that $a b \in \operatorname{Ann}(m)$ i.e. $a m \neq 0$ and $b m \neq 0$ but $a b m=0$. Then $b \in \operatorname{Ann}(a m)$ and for any $c \in \operatorname{Ann}(a m), c a m=a c m=a \cdot 0=0$ i.e. $\operatorname{Ann}(m) \subset \operatorname{Ann}(a m)$; thus $\operatorname{Ann}(m) \subsetneq \operatorname{Ann}(m)+(b) \subset \operatorname{Ann}(a m)$. Next, if $\operatorname{Ann}(a m) \neq A$ is not prime, we can repeat the process and find a $c \in A$ such that $\operatorname{Ann}(m) \subsetneq \operatorname{Ann}(a m) \subsetneq \operatorname{Ann}(a c m) \neq A$. So we can construct inductively, an ascending chain of proper ideals. As S is Noetherian, the chain has to stop so we reach a $0 \neq m^{\prime} \in\langle m\rangle$ (the cyclic submodule generated by m) for which $\operatorname{Ann}\left(m^{\prime}\right)$ is a prime ideal i.e. such that $\operatorname{Ann}\left(m^{\prime}\right) \in \operatorname{Ass}(M)$.
Now, if $\operatorname{ker}(\varphi) \neq 0$, take $0 \neq m \in \operatorname{ker}(\varphi)$; then since $m \neq 0, \operatorname{Ann}(m) \neq A$ and if $\operatorname{Ann}(m)$ is not a prime ideal, we can proceed as above to find a $m^{\prime} \in\langle m\rangle$ such that $\operatorname{Ann}\left(m^{\prime}\right)$ is a prime ideal i.e. $\operatorname{Ann}\left(m^{\prime}\right) \in \operatorname{Ass}(M)$. But since $m^{\prime} \in\langle m\rangle$ we can write $m^{\prime}=a m$; thus $\varphi\left(m^{\prime}\right)=a \varphi(m)=0$ i.e. $m^{\prime} \in \operatorname{ker}(\varphi)$. But looking at the component corresponding to $\operatorname{Ann}\left(m^{\prime}\right)$, we get a contradiction by the previous question. So $\operatorname{ker}(\varphi)=0$.

Exercise 50. (Discrete valuation rings (or not), 6 points)

1. \mathbb{Z} is not local (for any prime number $p>0,(p)$ is maximal) thus not a discrete valuation ring.
2. We have seen (solution for exercise 8) the non-zero ideals of $k[[x]]$ are of the form $\left(x^{d}\right)$ for some $d \geq 0$. So $k[[x]]$ is a principal ideal domain, in particular any ideal in $k[[x]]$ is finitely generated (by one element) thus $k[[x]]$ is Noetherian. Among the ideals $\left(x^{d}\right)$ of $k[[x]]$, only (x) is prime; thus $\operatorname{Spec}(k[[x]])=\{(0),(x)\}$. So $\operatorname{MaxSpec}(k[[x]])=\{(x)\}$ i.e. $k[[x]]$ is local. Observe that $(x) /(x)^{2}=(x) /\left(x^{2}\right) \simeq k \cdot \bar{x}$. So according to Corollary $11.16 k[[x]]$ is a discrete valuation ring.

[^0]3. We have $\operatorname{Spec}\left(k[x]_{x}\right) \simeq D(x)$; since $k[x]$ has infinitely many maximal ideals (irreducible elements) and $D(x)$ consists of all maximal ideals of $k[x]$ but $(x), k[x]_{x}$ is not local hence not a discrete valuation ring.
4. the ring $k\left[x^{2}, x^{3}\right]$ is an integral domain as subring of an integral domain. We have $x=\frac{x^{3}}{x^{2}} \in Q\left(k\left[x^{2}, x^{3}\right]\right)$ and x is annhilated by $Y^{2}-x^{2} \in k\left[x^{2}, x^{3}\right][Y]$ so it is integral over $k\left[x^{2}, x^{3}\right]$ but $x \notin k\left[x^{2}, x^{3}\right]$ (looking at the expansions in $k[x]$). So $k\left[x^{2}, x^{3}\right]$ is not normal. In particular it cannot be a discrete valuation ring.
5. We have $\operatorname{Spec}\left(\mathbb{F}_{3}[x, y] /\left(x^{2}-y\right)\right) \simeq V\left(\left(x^{2}-y\right)\right) \subset \operatorname{Spec}\left(\mathbb{F}_{3}[x, y]\right)$. The ideal $\left(x^{2}-y\right) \subset$ $\left(x^{2}-y, x\right)=(y, x)$ satisfies $\mathbb{F}_{3}[x, y] /\left(x^{2}-y, x\right) \simeq \mathbb{F}_{3}$ so it is a maximal ideal of $\mathbb{F}_{3}[x, y]$ i.e. $(\bar{x}) \in \operatorname{MaxSpec}\left(\mathbb{F}_{3}[x, y] /\left(x^{2}-y\right)\right)$ is maximal.

Likewise the ideal $\left(x^{2}-y\right) \subset\left(x^{2}-y, x-1\right)=(1-y, x-1)$ satisfies $\mathbb{F}_{3}[x, y] /\left(x^{2}-y, x-1\right) \simeq$ \mathbb{F}_{3} i.e. is maximal; thus $(\bar{x}-1) \in \operatorname{MaxSpec}\left(\mathbb{F}_{3}[x, y] /\left(x^{2}-y\right)\right)$. But $(\bar{x}-1) \neq(\bar{x})$. Otherwise $x-1 \in\left(x^{2}-y, x\right)=(y, x)$ but evaluating the polynomials at $(0,0)$, we get a contradiction.
So $\mathbb{F}_{3}[x, y] /\left(x^{2}-y\right)$ is not local, in particular not a discrete valuation ring.
For any field, the constant map $\nu: K^{*} \rightarrow \mathbb{Z}, a \mapsto 0$ satisfies Lemma 13.4 (i) and (ii); but $\{\nu(\cdot) \geq 0\} \cup\{0\}=K$ is not a discrete valuation ring.
As soon as the valuation $\nu: K^{*} \rightarrow \mathbb{Z}$ is not constant, by the property (ii) of Lemma 13.4 (and $\nu(1)=\nu(1 \cdot 1)=\nu(1)+\nu(1)$ so $\nu(1)=0) \nu\left(K^{*}\right) \subset \mathbb{Z}$ is a non-zero subgroup of \mathbb{Z} i.e. of the form (d) for some $d>0$. Then looking at $\widetilde{\nu}: K^{*} \rightarrow \mathbb{Z}, a \mapsto \frac{\nu(a)}{d}$ we get a surjective group homomorphism and $\left\{a \in K^{*}, \widetilde{\nu}(a) \geq 0\right\}=\left\{a \in K^{*}, \nu(a) \geq 0\right\}$ so $\{0\} \cup\left\{a \in K^{*}, \nu(a) \geq 0\right\}$ is a discrete valuation ring.

Exercise 51. (Rings that are not Dedekind rings, 5 points)

1. Let us consider the ideal $\left(x_{1}, x_{2}\right) \subset A$. It is fractional as an ideal of A. If it is invertible, consider $M \subset k\left(x_{1}, x_{2}\right)$ its inverse. It is finitely generated by Remark 14.12 (ii) and (iii). Let us denote $f_{1}, \ldots, f_{k} \in k\left(x_{1}, x_{2}\right)$ a set of generators of M as A-module. Then for any $i, f_{i} x_{1} \in A$ thus the only denominator that can appear in the f_{i} 's is x_{1}. But we also have $f_{i} x_{2} \in A$ so actually $f_{i} \in A$ for any i i.e. $M \subset A$ is an ideal. Then $M \cdot\left(x_{1}, x_{2}\right)=\left(\left(x_{1} f_{i}, x_{2} f_{i}\right)_{i=1, \ldots, k}\right)$; thus evaluating at $(0,0)$ we see that $1 \notin M \cdot\left(x_{1}, x_{2}\right)$. Contradiction. So $\left(x_{1}, x_{2}\right)$ is not invertible.
2. We compute $\left(\overline{x_{1}}, \overline{x_{2}}\right)^{2}=\left({\overline{x_{1}}}^{2}, \overline{x 2}^{2}, \overline{x_{1} x_{2}}\right)=\left({\overline{x_{1}}}^{3}, \overline{x_{1}}, \overline{x_{1} x_{2}}\right)=\left({\overline{x_{1}}}^{2}, \overline{x_{1} x_{2}}\right)=\left(\overline{x_{1}}\right)$. $\left(\overline{x_{1}}, \overline{x_{2}}\right)$. Thus if $\left(\overline{x_{1}}, \overline{x_{2}}\right)$ is invertible, we get $\left(\overline{x_{1}}, \overline{x_{2}}\right)=\left(\overline{x_{1}}\right)$.
This is impossible as $\overline{x_{2}} \notin\left(\overline{x_{1}}\right)$; otherwise $x_{2}=x_{1} f+\left(x_{2}^{2}-x_{1}^{3}\right) g$ in $k\left[x_{1}, x_{2}\right]$ for some $f, g \in k\left[x_{1}, x_{2}\right]$; then evaluating at $x_{1}=0$ we get $x_{2}=x_{2}^{2} g\left(0, x_{2}\right) \in k\left[x_{2}\right]$ which is impossible for degree reason. So $\left(\overline{x_{1}}, \overline{x_{2}}\right)$ is not invertible.

Exercise 52. (Absolute values, 4 points)

1. Define $|\cdot|: Q(A) \rightarrow \mathbb{R}$ by $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$. It is well-defined as, if $\frac{a}{b}=\frac{c}{d} \in Q(A)$, we have (A integral domain) $a d=b c$ in A. Thus $|a||d|=|a d|=|b c|=|b||c|$ in \mathbb{R} so $\left|\frac{a}{b}\right|=\left|\frac{c}{d}\right|$; proving well-definedss. By axiom $3,|1|=|1 \cdot 1|=|1| \cdot|1|$ i.e. $|1| \in \mathbb{R}$ is idempotent so it is either 0 or 1 . But because of axiom $2(1 \neq 0)$, we have $|1|=1$.
So $|\cdot|$ on $Q(A)$ extends the absolute value on $A:\left|\frac{a}{1}\right|=\frac{|a|}{|1|}=|a|$.
We have $\left|\frac{a}{b}\right|=\frac{|a|}{|b|} \geq 0$.
If $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}=0 \in \mathbb{R}$ then $|a|=0$ i.e. (axiom 2) $a=0$. But then $\frac{a}{b}=\frac{0}{b}=0 \in Q(A)$.
A direct caluclation shows multiplicativity: $\left.\left|\frac{a}{b} \cdot \frac{c}{d}\right|=\left|\frac{a c}{b d}\right|=\left|\frac{a| ||c|}{|b| d \mid}=\left|\frac{a}{b}\right|\right| \frac{c}{d} \right\rvert\,$. Finally

$$
\left|\frac{a}{b}+\frac{c}{d}\right|=\left|\frac{a d+b c}{b d}\right|=\frac{|a d+b c|}{|b d|} \leq \frac{|a d|+|b c|}{|b d|}=\frac{|a||d|}{|b||d|}+\frac{|b||c|}{|b||d|}=\left|\frac{a}{b}\right|+\left|\frac{c}{d}\right|
$$

2. We have $\nu\left(\frac{a}{b} \cdot \frac{c}{d}\right)=-\log _{\alpha}\left(\left|\frac{a}{b} \cdot \frac{c}{d}\right|\right)=-\log _{\alpha}\left(\frac{|a||c|}{|b| d \mid}\right)=-\log _{\alpha}\left(\left|\frac{a}{b}\right|\right)-\log _{\alpha}\left(\left|\frac{c}{d}\right|\right)=\nu\left(\frac{a}{b}\right)+\nu\left(\frac{c}{d}\right)$.

We have

$$
\begin{aligned}
\nu\left(\frac{a}{b}+\frac{c}{d}\right)=\nu\left(\frac{a d+b c}{b d}\right)=-\log _{\alpha}(|a d+b c|)+\log _{\alpha}(|b d|) & \geq-\log _{\alpha}(\max (|a d|,|b c|))+\log _{\alpha}(|b d|) \\
& =\min \left(-\log _{\alpha}(|a d|),-\log _{\alpha}(|b c|)\right)+\log _{\alpha}(|b d|) \\
& =\min \left(-\log _{\alpha}\left(\frac{|a d|}{|b d|}\right),-\log _{\alpha}\left(\frac{|b c|}{|b d|}\right)\right) \\
& =\min \left(\nu\left(\frac{a}{b}\right), \nu\left(\frac{c}{d}\right)\right) .
\end{aligned}
$$

3. The inequality $|a+b| \leq \max (|a|,|b|)$ does not hold for $\mathbb{C},|\cdot| ;$ indeed, $|1+i|=\sqrt{2}>1=$ $|1|, 1=|i|$. So $-\log _{\alpha}(|1+i|)=-\log _{\alpha}(\sqrt{2})<-\log _{\alpha}(1)$ i.e. $-\log _{\alpha}(|\cdot|)$ does not satisfy Lemma 13.4 (i).
4. As in example 13.3 (iii), $\mathbb{Z}_{(p)} \subset \mathbb{Q}$ admits the following description $\mathbb{Z}_{(p)}=\left\{\frac{a}{b} \in \mathbb{Q}, p \nmid\right.$ b and $(a, b)=1\}$. So set $|\cdot|: \mathbb{Z}_{(p)} \backslash\{0\} \rightarrow \mathbb{N}$, by $\frac{a}{b} \mapsto p^{-\nu(a)}$ where $(a, b)=1, a \neq 0$ and $\nu(a)=\max \left\{\ell \in \mathbb{N}, p^{\ell} \mid a\right\}$ and extend by 0 at $0 \in \mathbb{Z}_{(p)}$. If $\frac{a}{b} \in \mathbb{Z}_{(p)} \backslash\{0\}$, we have $\left|\frac{a}{b}\right|=p^{-\nu(a)}>0$ and $|0|=0 \geq 0$. So $|\cdot|$ satisfies axioms 1 and 2 .
Moreover, $\left|\frac{a}{b} \cdot \frac{c}{d}\right|=\left|\frac{a c}{b d}\right|$, then $p \nmid b d$, so taking out common primes in the numerator and the denominator does not affect $\nu(a c)$, which is equal $\nu(a) \nu(c)$ as readily seen from the decomposition in primes. So $\left|\frac{a}{b} \cdot \frac{c}{d}\right|=p^{-\nu(a) \nu(c)}=p^{-\nu(a)} p^{-\nu(c)}=\left|\frac{a}{b}\right|\left|\frac{c}{d}\right|$.
Finally, $\left|\frac{a}{b}+\frac{c}{d}\right|=\left|\frac{a d+b c}{b d}\right|$ and again $p \nmid b d$; since $p \nmid d$, we have $\nu(a d)=\nu(a)$ and likewise $\nu(b c)=\nu(c)$. If $\nu(a) \leq \nu(c)$ (i.e. $\left|\frac{a}{b}\right|=p^{-\nu(a)} \geq p^{-\nu(c)}=\left\lvert\, \frac{c}{d}\right.$ in other words $\left|\frac{a}{b}\right|=$ $\left.\max \left(\left|\frac{a}{b}\right|,\left|\frac{c}{d}\right|\right)\right)$, then $p^{\nu(a)} \mid a d+b c$ so $\nu(a d+b c) \geq \nu(a)$ i.e. $\left|\frac{a d+b c}{b c}\right|=p^{-\nu(a d+b c)} \leq p^{-\nu(a)}=$ $\left|\frac{a}{b}\right|=\max \left(\left|\frac{a}{b}\right|,\left|\frac{c}{d}\right|\right)$. Likewise, one shows that when $\nu(a)>\nu(c), \max \left(\left|\frac{a}{b}\right|,\left|\frac{c}{d}\right|\right)=\left|\frac{c}{d}\right|$ and $\nu(a d+b c) \geq \nu(c)$ i.e. $\left|\frac{a d+b c}{b d}\right|=p^{-\nu(a d+b c)} \leq p^{-\nu(c)}=\max \left(\left|\frac{a}{b}\right|\left|, \frac{c}{d}\right|\right)$. As a conclusion $|\cdot|$ satisfies the axioms for an absolute value with the strengthened axiom 4 of question (ii). In particular $-\log _{p}(|\cdot|)$ is a valuation on $\widetilde{\nu}:=\mathbb{Q}^{*}=Q\left(\mathbb{Z}_{(p)}\right)$, which is equal to ν on $\mathbb{Z}_{(p)}$ (direct calculation).

Let us describe its valuation $\operatorname{ring}\{\nu(\cdot) \geq 0\} \cup\{0\}$. Looking at the natural extension (question (i)) of $|\cdot|$ to \mathbb{Q}, we see that $\widetilde{\nu}\left(\frac{a}{b}\right)=\nu(a)-\nu(b)$. But can always take a representative for which $(a, b)=1$, then p does not divide a and b i.e. $\nu(a) \nu(b)=0$. Then from the formula, we see that $\widetilde{\nu}\left(\frac{a}{b}\right) \geq 0$ if and only if $\nu(b)=0$ i.e. $p \nmid b$ i.e. $\frac{a}{b} \in \mathbb{Z}_{(p)}$.

Exercise 53. (Picard group, 6 points)

1. For $M, N \in \operatorname{Pic}(A)$, let us show that $M \otimes N \in \operatorname{Pic}(A)$: as M, N are finitely generated there are surjective homomorphism of A-modules $A^{\oplus m} \rightarrow M$ and $A^{\oplus n} \rightarrow N$ and since M, N are projective those homomorphisms admit a section (a homomorphism lifting the identity) i.e. M, N are direct summands of finite free A-modules $A^{\oplus m}=M \oplus P$, $A^{\oplus n}=N \oplus Q$. Then $A^{\oplus m n}=A^{\oplus m} \otimes A^{\oplus n}=M \otimes N \oplus(M \otimes Q \oplus P \otimes N \oplus P \otimes Q)$ i.e. $M \otimes N$ is a direct summand of a finite free A-module; thus $M \otimes N$ is a finite (look at the projection $A^{\oplus m n} \rightarrow M \otimes N$) projective module. Moreover for any $\mathfrak{p} \in \operatorname{Spec}(A)$, we have (see tensor identity (3) on exercise sheet 6 and solution to exercise 15)

$$
\left(M \otimes_{A} N\right)_{\mathfrak{p}} \simeq M \otimes_{A} N \otimes_{A} A_{\mathfrak{p}} \simeq\left(M \otimes_{A} A_{\mathfrak{p}}\right) \otimes_{A_{\mathfrak{p}}}\left(N \otimes_{A} A_{\mathfrak{p}}\right) \simeq A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}} \simeq A_{\mathfrak{p}}
$$

Associativity follows from associativity of tensor product.
As a A-module A is obviously finite and free (hence projective) and $A_{\mathfrak{p}} \simeq A \otimes_{A} A_{p} p$; thus $A \in \operatorname{Pic}(A)$.
Moreover for any $M \in \operatorname{Pic}(A)$, we have natural isomorphisms $M \otimes_{A} A \simeq M$ and
$A \otimes_{A} M \simeq M$.
For any $M \in \operatorname{Pic}(A)$, let us denote $M^{-1}:=\operatorname{Hom}_{A}(M, A)$. As we have seen M is a direct summand of a finite free module: $A^{\oplus m} \simeq M \oplus P$; applying the functor $\operatorname{Hom}_{A}(\cdot, A)$ yields $A^{\oplus m} \simeq \operatorname{Hom}_{A}\left(A^{\oplus m}, A\right) \simeq \operatorname{Hom}_{A}(M, A) \oplus \operatorname{Hom}_{A}(P, A)$. So M^{-1} is a direct summand of a finite free module so it is finite and projective. Now, since for any finite free module, there is a natural isomorphism $\operatorname{Hom}\left(A^{\oplus k}, A\right) \simeq \prod_{i=1}^{k} \operatorname{Hom}(A, A) \simeq A^{\oplus k}$ for any $\mathfrak{p} \in \operatorname{Spec}(A)$, we get $\operatorname{Hom}\left(A^{\oplus k}, A\right)_{\mathfrak{p}} \simeq A^{\oplus k} \simeq A_{\mathfrak{p}} \simeq A_{\mathfrak{p}}^{\oplus k}$. The decomposition $A^{\oplus m} \simeq M \oplus P$ gives the exact sequence $0 \rightarrow P \rightarrow A^{\oplus m} \rightarrow M \rightarrow 0$. Composition the first homomorphism with the surjective homomorphism $A^{\oplus m} \rightarrow P$ given by the second projection, gives an exact sequence

$$
\begin{equation*}
A^{\oplus m} \xrightarrow{f} A^{\oplus m} \xrightarrow{g} M \rightarrow 0 . \tag{*}
\end{equation*}
$$

Applying the functor $\operatorname{Hom}(\cdot, A)$ yields $0 \rightarrow \operatorname{Hom}_{A}(M, A) \xrightarrow{-\circ g} \operatorname{Hom}\left(A^{\oplus m}, A\right) \xrightarrow{-\circ f} \operatorname{Hom}\left(A^{\oplus m}, A\right)$ i.e. $\operatorname{Hom}(M, A)$ is the kernel of $-\circ f$. Since localization is an exact functor, for any $\mathfrak{p} \in \operatorname{Spec}(A)$, we get the exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}(M, A)_{\mathfrak{p}} \xrightarrow{-\circ g_{\mathfrak{p}}} \underbrace{\operatorname{Hom}\left(A^{\oplus m}, A\right)_{\mathfrak{p}}}_{\simeq A_{\mathfrak{p}}^{\oplus m} \simeq \operatorname{Hom}_{A_{\mathfrak{p}}}\left(A_{\mathfrak{p}}^{\oplus m}, A_{\mathfrak{p}}\right)} \stackrel{-\circ f_{\mathfrak{p}}}{\simeq A_{\mathfrak{p}}^{\oplus m} \simeq \operatorname{Hom}_{A_{\mathfrak{p}}\left(A_{\mathfrak{p}}^{\oplus m}, A_{\mathfrak{p}}\right)}^{\operatorname{Hom}\left(A^{\oplus m}, A\right)_{\mathfrak{p}}}}
$$

i.e. $\operatorname{Hom}_{A}(M, A)_{\mathfrak{p}} \simeq \operatorname{ker}\left(-\circ f_{\mathfrak{p}}\right)$. But tensoring ${ }_{\Downarrow}$ with $A_{\mathfrak{p}}$ yields the exact sequence: $A_{\mathfrak{p}}^{\oplus m} \xrightarrow{f_{\mathfrak{p}}} A_{\mathfrak{p}}^{\oplus m} \xrightarrow{g_{\mathfrak{p}}} M_{\mathfrak{p}} \rightarrow 0$; then applying $\operatorname{Hom}_{A \mathfrak{p}}\left(\cdot, A_{\mathfrak{p}}\right)$ gives the exact sequence $0 \rightarrow$ $\operatorname{Hom}_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}, A_{\mathfrak{p}}\right) \xrightarrow{-\circ g_{\mathfrak{p}}} \operatorname{Hom}_{A_{\mathfrak{p}}}\left(A_{\mathfrak{p}}^{\oplus m}, A_{\mathfrak{p}}\right) \xrightarrow{-\circ f_{\mathfrak{p}}} \operatorname{Hom}_{A_{\mathfrak{p}}}\left(A_{\mathfrak{p}}^{\oplus m}, A_{\mathfrak{p}}\right)$ i.e. $\operatorname{Hom}_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}, A_{\mathfrak{p}}\right) \simeq$ $\operatorname{ker}\left(-\circ f_{\mathfrak{p}}\right)$. As a conclusion, $\operatorname{Hom}_{A}(M, A)_{\mathfrak{p}} \simeq \operatorname{Hom}_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}, A_{\mathfrak{p}}\right)$. but by assumption $M_{\mathfrak{p}} \simeq A_{\mathfrak{p}} ;$ thus $\operatorname{Hom}_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}, A_{\mathfrak{p}}\right) \simeq \operatorname{Hom}_{A_{\mathfrak{p}}}\left(A_{\mathfrak{p}}, A_{\mathfrak{p}}\right) \simeq A_{\mathfrak{p}}$. So $M^{-1} \in \operatorname{Pic}(A)$.

Moreover the natural homomorphism $c: \operatorname{Hom}_{A}(M, A) \otimes M \rightarrow A, \lambda \otimes m \mapsto \lambda(m)$ is an isomorphism: indeed we have an exact sequence $0 \rightarrow \operatorname{ker}(c) \rightarrow \operatorname{Hom}_{A}(M, A) \otimes M \xrightarrow{c}$ $A \rightarrow \operatorname{coker}(c) \rightarrow 0$ so that tensoring with the flat A-algebra $A_{\mathfrak{p}}$, we get the exact sequence $0 \rightarrow \operatorname{ker}(c)_{\mathfrak{p}} \rightarrow \operatorname{Hom}_{A}(M, A)_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} M_{\mathfrak{p}} \xrightarrow{c_{\mathfrak{p}}} A_{\mathfrak{p}} \rightarrow \operatorname{coker}(c)_{\mathfrak{p}} \rightarrow 0$. But $c_{\mathfrak{p}}$: $\underbrace{\operatorname{Hom}_{A}(M, A)_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} M_{\mathfrak{p}}} \rightarrow A_{\mathfrak{p}}$ is an isomorphism (check it, the isomorphism $M_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$ $\underbrace{}_{\simeq \operatorname{Hom}_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}, A_{\mathfrak{p}}\right) \otimes_{A_{\mathfrak{p}} A_{\mathfrak{p}} \simeq A_{\mathfrak{p}}}}$
tells that there is a $m \in M_{\mathfrak{p}}$ such that $A_{\mathfrak{p}} \rightarrow M_{\mathfrak{p}}, a \mapsto a m$ is an isomorphism). Thus for any $\mathfrak{p} \in \operatorname{Spec}(A), \operatorname{ker}(c)_{\mathfrak{p}}=0=\operatorname{coker}(c)_{\mathfrak{p}}$ i.e. (Proposition 8.24) $\operatorname{ker}(c)=0=\operatorname{coker}(c)$.
2. Let $M \subset K$ be an invertible A-submodule and $N \subset K$ its inverse i.e. $M \cdot N=A$. In particular $1 \in A$ can be written

$$
\begin{equation*}
1=\sum_{i=1}^{k} m_{i} n_{i} \tag{**}
\end{equation*}
$$

for some $m_{i} \in M$ and $n_{i} \in N$. Then for any $m \in M, m=\sum_{i=1}^{k}(\underbrace{m n_{i}}_{\in M \cdot N=A}) m_{i}$ in K i.e. m_{1}, \ldots, m_{k} generate M as a A-module. So we have a surjective homomorphism of A modules $f: A^{k} \rightarrow M,\left(a_{1}, \ldots, a_{k}\right) \mapsto \sum_{i} a_{i} m_{i}$. But using 承* *, we can also define a homomorphism of A-modules $g: M \rightarrow A^{k}, m \mapsto\left(m n_{1}, \ldots, m n_{k}\right)$ (straightforward to see that it is a homomorphism). Observe that for $m \in M, f(g(m))=f\left(\left(m n_{1}, \ldots, m n_{k}\right)\right)=$ $\sum_{i=1}^{k}\left(m n_{i}\right) m_{i}$ which, as seen above, is equal to m. So $f \circ g=\operatorname{id}_{M}$ i.e. M is a direct summand of A^{k}; so M is a finite projective A-module.
Moreover, for any $\mathfrak{p} \in \operatorname{Spec}(A) \backslash\{(0)\}, A_{\mathfrak{p}}$ is a discrete valuation ring and $M_{\mathfrak{p}}$ an invertible $A_{\mathfrak{p}}$ submodule (by Lemma 14.15) of K; in particular it is fractional so there is a $a \in K$ such that $a M_{\mathfrak{p}} \subset A_{\mathfrak{p}}$ is an ideal. But as $A_{\mathfrak{p}}$ is a discrete valuation ring, according to Proposition 13.14, $a M_{\mathfrak{p}}$ is principal, of the form $\left(t^{\ell}\right)$, for $\ell \geq 0$ and $t \in \mathfrak{p} A_{\mathfrak{p}}$ a uniformizing parameter. So in K, we have $M_{\mathfrak{p}} \simeq\left(\frac{t^{\ell}}{a}\right)$ as $A_{\mathfrak{p}}$-modules and the cyclic
$A_{\mathfrak{p}}$-module $\frac{t^{\ell}}{a} \cdot A_{\mathfrak{p}} \subset K$ is isomorphic to $A_{\mathfrak{p}}$ (look at $A_{\mathfrak{p}} \rightarrow \frac{t^{\ell}}{a} \cdot A_{\mathfrak{p}}, x \mapsto x \frac{t^{\ell}}{a}$) since it has no torsion (as submodule of a field). So $M_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$.
For $\mathfrak{p}=(0)$, by Lemma $14.15, M_{(0)}$ is an invertible $A_{(0)} \simeq K$-submodule of K so $K \supset M_{(0)} \neq 0$ thus $M_{(0)} \simeq K=A_{(0)}$. As a conclusion $M \in \operatorname{Pic}(A)$.

Let us prove that this forgetful map respects the composition laws: let $M, N \subset K$ be invertible A-submodules. We can look at the homomorphism of A-modules $f: M \otimes_{A} N \rightarrow$ $M \cdot N, m \otimes n \mapsto m n$. It is readily seen to be surjective. Now, for a $\mathfrak{p} \in \operatorname{Spec}(A)$, we have the localization $f_{\mathfrak{p}}: M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}} \rightarrow(M \cdot N)_{\mathfrak{p}} ;$ but $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}} \simeq\left(m \cdot A_{\mathfrak{p}}\right) \otimes_{A_{\mathfrak{p}}}\left(n \cdot A_{\mathfrak{p}}\right)$ where $m \in M_{\mathfrak{p}}$ (resp. $n \in N_{\mathfrak{p}}$) gives the isomorphism $A_{\mathfrak{p}} \simeq M_{\mathfrak{p}}$ (resp. $A_{\mathfrak{p}} \simeq N_{\mathfrak{p}}$). Since $M \cdot N$ is invertible, $(M \cdot N)_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$ is a cyclic $A_{\mathfrak{p}}$-module and $(M \cdot N)_{\mathfrak{p}} \simeq M_{\mathfrak{p}} \cdot N_{\mathfrak{p}}$, it is generated by $m n$. So $f_{\mathfrak{p}}$ is an isomorphism; in particular $\operatorname{ker}\left(f_{\mathfrak{p}}\right)=0$.
So $\operatorname{ker}(f)_{\mathfrak{p}}=0$ for any $\mathfrak{p} \in \operatorname{Spec}(A)$ i.e. $\operatorname{ker}(f)=0$; thus $M \otimes_{A} N \simeq M \cdot N$ as A-module.
If an invertible A-submodule $M \subset K$ is principal i.e. $M=\alpha \cdot A$ for some $\alpha \in K^{*}$, since the cyclic A-module $(\alpha) \subset K$ has no torsion (as a submodule of the field K), we have $A \simeq \alpha \cdot A$ as A-modules, so $M \simeq A$ as A-modules. But A is the neutral element of the $\operatorname{group} \operatorname{Pic}(A)$. So the forgetful map $\mathrm{Cl}(A) \rightarrow \operatorname{Pic}(A)$ is a group homomorphism.

Surjectivity: if $M \in \operatorname{Pic}(A)$, then for any $a \in A \backslash\{0\}$, let us prove that $t_{a}: M \rightarrow M$, $m \mapsto a m$ is injective: for any $\mathfrak{p} \in \operatorname{Spec}(A) \backslash\{(0)\}, M_{\mathfrak{p}} \simeq A_{\mathfrak{p}} \cdot m_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$ and since $A_{\mathfrak{p}}$ is an integral domain (and $A \hookrightarrow A_{\mathfrak{p}}$, all because A is an integral domain see for example Exercise 24(i)), $t_{a, \mathfrak{p}}: M_{\mathfrak{p}} \simeq A_{\mathfrak{p}} \rightarrow M_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$ is injective; thus $\operatorname{ker}\left(t_{a}\right)_{\mathfrak{m}}=0$ for any maximal ideal $\mathfrak{m} \in \operatorname{Spec}(A)$ i.e. $\operatorname{ker}\left(t_{a}\right)=0$.
As a consequence, the natural homomorphism $M \rightarrow M_{(0)}$ is injective: if $\frac{m}{1} \in M_{(0)}$ then there is a $a \in A \backslash\{0\}$ such that $a m=0$ in M. But we have seen that this implies that $m=0$.

Moreover $M_{(0)} \simeq A_{(0)} \simeq K$, so M is isomorphic to a A-submodule of K. The isomorphism $M_{(0)} \simeq K$ is given by the datum of some $0 \neq \frac{m}{a} \in M_{(0)}$ (the preimage of 1) i.e. $K \simeq K \cdot \frac{m}{a} \simeq M_{(0)}$. Let $m_{1}, \ldots, m_{k} \in M$ be a set of generators of M as a A-module; since $M_{(0)}$ is cyclic, we have $\frac{m_{i}}{1}=\frac{b_{i}}{a_{i}} \frac{m}{a} \in M_{(0)}$ for some $b_{i}, a_{i} \in A\left(a_{i} \neq 0\right)$. Consider $\alpha=\Pi_{i=1}^{k} a_{i} \in A$; for any i, we have $\alpha \frac{m_{i}}{1}=b_{i} \Pi_{j \neq i} a_{j} \cdot \frac{m}{a}$, i.e. under the inclusion $M \hookrightarrow K=M_{(0)}, \alpha m_{i} \in A$ so M is isomorphic to a fractional ideal. Now since for any $\mathfrak{p} \in \operatorname{Spec}(A), M_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$ (so $M_{\mathfrak{p}}$ is in particular cyclic) and the localization is compatible with the inclusion $M \hookrightarrow K \simeq M_{(0)}$ i.e. $M \hookrightarrow M_{\mathfrak{p}} \hookrightarrow M_{(0)}$ (successive localizations with respect to $(0) \subset \mathfrak{p}$, see Exercise 28), $M_{\mathfrak{p}}$ is invertible. So according to Lemma $14.15, M$ is isomorphic to an invertible A-submodule of K; proving surjectivity.

Injectivity: Assume $M \in J(A)$ is sent to A by the forgetful map i.e. $M \simeq A$ as A module, then M is cyclic (take the preimage of $1 \in A$), generated by some $m \in M \subset K$ i.e. $M \simeq m \cdot A \simeq A$. So $M \in P(A)$; proving injectivity.

Exercise 54. (Class number, 5 points)

1. For $\mathbb{Q}(i), \mathcal{O}_{K} \simeq \mathbb{Z}[i]$. It is sufficient to prove that \mathcal{O}_{K} is a principal ideal domain. Let us define $N: \mathbb{Q}[i] \rightarrow \mathbb{R} \geq 0$, by the usual euclidean norm of \mathbb{C} i.e. $a+i b \mapsto|a+i b|^{2}=a^{2}+b^{2}$. Then it is an absolute value in the sense of Exercise 52. Let us prove that there is a Euclidean division in $\mathbb{Q}(i)$ i.e. given $z, z^{\prime} \in \mathbb{Z}(i)$ with $z^{\prime} \neq 0$, there are $q \in \mathbb{Z}(i)$ and $r \in \mathbb{Z}(i) \cap\left\{N(\cdot)<N\left(z^{\prime}\right)\right\}$ such that $z=q z^{\prime}+r$: if $N(z)<N\left(z^{\prime}\right)$ take $q=0$ and $r=z$. Otherwise, consider $\frac{z}{z^{\prime}}=a+i b \in \mathbb{C}$ which by direct calculation sits in $\mathbb{Q}(i)$. Let us consider the closest integers $k, \ell \in \mathbb{Z}$ to respectively a and b i.e. $|k-a| \leq \frac{1}{2}$ and
$|\ell-b| \leq \frac{1}{2}$. Then

$$
\begin{aligned}
\frac{z}{z^{\prime}} & =a+i b \\
& =(a-k)+i(b-\ell)+(k+i \ell)
\end{aligned}
$$

so that $z=(k+i \ell) z^{\prime}+[(a-k)+i(b-\ell)] z^{\prime}$. Since $z, k+i \ell, z^{\prime} \in \mathbb{Z}[i]$, we get that $[(a-k)+i(b-\ell)] z^{\prime}=z-(k+i \ell) z^{\prime} \in \mathbb{Z}[i]$; moreover

$$
\begin{aligned}
N\left([(a-k)+i(b-\ell)] z^{\prime}\right)=N\left(z^{\prime}\right) N((a-k)+i(b-\ell)) & =N\left(z^{\prime}\right)\left[(a-k)^{2}+(b-\ell)^{2}\right] \\
& \leq N\left(z^{\prime}\right) \frac{1}{2} \\
& <N\left(z^{\prime}\right)
\end{aligned}
$$

proving the statement.
Let $M \subset \mathbb{Q}(i)$ be an invertible $\mathbb{Z}[i]$-submodule. Let $0 \neq a \in \mathbb{Q}(i)$ such that $a M \subset \mathbb{Z}[i]$, the non-empty set $\left\{N(x+i y)=x^{2}+y^{2}, 0 \neq x+i y \in a M\right\} \subset \mathbb{N}$ has a minimal element $d>0$; let $x_{0}+i y_{0} \in a M$ such that $N\left(x_{0}+i y_{0}\right)=d$. For any $z \in a M \subset \mathbb{Z}[i]$, there are $q, r \in \mathbb{Z}[i]$ such that $z=q\left(x_{0}+i y_{0}\right)+r$ with $N(r)<N\left(x_{0}+i y_{0}\right)=d$. But since $a M$ is an ideal $q\left(x_{0}+i y_{0}\right) \in a M$ and thus $r=z-q\left(x_{0}+i y_{0}\right) \in a M$; but definition of d, we must have $r=0$ i.e. $z \in\left(x_{0}+i y_{0}\right)$; as a conclusion $a M=\left(x_{0}+i y_{0}\right)$. So $M=\left(\frac{x_{0}+i y_{0}}{a}\right) \subset \mathbb{Q}(i)$ is principal. So $h_{\mathbb{Q}(i)}=1$.
2. For $\mathbb{Q}(\sqrt{-2}), \mathcal{O}_{K} \simeq \mathbb{Z}[\sqrt{-2}]$. Let us define $N: \mathbb{Q}[\sqrt{-2}] \rightarrow \mathbb{R}_{\geq 0}$ by $a+\sqrt{-2} b \mapsto a^{2}+2 b^{2}$. If $N(a+\sqrt{-2} b)=0$ then since $a^{2} \geq 0$ and $b^{2} \geq 0$, we have $a=0=b$.
A direct calculation shows that N is mutlplicative i.e.

$$
\begin{aligned}
N((a+\sqrt{-2} b)(c+\sqrt{-2} d)) & =N(a c-2 b d+\sqrt{-2}(a d+b c)) \\
& =(a c-2 b d)^{2}+2(a d+b c)^{2} \\
& =(a c)^{2}-4 a b c d+4(b d)^{2}+2(a d)^{2}+4 a b c d+2(b c)^{2} \\
& =\left(a^{2}+2 b^{2}\right)\left(c^{2}+2 d^{2}\right) \\
& =N(a+\sqrt{-2} b) N(c+\sqrt{-2} d)
\end{aligned}
$$

for any pair $a+\sqrt{-2} b, c+\sqrt{-2} d \in \mathbb{Z}[\sqrt{-2}]$ and it is not difficult to check the other property to show that N is an absolute value in the sense of Exercise 52 .

Let us show that there is an Euclidean division in $\mathbb{Z}[\sqrt{-2}]$, the proof is the same as above: for any $z, z^{\prime} \in \mathbb{Z}[\sqrt{-2}]$ with $z^{\prime} \neq 0$, there is a pair $(q, r) \in \mathbb{Z}[\sqrt{-2}]$, such that $z=q z^{\prime}+r$ and $N(r)<N\left(z^{\prime}\right)$.
If $N(z)<N\left(z^{\prime}\right)$ we are done $(q=0, r=z)$. Otherwise look at $\frac{z}{z^{\prime}}$ which is in $Q Q(\sqrt{-2})$ i.e. can be written $a+\sqrt{-2} b$, with $a, b \in \mathbb{Q}$. Let $k, \ell \in \mathbb{Z}$ the closest integers to resp. a and b i.e. $|a-k| \leq \frac{1}{2}$ and $|b-\ell| \leq \frac{1}{2}$. Then $z=(k+\sqrt{-2} \ell) z^{\prime}+[(a-k)+\sqrt{-2}(b-\ell)] z^{\prime}$; $z \in \mathbb{Z}[\sqrt{-2}], z^{\prime} \in \mathbb{Z}[\sqrt{-2}], k+\sqrt{-2} \ell \in \mathbb{Z}[\sqrt{-2}]$, so that $[(a-k)+\sqrt{-2}(b-\ell)] z^{\prime} \in \mathbb{Z}[\sqrt{-2}]$ and

$$
\begin{aligned}
N\left([(a-k)+\sqrt{-2}(b-\ell)] z^{\prime}\right)=N\left(z^{\prime}\right) N((a-k)+\sqrt{-2}(b-\ell)) & =N\left(z^{\prime}\right)\left[(a-k)^{2}+2(b-\ell)^{2}\right] \\
& \leq N\left(z^{\prime}\right)\left(\frac{1}{4}+\frac{1}{2}\right) \\
& =N\left(z^{\prime}\right)\left(\frac{3}{4}\right) \\
& <N\left(z^{\prime}\right)
\end{aligned}
$$

proving Euclidean division.
Conclude as done in the previous question.

[^0]: Solutions to be handed in before Tuesday June 22, 4pm.

