Solutions for exercises, Algebra I (Commutative Algebra) - Week 11

Exercise 55. (Union of associated prime ideals, 3 points)
Passing to the quotient A / \mathfrak{a}, the setting becomes (0) admits a primary decomposition $\cap_{i=1}^{n} \mathfrak{q}_{i}$ and we want to show that $\cup_{i} \sqrt{\mathfrak{q}_{i}}=\{a \in A, a$ is a zero - divisor $\}$. Let $a \neq 0$ be a zero-divisor and $b \neq 0$ such that $a b=0 \in \cap_{i=1}^{n} \sqrt{q q_{i}}$. If $\forall i, a \notin \sqrt{\mathfrak{q}_{i}}$, those ideals being primes, we have $b \in \sqrt{\mathfrak{q}_{i}}, \forall i$. If there is a i_{0} such that $b \notin \mathfrak{q}_{i_{0}}$ then $0 \neq \bar{b} \in A / \mathfrak{q}_{i_{0}}$ and $\bar{a} \bar{b}=0 \in A / \mathfrak{q}_{i_{0}}$ i.e. \bar{a} is a zero-divisor in $A / \mathfrak{q}_{i_{0}}$, which, since $\mathfrak{q}_{i_{0}}$ is primary means that \bar{a} is nilpotent i.e. $a^{k} \in \mathfrak{q}_{i_{0}}$ for some $k>0$; contradicting $a \notin \sqrt{\mathfrak{q}_{i_{0}}}$.
Otherwise, $b \in \mathfrak{q}_{i}$, $\forall i$ i.e. $b \in \cap_{i=1}^{n} \mathfrak{q}_{i}=(0), b=0$; contradiction. So $a \in \sqrt{\mathfrak{q}_{i}}$ for some i.

Conversely, according to Proposition 14.8, for a given i, there is a $a \in A$ such that $\sqrt{\mathfrak{q}_{i}}=$ $\sqrt{(0: a)}=\sqrt{\operatorname{Ann}(a)}$ (in particular $a \neq 0)$. So $\forall x \in \sqrt{\mathfrak{q}_{i}}$, there is a $k>0$ such that $x^{k} \in$ $\operatorname{Ann}(a)$ i.e. $x^{k} a=0$ and $a \neq 0$. So there is a $k-1 \geq \ell \geq 0$ such that $x^{\ell} a \neq 0$ but $x\left(x^{\ell} a\right)=x^{\ell+1} a=0$. So x is a zero-divisor.

Exercise 56. (Products of coprime ideals, 2 points)
The case $n=2$ is proved in the lecture notes (see p. 6 footnote 3). So let $n \geq 2$ be a integer such that for any set $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ of n pairwise coprime ideals (i.e. $\mathfrak{a}_{i}+\mathfrak{a}_{j}=(1)$ for any $i \neq j$) we have the equality: $\prod_{i=1}^{n} \mathfrak{a}_{i}=\cap_{i=1}^{n} \mathfrak{a}_{i}$.
Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n+1}$ be a set of $n+1$ pairwise coprime ideals. Then by induction hypothesis $\prod_{i=1}^{n} \mathfrak{a}_{i}=\cap_{i=1}^{n} \mathfrak{a}_{i}$. Since $\mathfrak{a}_{i}+\mathfrak{a}_{n+1}=(1)$ for any $i \leq n$, we can write $1=a_{i}+x_{i}$ where $a_{i} \in \mathfrak{a}_{i}$ and $x_{i} \in \mathfrak{a}_{n+1}$. Taking the product, we get

$$
1=\Pi_{i=1}^{n} a_{i}+\sum_{i=0}^{n-1} \sum_{K \subset\{1, \ldots, n\}, \# K=i}\left(\prod_{i \in K} a_{i}\right)\left(\prod_{j \in\{1, \ldots, n\} \backslash K} x_{j}\right) .
$$

Now $\Pi_{i=1}^{n} a_{i} \in \mathfrak{a}_{1} \cdots \mathfrak{a}_{n}$ and in the second term, $\{1, \ldots, n\} \backslash K$ is always nonempty; thus $\left(\prod_{i \in K} a_{i}\right)\left(\prod_{j \in\{1, \ldots, n\} \backslash K} x_{j}\right) \in \mathfrak{a}_{n+1}$. So (1) $=\Pi_{i=1}^{n} \mathfrak{a}_{i}+\mathfrak{a}_{n+1}$ i.e. $\Pi_{i=1}^{n} \mathfrak{a}_{i}$ and \mathfrak{a}_{n+1} are coprime so by the case $n=2, \Pi_{i=1}^{n} \mathfrak{a}_{i} \cap \mathfrak{a}_{n+1}=\Pi_{i=1}^{n+1} \mathfrak{a}_{i}$ but we also had (induction hypothesis) $\Pi_{i=1}^{n} \mathfrak{a}_{i}=\cap_{i=1}^{n} \mathfrak{a}_{i}$ so $\Pi_{i=1}^{n+1} \mathfrak{a}_{i}=\prod_{i=1}^{n} \mathfrak{a}_{i} \cap \mathfrak{a}_{n+1}=\cap_{i=1}^{n+1} \mathfrak{a}_{i}$; completing the induction step.
Exercise 57. (Primary decomposition, 4 points)

1. Using Lecture 10, we have

$$
\begin{aligned}
V(\mathfrak{a})=V(x y) \cap V(x-y z) & =(V(x) \cup V(y)) \cap V(x-y z) \\
& =(V(x) \cap V(x-y z)) \cup(V(y) \cap V(x-y z)) \\
& =V((x)+(x-y z)) \cup V((y)+(x-y z)) \\
& =V((x)+(y z)) \cup V((y)+(x)) \\
& =(V(x) \cap V(y z)) \cup V(x, y) \\
& =(V(x) \cap(V(y) \cup V(z))) \cup V(x, y) \\
& =(V(x, y) \cup V(x, z)) \cup V(x, y) \\
& =V(x, y) \cup V(x, z)
\end{aligned}
$$

2. From $V(\mathfrak{a})=V(x, y) \cup V(x, z)=V((x, y) \cap(x, z))$ we get $\sqrt{\mathfrak{a}}=\sqrt{(x, y) \cap(x, z)}=$ $\sqrt{(x, y)} \cap \sqrt{(x, z)}=(x, y) \cap(x, z)$ since (x, y) and (x, z) are prime ideals (the associated quotients are resp. $k[z]$ and $k[y]$ which are both integral domains).
3. We have $(x y, x-y z)=(x y-y(x-y z), x-y z)=\left(z y^{2}, x-y z\right)$. We can look at $k[x, y, z] / \mathfrak{a}$ as two successive quotients $A^{\prime}:=k[x, y, z] /(x-y z)$ and $A^{\prime} /\left(z y^{2}\right) \simeq k[x, y, z] / \mathfrak{a}$. Now, $A^{\prime} \simeq k[y z, y, z] \simeq k[y, z]$ and in $A^{\prime} /\left(z y^{2}\right),(0)=\left(y^{2}\right) \cap(z) ;$ thus $\mathfrak{a}=\left(y^{2}\right) \cap(z) \bmod (x-y z)$ i.e. $\mathfrak{a}=\left(x-y z, y^{2}\right) \cap(x-y z, z)$. But $(x-y z, z)=(x, z)$ so it is a prime (hence primary) ideal.
Again looking at successive quotients we get $k[x, y, z] /\left(y^{2}, x-y z\right) \simeq k[y, z] /\left(y^{2}\right)$. Any element of $k[y, z] /\left(y^{2}\right)$ can be written uniquely as $f_{1}(z)+y f_{2}(z)$ with $f_{i} \in k[z]$; so such element is a zero-divisor there is $g_{1}+y g_{2} \neq 0$ such that $f_{1} g_{1}+y\left(f_{1} g_{2}+f_{2} g_{1}\right)=0 \bmod \left(y^{2}\right)$. Thus we must have $f_{1} g_{1}=0 \in k[z]$ and $f_{1} g_{2}+f_{2} g_{1}=0 \in k[z]$; which with the condition that g_{1} or g_{2} is not 0 (and $k[z]$ is integral) yields $f_{1}=0$. So $f=y f_{2} \bmod \left(y^{2}\right)$; but then f is nilpotent since $f^{2}=y^{2} f_{2}^{2} \bmod \left(y^{2}\right)=0 \bmod \left(y^{2}\right)$. So $\left(y^{2}, x-y z\right)$ is primary. Since $z \notin\left(y^{2}, x-y z\right)$ and $y^{2} \notin(x, z)$ the decomposition is minimal.

Exercise 58. (Example of a primary ideal, 3 points)
By definition of \mathfrak{m}, for any polynomial $f=\sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{Z}[x]$ we have $f=a_{0} \bmod 2$ thus $f \notin \mathfrak{m}$ if and only if $f(0)=a_{0}$ is odd. So given $f=\sum_{i=0}^{n} a_{i} x^{i} \notin \mathfrak{m}$, we can write a_{0} as $2 k+1$. But then $1=f-x\left(\sum_{i=1}^{n} a_{i} x^{i-1}\right)-2 k$ i.e. $1 \in \mathfrak{m}+(f)$. Thus \mathfrak{m} is maximal.
We have $\mathbb{Z}[x] /(4, x) \simeq \mathbb{Z}[x] /(4) \otimes_{\mathbb{Z}[x]} \mathbb{Z}[x] /(x) \simeq \mathbb{Z} / 4 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}[x] /(x) \simeq \mathbb{Z} / 4 \mathbb{Z}$ (using tensor identity 5 of sheet 6 for the first isomorphism) and the isomorphism is given by $f \mapsto f(0) \bmod 4$. So only zero-divisors in $\mathbb{Z}[x] / \mathfrak{q} \simeq \mathbb{Z} / 4 \mathbb{Z}$ are $\overline{0}$ and $\overline{2}$ which are nilpotent i.e. \mathfrak{q} is a primary ideal. Moreover $\sqrt{\mathfrak{q}}$ is the contraction of the nilradical of $\mathbb{Z}[x] / \mathfrak{q}$; since $\mathfrak{R}_{\mathbb{Z}[x] / \mathfrak{q}} \simeq(\overline{2})$ we get $\sqrt{\mathfrak{q}}=(2, x)=\mathfrak{m}$.
We have $\mathfrak{m}^{2}=\left(4,2 x, x^{2}\right)$ and $\mathfrak{m}^{k}=\left(2^{k}, 2^{k-1} x, \ldots, 2^{k-i} x^{i}, \ldots, x^{k}\right)$ for $k \geq 2$ which are readily seen not to contain $x \in \mathfrak{q}$.

Exercise 59. (Case of radical ideals, 2 points)
Let $\mathfrak{a}=\cap_{i=1}^{n} \mathfrak{q}_{i}$ be a minimal primary decomposition; we get $\mathfrak{a}=\sqrt{\mathfrak{a}}=\cap_{i=1}^{n} \sqrt{\mathfrak{q}_{i}}$ and the $\sqrt{\mathfrak{q}_{i}}$ are prime ideals. If there is a non minimal prime ideals among the $\sqrt{\mathfrak{q}_{i}}$'s, we can assume $\sqrt{\mathfrak{q}_{1}} \subset \sqrt{\mathfrak{q}_{2}}$. Then $\mathfrak{a}=\cap_{i=1}^{n} \sqrt{\mathfrak{q}_{i}}=\cap_{i \neq 2} \sqrt{\mathfrak{q}_{i}}$ and for any $a \in \cap_{i \neq 2} \mathfrak{q}_{i} \subset \cap_{i \neq 2} \sqrt{\mathfrak{q}_{i}}=\mathfrak{a}$ since $\mathfrak{a}=\cap_{i=1}^{n} \mathfrak{q}_{i}$, we get $a \in \mathfrak{q}_{i}$ for any i; in particular $a \in \mathfrak{q}_{2}$ thus $\cap_{i \neq 2} \mathfrak{q}_{i} \subset \mathfrak{q}_{2}$ i.e. the primary decomposition is not minimal; contradiction. So all the $\sqrt{\mathfrak{q}_{i}}$ are minimal.

Exercise 60. (Primary decomposition, 3 points)
We have $A / \mathfrak{p}_{1} \simeq k[z], A / \mathfrak{p}_{2} \simeq k[y]$ and $A / \mathfrak{m} \simeq k$; so \mathfrak{p}_{1} and \mathfrak{p}_{2} are prime ideals (in particular primary) and \mathfrak{m} is maximal. So by Lemma 14.4 (ii), \mathfrak{m}^{2} is primary.
We have $\mathfrak{a}=\mathfrak{p}_{1} \mathfrak{p}_{2}=\left(x^{2}, x z, x y, y z\right)$; thus we immediately get $\mathfrak{a} \subset \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$. Moreover $\mathfrak{m}^{2}=$ $\left(x^{2}, x y, x z, y^{2}, y z, z^{2}\right)$ thus from the generators we see that $\mathfrak{a} \subset \mathfrak{m}^{2}$ i.e. $\mathfrak{a} \subset \mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$. Let $f \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$. Since $f \in \mathfrak{m}^{2}$ we can write $f=x^{2} f_{1}+x y f_{2}+x z f_{3}+y^{2} f_{4}+y z f_{5}+z^{2} f_{6}$; then $f \in \mathfrak{p}_{1}$ (since $x^{2}=x x, x y, x z, y^{2}, y z, y z \in \mathfrak{p}_{1}$) if and only if $f_{6} \in \mathfrak{p}_{1}$; write it $f_{6}=x g_{1}+y g_{2}$. Likewise $f \in \mathfrak{p}_{2}$ if and only if $f_{4} \in \mathfrak{p}_{2}$; write it as $f_{4}=x g_{3}+z g_{4}$. then

$$
f=x^{2} f_{1}+x y\left(f_{2}+y g_{3}\right)+x z\left(f_{3}+z f_{6}\right)+y z\left(f_{5}+y f_{4}+z f_{6}\right) \in \mathfrak{a}
$$

So $\mathfrak{a}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$.
Likewise $\mathfrak{p}_{1} \cap \mathfrak{m}^{2}=\left(x^{2}, x y, x z, y z, y^{2}\right)$ which is not contained in \mathfrak{p}_{2} because $y^{2} \notin \mathfrak{p}_{2}$.
Likewise $\mathfrak{p}_{2} \cap \mathfrak{m}^{2}=\left(x^{2}, x y, x z, y z, z^{2}\right)$ which is not contained in \mathfrak{p}_{1} because $z^{2} \notin \mathfrak{p}_{1}$.
An element $f \in \mathfrak{p}_{2}$ can be written $f=x f_{1}+z f_{2}$ and it is in \mathfrak{p}_{1} if and only if $f_{2} \in \mathfrak{p}_{1}$ so $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=(x, x z, y z)$. In particular, we see $x \notin \mathfrak{m}^{2}$ so $\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \neq \subset \mathfrak{m}^{2}$. Thus $\mathfrak{a}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \mathfrak{m}^{2}$ is a minimal primary decomposition.
We have $\mathfrak{p}_{i} \subsetneq \sqrt{\mathfrak{m}^{2}}=\mathfrak{m}$, so \mathfrak{m} is an embedded component and \mathfrak{p}_{i} are isolated components.

