Solutions for exercises, Algebra I (Commutative Algebra) – Week 11

Exercise 55. (Union of associated prime ideals, 3 points)

Passing to the quotient A/\mathfrak{a} , the setting becomes (0) admits a primary decomposition $\bigcap_{i=1}^{n} \mathfrak{q}_i$ and we want to show that $\bigcup_i \sqrt{\mathfrak{q}_i} = \{a \in A, a \text{ is a zero-divisor}\}$. Let $a \neq 0$ be a zero-divisor and $b \neq 0$ such that $ab = 0 \in \bigcap_{i=1}^{n} \sqrt{qq_i}$. If $\forall i, a \notin \sqrt{\mathfrak{q}_i}$, those ideals being primes, we have $b \in \sqrt{\mathfrak{q}_i}, \forall i$. If there is a i_0 such that $b \notin \mathfrak{q}_{i_0}$ then $0 \neq \overline{b} \in A/\mathfrak{q}_{i_0}$ and $\overline{a}\overline{b} = 0 \in A/\mathfrak{q}_{i_0}$ i.e. \overline{a} is a zero-divisor in A/\mathfrak{q}_{i_0} , which, since \mathfrak{q}_{i_0} is primary means that \overline{a} is nilpotent i.e. $a^k \in \mathfrak{q}_{i_0}$ for some k > 0; contradicting $a \notin \sqrt{\mathfrak{q}_{i_0}}$.

Otherwise, $b \in \mathfrak{q}_i$, $\forall i$ i.e. $b \in \bigcap_{i=1}^n \mathfrak{q}_i = (0)$, b = 0; contradiction. So $a \in \sqrt{\mathfrak{q}_i}$ for some *i*.

Conversely, according to Proposition 14.8, for a given *i*, there is a $a \in A$ such that $\sqrt{\mathfrak{q}_i} = \sqrt{(0:a)} = \sqrt{\operatorname{Ann}(a)}$ (in particular $a \neq 0$). So $\forall x \in \sqrt{\mathfrak{q}_i}$, there is a k > 0 such that $x^k \in \operatorname{Ann}(a)$ i.e. $x^k a = 0$ and $a \neq 0$. So there is a $k - 1 \geq \ell \geq 0$ such that $x^{\ell}a \neq 0$ but $x(x^{\ell}a) = x^{\ell+1}a = 0$. So x is a zero-divisor.

Exercise 56. (Products of coprime ideals, 2 points)

The case n = 2 is proved in the lecture notes (see p.6 footnote 3). So let $n \ge 2$ be a integer such that for any set $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ of n pairwise coprime ideals (i.e. $\mathfrak{a}_i + \mathfrak{a}_j = (1)$ for any $i \ne j$) we have the equality: $\prod_{i=1}^n \mathfrak{a}_i = \bigcap_{i=1}^n \mathfrak{a}_i$. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_{n+1}$ be a set of n+1 pairwise coprime ideals. Then by induction hypothesis

Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_{n+1}$ be a set of n+1 pairwise coprime ideals. Then by induction hypothesis $\prod_{i=1}^n \mathfrak{a}_i = \bigcap_{i=1}^n \mathfrak{a}_i$. Since $\mathfrak{a}_i + \mathfrak{a}_{n+1} = (1)$ for any $i \leq n$, we can write $1 = a_i + x_i$ where $a_i \in \mathfrak{a}_i$ and $x_i \in \mathfrak{a}_{n+1}$. Taking the product, we get

$$1 = \prod_{i=1}^{n} a_i + \sum_{i=0}^{n-1} \sum_{K \subset \{1, \dots, n\}, \#K=i} (\prod_{i \in K} a_i) (\prod_{j \in \{1, \dots, n\} \setminus K} x_j).$$

Now $\prod_{i=1}^{n} a_i \in \mathfrak{a}_1 \cdots \mathfrak{a}_n$ and in the second term, $\{1, \ldots, n\}\setminus K$ is always nonempty; thus $(\prod_{i \in K} a_i)(\prod_{j \in \{1,\ldots,n\}\setminus K} x_j) \in \mathfrak{a}_{n+1}$. So $(1) = \prod_{i=1}^{n} \mathfrak{a}_i + \mathfrak{a}_{n+1}$ i.e. $\prod_{i=1}^{n} \mathfrak{a}_i$ and \mathfrak{a}_{n+1} are coprime

so by the case n = 2, $\prod_{i=1}^{n} \mathfrak{a}_i \cap \mathfrak{a}_{n+1} = \prod_{i=1}^{n+1} \mathfrak{a}_i$ but we also had (induction hypothesis) $\prod_{i=1}^{n} \mathfrak{a}_i = \bigcap_{i=1}^{n} \mathfrak{a}_i$ so $\prod_{i=1}^{n+1} \mathfrak{a}_i = \prod_{i=1}^{n} \mathfrak{a}_i \cap \mathfrak{a}_{n+1} = \bigcap_{i=1}^{n+1} \mathfrak{a}_i$; completing the induction step.

Exercise 57. (Primary decomposition, 4 points)

1. Using Lecture 10, we have

$$\begin{split} V(\mathfrak{a}) &= V(xy) \cap V(x - yz) = (V(x) \cup V(y)) \cap V(x - yz) \\ &= (V(x) \cap V(x - yz)) \cup (V(y) \cap V(x - yz)) \\ &= V((x) + (x - yz)) \cup V((y) + (x - yz)) \\ &= V((x) + (yz)) \cup V((y) + (x)) \\ &= (V(x) \cap V(yz)) \cup V(x, y) \\ &= (V(x) \cap (V(y) \cup V(z))) \cup V(x, y) \\ &= (V(x, y) \cup V(x, z)) \cup V(x, y) \\ &= V(x, y) \cup V(x, z) \end{split}$$

Solutions to be handed in before Monday June 29, 4pm.

- 2. From $V(\mathfrak{a}) = V(x, y) \cup V(x, z) = V((x, y) \cap (x, z))$ we get $\sqrt{\mathfrak{a}} = \sqrt{(x, y) \cap (x, z)} = \sqrt{(x, y) \cap \sqrt{(x, z)}} = (x, y) \cap (x, z)$ since (x, y) and (x, z) are prime ideals (the associated quotients are resp. k[z] and k[y] which are both integral domains).
- 3. We have $(xy, x-yz) = (xy-y(x-yz), x-yz) = (zy^2, x-yz)$. We can look at $k[x, y, z]/\mathfrak{a}$ as two successive quotients A' := k[x, y, z]/(x yz) and $A'/(zy^2) \simeq k[x, y, z]/\mathfrak{a}$. Now, $A' \simeq k[yz, y, z] \simeq k[y, z]$ and in $A'/(zy^2)$, $(0) = (y^2) \cap (z)$; thus $\mathfrak{a} = (y^2) \cap (z) \mod (x-yz)$ i.e. $\mathfrak{a} = (x yz, y^2) \cap (x yz, z)$. But (x yz, z) = (x, z) so it is a prime (hence primary) ideal.

Again looking at successive quotients we get $k[x, y, z]/(y^2, x - yz) \simeq k[y, z]/(y^2)$. Any element of $k[y, z]/(y^2)$ can be written uniquely as $f_1(z) + yf_2(z)$ with $f_i \in k[z]$; so such element is a zero-divisor there is $g_1 + yg_2 \neq 0$ such that $f_1g_1 + y(f_1g_2 + f_2g_1) = 0 \mod(y^2)$. Thus we must have $f_1g_1 = 0 \in k[z]$ and $f_1g_2 + f_2g_1 = 0 \in k[z]$; which with the condition that g_1 or g_2 is not 0 (and k[z] is integral) yields $f_1 = 0$. So $f = yf_2 \mod(y^2)$; but then f is nilpotent since $f^2 = y^2f_2^2 \mod(y^2) = 0 \mod(y^2)$. So $(y^2, x - yz)$ is primary. Since $z \notin (y^2, x - yz)$ and $y^2 \notin (x, z)$ the decomposition is minimal.

Exercise 58. (Example of a primary ideal, 3 points)

By definition of \mathfrak{m} , for any polynomial $f = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ we have $f = a_0 \mod 2$ thus $f \notin \mathfrak{m}$ if and only if $f(0) = a_0$ is odd. So given $f = \sum_{i=0}^{n} a_i x^i \notin \mathfrak{m}$, we can write a_0 as 2k + 1. But then $1 = f - x(\sum_{i=1}^{n} a_i x^{i-1}) - 2k$ i.e. $1 \in \mathfrak{m} + (f)$. Thus \mathfrak{m} is maximal. We have $\mathbb{Z}[x]/(4, x) \simeq \mathbb{Z}[x]/(4) \otimes_{\mathbb{Z}[x]} \mathbb{Z}[x]/(x) \simeq \mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}[x]/(x) \simeq \mathbb{Z}/4\mathbb{Z}$ (using tensor iden-

We have $\mathbb{Z}[x]/(4, x) \simeq \mathbb{Z}[x]/(4) \otimes_{\mathbb{Z}[x]} \mathbb{Z}[x]/(x) \simeq \mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}[x]/(x) \simeq \mathbb{Z}/4\mathbb{Z}$ (using tensor identity 5 of sheet 6 for the first isomorphism) and the isomorphism is given by $f \mapsto f(0) \mod 4$. So only zero-divisors in $\mathbb{Z}[x]/\mathfrak{q} \simeq \mathbb{Z}/4\mathbb{Z}$ are $\overline{0}$ and $\overline{2}$ which are nilpotent i.e. \mathfrak{q} is a primary ideal. Moreover $\sqrt{\mathfrak{q}}$ is the contraction of the nilradical of $\mathbb{Z}[x]/\mathfrak{q}$; since $\mathfrak{R}_{\mathbb{Z}[x]/\mathfrak{q}} \simeq (\overline{2})$ we get $\sqrt{\mathfrak{q}} = (2, x) = \mathfrak{m}$.

We have $\mathfrak{m}^2 = (4, 2x, x^2)$ and $\mathfrak{m}^k = (2^k, 2^{k-1}x, \dots, 2^{k-i}x^i, \dots, x^k)$ for $k \ge 2$ which are readily seen not to contain $x \in \mathfrak{q}$.

Exercise 59. (Case of radical ideals, 2 points)

Let $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$ be a minimal primary decomposition; we get $\mathfrak{a} = \sqrt{\mathfrak{a}} = \bigcap_{i=1}^{n} \sqrt{\mathfrak{q}_i}$ and the $\sqrt{\mathfrak{q}_i}$ are prime ideals. If there is a non minimal prime ideals among the $\sqrt{\mathfrak{q}_i}$'s, we can assume $\sqrt{\mathfrak{q}_1} \subset \sqrt{\mathfrak{q}_2}$. Then $\mathfrak{a} = \bigcap_{i=1}^{n} \sqrt{\mathfrak{q}_i} = \bigcap_{i\neq 2} \sqrt{\mathfrak{q}_i}$ and for any $a \in \bigcap_{i\neq 2} \mathfrak{q}_i \subset \bigcap_{i\neq 2} \sqrt{\mathfrak{q}_i} = \mathfrak{a}$ since $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$, we get $a \in \mathfrak{q}_i$ for any i; in particular $a \in \mathfrak{q}_2$ thus $\bigcap_{i\neq 2} \mathfrak{q}_i \subset \mathfrak{q}_2$ i.e. the primary decomposition is not minimal; contradiction. So all the $\sqrt{\mathfrak{q}_i}$ are minimal.

Exercise 60. (Primary decomposition, 3 points)

We have $A/\mathfrak{p}_1 \simeq k[z]$, $A/\mathfrak{p}_2 \simeq k[y]$ and $A/\mathfrak{m} \simeq k$; so \mathfrak{p}_1 and \mathfrak{p}_2 are prime ideals (in particular primary) and \mathfrak{m} is maximal. So by Lemma 14.4 (ii), \mathfrak{m}^2 is primary.

We have $\mathfrak{a} = \mathfrak{p}_1\mathfrak{p}_2 = (x^2, xz, xy, yz)$; thus we immediately get $\mathfrak{a} \subset \mathfrak{p}_1 \cap \mathfrak{p}_2$. Moreover $\mathfrak{m}^2 = (x^2, xy, xz, y^2, yz, z^2)$ thus from the generators we see that $\mathfrak{a} \subset \mathfrak{m}^2$ i.e. $\mathfrak{a} \subset \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. Let $f \in \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$. Since $f \in \mathfrak{m}^2$ we can write $f = x^2f_1 + xyf_2 + xzf_3 + y^2f_4 + yzf_5 + z^2f_6$; then $f \in \mathfrak{p}_1$ (since $x^2 = xx, xy, xz, y^2, yz, yz \in \mathfrak{p}_1$) if and only if $f_6 \in \mathfrak{p}_1$; write it $f_6 = xg_1 + yg_2$. Likewise $f \in \mathfrak{p}_2$ if and only if $f_4 \in \mathfrak{p}_2$; write it as $f_4 = xg_3 + zg_4$. then

$$f = x^2 f_1 + xy(f_2 + yg_3) + xz(f_3 + zf_6) + yz(f_5 + yf_4 + zf_6) \in \mathfrak{a}.$$

So $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$.

Likewise $\mathfrak{p}_1 \cap \mathfrak{m}^2 = (x^2, xy, xz, yz, y^2)$ which is not contained in \mathfrak{p}_2 because $y^2 \notin \mathfrak{p}_2$. Likewise $\mathfrak{p}_2 \cap \mathfrak{m}^2 = (x^2, xy, xz, yz, z^2)$ which is not contained in \mathfrak{p}_1 because $z^2 \notin \mathfrak{p}_1$. An element $f \in \mathfrak{p}_2$ can be written $f = xf_1 + zf_2$ and it is in \mathfrak{p}_1 if and only if $f_2 \in \mathfrak{p}_1$ so $\mathfrak{p}_1 \cap \mathfrak{p}_2 = (x, xz, yz)$. In particular, we see $x \notin \mathfrak{m}^2$ so $\mathfrak{p}_1 \cap \mathfrak{p}_2 \neq \subset \mathfrak{m}^2$. Thus $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition.

We have $\mathfrak{p}_i \subsetneq \sqrt{\mathfrak{m}^2} = \mathfrak{m}$, so \mathfrak{m} is an embedded component and \mathfrak{p}_i are isolated components.