Solutions for exercises, Algebra I (Commutative Algebra) - Week 12

Exercise 61. (Graded rings and modules, 3 points)

1. If the $\left(a_{i}\right)_{i \in I}$ generate A as a A_{0}-algebra, then they generate A_{+}as ideal since any $a \in A_{+} \subset A=A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$ is a polynomial in some (finitely many) $a_{i_{1}}, \ldots, a_{i_{n}}$ with coefficient in A_{0} and with 0 constant term (as $a \in A_{+}$is a sum of homogeneous elements in graded pieces >0).
Conversely if $\left(a_{i}\right)_{i \in I}$ generate A_{+}as an ideal, then elements in A_{0} are certainly in $A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$ (constant polynomials). If $a \in A_{1} \subset A_{+}=\left(a_{i}\right)_{i \in I}$ then $a=\sum_{k=1}^{n} \alpha_{k} a_{i_{k}}$ for some $a_{i_{k}} \in A_{1}$ and necessarily $\alpha_{k} \in A_{0}$ for grading reason. So $a \in A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$ i.e. $A_{1} \subset A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$. So we can proceed by induction: let $n \geq 1$ be such that $A_{k} \subset$ $A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$ for any $k \leq n$; then for any $a \in A_{n+1} \subset A_{+}=\left(\left(a_{i}\right)_{i \in I}\right)$, we can write $a=\sum_{k=1}^{n} \alpha_{k} a_{i_{k}}$ for some $a_{i_{k}} \in A_{+}=\oplus_{j \geq 1} A_{j}$ and necessarily $\alpha_{k} \in \oplus_{0 \leq j \leq n-1} A_{j}$ for grading reason. By induction hypothesis the α_{k} 's are in $A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$. So $a \in A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$ i.e. $A_{n+1} \subset A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$. Thus by induction $A_{n} \subset A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$ for any n and taking sums $A=A_{0}\left[\left(a_{i}\right)_{i \in I}\right]$.
2. Let $m_{1}, \ldots, m_{n} \in M$ be a set of generators of M as A-module, with $m_{i} \in M_{d_{i}}$. Let $a_{1}, \ldots, a_{m} \in A_{+}$be a set of generators of A as A_{0}-algebra, with $a_{i} \in A_{r_{i}}$. By the first question we have $A=A_{0}\left[a_{1}, \ldots, a_{m}\right]$. Any element in M, a fortiori in M_{k} can be written $\sum_{\ell=1}^{n} b_{\ell} m_{\ell}$, with $b_{\ell} \in A$. For any $1 \leq i \leq n, b m_{i} \in M_{k}$ if and only if $b \in A_{k-d_{i}}$. But there are only finitely many monomials $a_{1}^{\alpha_{1}} \cdots a_{m}^{\alpha_{m}}$ of total degree $\sum r_{j} \alpha_{j}=k-d_{i}$. So M_{k} is generated over A_{0} by the $a_{1}^{\alpha_{1}} \cdots a_{m}^{\alpha_{m}} m_{i}, i=1, \ldots, n$ and $\sum r_{j} \alpha_{j}=k-d_{i}$; which then form a finite set of generators.

Exercise 62. (Homogeneous ideals, 2 points)

1. Let us denote $\mathfrak{a}_{i}=\mathfrak{a} \cap A_{i}$ for any $i \geq 0$; by assumption $\mathfrak{a}=\oplus_{i} \mathfrak{a}_{i}$ and assume that \mathfrak{a} is proper i.e. $1 \notin \mathfrak{a}$ i.e. $\mathfrak{a}_{0} \subsetneq A_{0}$. The group $\oplus_{i \geq 0} A_{i} / \mathfrak{a}_{i}$ is a A_{0}-algebra: $\overline{1} \in A_{0} / \mathfrak{a}_{0}$ is its unit since for any $a \in A_{i}, \overline{1} \bar{a}=\left(1+\mathfrak{a}_{0}\right)\left(a+\mathfrak{a}_{i}\right)=a+\underbrace{a \mathfrak{a}_{0}}_{\in \mathfrak{a} \cap A_{i}=\mathfrak{a}_{i}}+\mathfrak{a}_{i}=\bar{a}$. For any $a \in A_{i}, b \in A_{j},\left(a+\mathfrak{a}_{i}\right)\left(b+\mathfrak{a}_{j}\right)=a b+\underbrace{a \mathfrak{a}_{j}}_{\in \mathfrak{a} \cap A_{i+j}=\mathfrak{a}_{i+j}}+\underbrace{b \mathfrak{a}_{i}}_{\in \mathfrak{a} \cap A_{i+j}=\mathfrak{a}_{i+j}}$ so $\bar{a} \cdot \bar{b}$ is well-defined and in $A_{i+j} / \mathfrak{a}_{i+j}$. Associativity and distributivity follows from the rules of A. So $\oplus A_{i} / \mathfrak{a}_{i}$ is a ring; the A_{0}-algebra structure is given by $A_{0} \rightarrow A_{0} / \mathfrak{a}_{0}$.
Let us define $f: A \rightarrow \oplus_{i \geq 0} A_{i} / \mathfrak{a}_{i}$, by $\sum_{i=0}^{n} a_{i} \mapsto \sum_{i=0}^{n} \bar{a}_{i}$ where a_{i} are homogeneous. We have $f(1)=\overline{1}$. It is a ring homomorphism: it is sufficient to check it with homogeneous elements $a \in A_{i}, b \in A_{j}, c \in A_{k} ;\left(a+\mathfrak{a}_{i}\right)\left(b+\mathfrak{a}_{j}+c+\mathfrak{a}_{k}\right)=$ $a(b+c)+(\underbrace{a \mathfrak{a}_{j}+a \mathfrak{a}_{k}}_{\in \mathfrak{a} \cap A_{i+j}+\mathfrak{a} \cap A_{i+k}})+\underbrace{\mathfrak{a}_{i}(b+c)}_{\in \mathfrak{a} \cap A_{i+j}+\mathfrak{a} \cap A_{i+k}}+\underbrace{\mathfrak{a}_{i}\left(\mathfrak{a}_{j}+\mathfrak{a}_{k}\right)}_{\in \mathfrak{a} \cap A_{i+j}+\mathfrak{a} \cap A_{i+k}}$ thus $\overline{a(b+c)}=\bar{a}(\bar{b}+\bar{c})$ i.e. f is a ring homomorphism. It is readily seen to be surjective. If $a=\sum_{i} a_{i}$, with $a_{i} \in A_{i}$ and $A_{i} \neq A_{j}$ for any $i \neq j$, is in $\operatorname{ker}(f)$ then $a_{i} \in \mathfrak{a}_{i}$, for any i i.e. $a \in \mathfrak{a}$. Conversely, if $a \in \mathfrak{a}$, write $a=\sum_{i} a_{i}$, with $a_{i} \in A_{i}$ and $A_{i} \neq A_{j}$ for any $i \neq j$; as \mathfrak{a} is homogeneous, $a_{i} \in \mathfrak{a}_{i}$ for any i so that $f(a)=0$ i.e. $\operatorname{ker}(f)=\mathfrak{a}$. So $A / \mathfrak{a} \simeq \oplus_{i} A_{i} / \mathfrak{a}_{i}$.

[^0]2. Let $x \in \sqrt{\mathfrak{a}}$ and write $x=\sum_{i=1}^{n} x_{i}$ with $x_{i} \in A_{k_{i}}$ homogeneous and $k_{1}<\cdots<k_{n}$. We want to show that $x_{i} \in \sqrt{\mathfrak{a}}, \forall i$. We have $x^{N} \in \mathfrak{a}$ for some $N>0$; we can write $x=x_{n}^{N}+y$ where $x_{n}^{N} \in A_{N k_{n}}$ is the term of highest degree and $y \in \oplus_{i<N k_{n}} A_{i}$. Since \mathfrak{a} is homogeneous, $x_{n}^{N} \in \mathfrak{a}$ i.e. $x_{n} \in \sqrt{\mathfrak{a}}$. So $x-x_{n}=\sum_{i=1}^{N-1} x_{i} \in \sqrt{\mathfrak{a}}$ (as $\sqrt{\mathfrak{a}}$ is an ideal, in particular a group). So by induction, $x_{i} \in \mathfrak{a}, \forall i$.

Exercise 63. (Proj, 5 points)

1. If every element of A_{+}is nilpotent, then $A_{+} \subset \cap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}$; in particular for any homogeneous prime \mathfrak{p}, we have $\mathfrak{p} \supset A_{+}$i.e. $\operatorname{Proj}(A)=\emptyset$.
Conversely if $\operatorname{Proj}(A)=\emptyset$, then any homogeneous prime ideal contains A_{+}. If $A_{+} \neq \subset \mathfrak{N}$, take $a \in A_{+} \backslash \mathfrak{N}$; then one of the homogeneous components of a, say $a_{i_{0}}$, is not in \mathfrak{N}. We have $D_{+}\left(a_{i_{0}}\right) \subset \operatorname{Proj}(A)=\emptyset$ and since $D_{+}\left(a_{i_{0}}\right) \simeq \operatorname{Spec}\left(A_{\left(a_{i_{0}}\right)}\right)$ we get $A_{\left(a_{i_{0}}\right)}=0$. So in $A_{\left(a_{i_{0}}\right)} \subset A_{a_{i_{0}}}, 1=0$ i.e. $a_{i_{0}}^{k}=0$ in A for some $k \geq 0$; i.e. $a_{i_{0}} \in \mathfrak{N}$; contradiction. Thus $A_{+} \subset \mathfrak{N}$.
2. For $k[x]=\oplus_{i \geq 0} k \cdot x^{i}$, we have $k[x]_{+}=(x)$. We know that $\operatorname{Spec}(k[x])=\{(0)\} \cup\{(f), f \in$ $k[x]$ irreducible $\}$. Let $f=\sum_{i}^{d} a_{i} x^{i} \in k[x]$ be an irreducible polynomial $(d=\operatorname{deg}(f))$. If (f) is an homogeneous ideal, then since $f \in(f)$, for any $i, a_{i} x^{i} \in(f)$, in particular $a_{d} x^{d} \in(f)$. Since $a_{d} \neq 0$ is a unit, $x^{d} \in(f)$ and since (f) is a prime ideal $x \in(f)$; but then $a_{0}=f-x\left(\sum_{i \geq 1} a_{i} x^{i-1}\right) \in(f)$ which, as (f) is a proper ideal, means $a_{0}=0$ i.e. $x \mid f$. Since f is irreducible, we must have $f=x$ (up to scaling); thus the only homogeneous prime ideals in $k[x]$ are (0) and $(x)=k[x]_{+}$. So $\operatorname{Proj}(k[x])=\{(0)\}$.
3. Let $\mathfrak{p} \in \mathbb{P}_{k}^{n}=\operatorname{Proj}\left(k\left[x_{0}, \ldots, x_{n}\right]\right)$ be a closed point; then $k\left[x_{0}, \ldots, x_{n}\right]_{+} \subsetneq \mathfrak{p}$ i.e. there is a $f \in k\left[x_{0}, \ldots, x_{n}\right]_{+}$such that $f \notin \mathfrak{p}$. Since $k\left[x_{0}, \ldots, x_{n}\right]_{+}$is generated by $\left(x_{0}, \ldots, x_{n}\right)$ there is a i such that $x_{i} \notin \mathfrak{p}$ i.e. $\mathfrak{p} \in D_{+}\left(x_{i}\right) \simeq \operatorname{Spec}\left(k\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{\widehat{x_{i}}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right]\right)$ and it is a closed point; thus a maximal ideal of $k\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{\widehat{x_{i}}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right]$ and since k is algebraically closed there is a n-uple $\left(a_{0}, \ldots, \widehat{a_{i}}, \ldots, a_{n}\right) \in k^{n}$ such that $\mathfrak{p}=\left(\frac{x_{0}}{x_{i}}-a_{0}, \ldots, \frac{\widehat{x}_{i}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}-\right.$ $\left.a_{n}\right) \subset D_{+}\left(x_{i}\right)$. But the contraction of $\left(\frac{x_{0}}{x_{i}}-a_{0}, \ldots, \frac{\widehat{x_{i}}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}-a_{n}\right)$ by $k\left[x_{0}, \ldots, x_{n}\right] \rightarrow$ $k\left[x_{0}, \ldots, x_{n}\right]_{\left(x_{i}\right)}$ is $\left(x_{0}-a_{0} x_{i}, \ldots, x_{i-1}-a_{i-1} x_{i}, x_{i+1}-a_{i+1} x_{i}, \ldots, x_{n}-a_{n} x_{i}\right)$. So associated to $\left(a_{0}, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_{n}\right) \neq(0, \ldots, 0)$ under the map of the exercise; showing that it is surjective.

Assume that for $\left(a_{0}, \ldots, a_{n}\right) \in k^{n+1} \backslash\{(0, \ldots, 0)\}$ and $\left(b_{0}, \ldots, b_{n}\right) \in k^{n+1} \backslash\{(0, \ldots, 0)\}$, we have $\left(a_{i} x_{j}-a_{j} x_{i}\right)_{i, j}=\left(b_{i} x_{j}-b_{j} x_{i}\right)_{i, j}$. Then for $i_{0} \neq j_{0}, a_{i_{0}} x_{j_{0}}-a_{j_{0}} x_{i_{0}} \in\left(b_{i} x_{j}-\right.$ $\left.b_{j} x_{i}\right)_{i, j}$. For degree reasons, $a_{i_{0}} x_{j_{0}}-a_{j_{0}} x_{i_{0}}=\sum_{i} \lambda_{i, j}\left(b_{i} x_{j}-b_{j} x_{i}\right)$ for some $\lambda_{i, j} \in k$. Evaluating at $x_{i}=0 i \neq i_{0}, j_{0}$, we get $a_{i_{0}} x_{j_{0}}-a_{j_{0}} x_{i_{0}}=\lambda_{i_{0}, j_{0}}\left(b_{i_{0}} x_{j_{0}}-b_{j_{0}} x_{i_{0}}\right)$ thus $a_{i_{0}}=\lambda_{i_{0}, j_{0}} b_{i_{0}}$ and $a_{j_{0}}=\lambda_{i_{0}, j_{0}} b_{j_{0}}$. It is so for any pair (i_{0}, j_{0}).
Since $\left(b_{0}, \ldots, b_{n}\right) \in k^{n+1} \backslash\{(0, \ldots, 0)\}$ there is a $b_{i} \neq 0$. For simplicity, we can assume $b_{0} \neq 0$. Then for any $i, j>0$, looking at $a_{0} x_{i}-a_{i} x_{0}$ and $a_{0} x_{j}-a_{j} x_{0}$ we have $\lambda_{i, 0}=\frac{a_{0}}{b_{0}}=\lambda_{j, 0}$ thus $a_{i}=\frac{a_{0}}{b_{0}} b_{i}$ (and $a_{j}=\frac{a_{0}}{b_{0}} b_{j}$) for any i. If $a_{0}=0$ then we get $\left(a_{0}, \ldots, a_{n}\right)=0$ so $\frac{a_{0}}{b_{0}} \neq 0$ and $\left(a_{0}, \ldots, a_{n}\right)=\frac{a_{0}}{b_{0}}\left(b_{0}, \ldots, b_{n}\right)$.
4. The map $\varphi: \operatorname{Proj}(A) \rightarrow \operatorname{Spec}\left(A_{0}\right)$ is given by $\mathfrak{p} \mapsto \mathfrak{p} \cap A_{0}$ (induced by the ring homomorphism $A_{0} \rightarrow A$. Let $a \in A_{0}$, it is homogeneous and $\varphi^{-1}(D(a))=\{\mathfrak{p} \in$ $\left.\operatorname{Proj}(A), a \notin \mathfrak{p} \cap A_{0}\right\}=D_{+}(a)$ so φ is continuous.

Exercise 64. (Numerical polynomials, 4 points)

1. Since $\operatorname{deg}\left(\binom{T}{r}\right)=r\left(\right.$ with $\left.\binom{T}{0}=1\right)$ the family $\left(\binom{T}{r}\right)_{r \geq 0}$ is a basis of $\mathbb{Q}[T]$. So any
$P \in \mathbb{Q}[T]$ can be written $\sum_{i} c_{i}\binom{T}{i}$ with $c_{i} \in \mathbb{Q}$. We have the identity

$$
\begin{aligned}
\binom{T+1}{r}-\binom{T}{r} & =\frac{\prod_{k=0}^{r_{1}}(T+1-k)}{r!}-\frac{\prod_{k=0}^{r-1}(T-k)}{r!} \\
& =\frac{\prod_{k=-1}^{r_{2}}(T-k)}{r!}-\frac{\prod_{k=0}^{r-1}(T-k)}{r!} \\
& =\frac{\prod_{k=0}^{r_{2}}(T-k)}{r!}(T+1-(T-(r-1))) \\
& =\binom{T}{r-1} .
\end{aligned}
$$

If the numerical polynomial P has degree 0 , since $P(n) \in \mathbb{Z}$ for $n \gg 0$, this constant term is an integer. So let $d \geq 0$ be an integer such that all numerical polynomials of degree $\leq d$ are of the desired form. Now, let $P \in \mathbb{Q}[T]$ be a numerical polynomial of degree $d+1$. Since $\left(\binom{T}{r}\right)_{r \geq 0}$ is a basis of $\mathbb{Q}[T]$, we can write $P=\sum_{i=0}^{d+1} c_{d+1-i}\binom{T}{i}$ with $c_{i} \in \mathbb{Q}$. Now look at $Q(T)=P(t+1)-P(T) \in \mathbb{Q}[T]$. It is a numerical polynomial (for $n \gg 0, P(n+1), P(n) \in \mathbb{Z}$) and $Q(T)=\sum_{i=1}^{d+1} c_{d+1-i}\left(\binom{T+1}{i}-\binom{T}{i}\right)=$ $\sum_{i=1}^{d+1} c_{d+1-i}\left({ }_{i-1}^{T}\right)$ so Q has degree d. So by induction hypothesis $c_{i} \in \mathbb{Z}$ for any $i \leq d$. Now take $n \gg 0$ of the form $n=(d+1)!k$ (i.e. $k \gg 0$) then $P(n)=c_{d+1}+$ $\sum_{i} i=1^{d+1} c_{d+1-i} \frac{(d+1)!k((d+1)!k-1) \cdots \cdots((d+1)!k-i+1)}{i!}$ where we see that $\frac{(d+1)!k((d+1)!k-1) \cdots \cdots((d+1)!k-i+1)}{i!} \in$ $Z Z$ since $i \leq d+1$. So $c_{d+1}=P(n)-\sum_{i=1}^{d+1} c_{d+1-i} \frac{(d+1)!k((d+1)!k-1) \cdots((d+1)!k-i+1)}{i!} \in \mathbb{Z}$ for $k \gg 0$ i.e. $c_{d+1} \in \mathbb{Z}$; concluding the induction step.
2. Let us write $Q(T)=\sum_{i=0}^{d} c_{d-i}\binom{T}{i}$ with $c_{i} \in \mathbb{Z}$ by the previous question. Set $P=$ $\sum_{i=0}^{d} c_{d-i}\left({ }_{i+1}^{T}\right) \in \mathbb{Q}(T)$. It is a numerical polynomial. A direct calculation shows that $P(T+1)-P(T)=Q(T)$ and $\operatorname{deg}(P)=\operatorname{deg}(Q)$. So $\Delta f(n)=Q(n)=\Delta P(n)$ for $n \gg 0$. Let $n_{0} \in \mathbb{N}$ such that forall $n \geq n_{0}, \Delta(f)(n)=\Delta(P)(n)$ i.e. $(f-P)(n+1)=(f-P)(n)$ so $\forall n \geq n_{0}, \mathbb{Z} \ni(f-P)(n)=(f-P)\left(n_{0}\right)$. Since P is a numerical polynomial $P^{\prime}=$ $P+\left(f-P\left(n_{0}\right)\right) \in Q[T]$ is also a numerical polynomial and $f(n)=P^{\prime}(n)$ for $n \gg 0$.
Exercise 65. (Grothendieck group, 5 points)

1. Notice first that for any additive function $\lambda: \mathcal{C} \rightarrow \mathbb{Z}, \lambda(0)=\lambda(0)+\lambda(0)$ since the sequence $0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$ is exact so $\lambda(0)=0$.
Notice also that if $M \simeq N, \lambda(M)=\lambda(N)$ and $[M]=[N] \in K(\mathcal{C})$ since then the isomorphism sits in the exact sequence $0 \rightarrow M \rightarrow N \rightarrow 0 \rightarrow 0$ (and we have seen $\lambda(0)=0$).

If $\bar{\lambda}: K(\mathcal{C}) \rightarrow \mathbb{Z}$ is a group homomorphism. Define $\lambda: \mathcal{C} \rightarrow \mathbb{Z}, C \mapsto \bar{\lambda}([C])$. Since for any short exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0,[M]-\left[M^{\prime}\right]-\left[M^{\prime \prime}\right]=0 \in K(\mathcal{C})$, we get additivity of λ.

Conversely, given an additive function $\lambda: \mathcal{C} \rightarrow \mathbb{Z}$. We can naturally extend by additivity λ to a group homomorphism from the free abelian group $\lambda^{\prime}: \oplus_{M \in \operatorname{Obj}(\mathcal{C})}^{\mathbb{Z}} \cdot M \rightarrow \mathbb{Z}$, $n M \mapsto n \lambda(M)$. Then as λ is additive, $M-M^{\prime}-M^{\prime \prime} \in \operatorname{ker}\left(\lambda^{\prime}\right)$ for any $M, M^{\prime}, M^{\prime \prime}$ appearing in an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$. So the subgroup K generated by such sums is contained in $\operatorname{ker}\left(\lambda^{\prime}\right)$. So there is an induced group homomorphism $\bar{\lambda}: K(\mathcal{C}) \simeq \oplus_{M \in \operatorname{Obj}(\mathcal{C})}^{\mathbb{Z}} \cdot M / K \rightarrow \mathbb{Z}$. Moreover it is easy to see that the additive function associated to $\bar{\lambda}$ is λ.
2. Define the group homomorphism $\varphi: \mathbb{Z} \rightarrow K\left(\operatorname{Vec}_{f d}(k)\right), 1 \mapsto[k]$. Notice that for $n>0$, by induction and decomposing $M^{\oplus n}$ into short exact sequence, $\left[M^{\oplus n}\right]=n[M]$ in $K(\mathcal{C})$. Like wise $[M \oplus N]=[M]+[N]$ in $K(\mathcal{C})$.
Notice that for any $M \in V e c_{f d}(k), M \simeq k^{\oplus d}$ where $d=\operatorname{dim}_{k}(M)$; thus $[M] \simeq\left[k^{d}\right]=$ $d[k]$ in $K(\mathcal{C})$. So φ is surjective.

We can define a group homomorphism $\phi: \oplus_{M \in \operatorname{Obj}\left(\operatorname{Vecfd}_{f}(k)\right)} \mathbb{Z} \cdot M \rightarrow \mathbb{Z}$, by (extend linearly) $M \mapsto \operatorname{dim}_{k}(M)$. Then the subgroup K generated by the $M^{\prime}-M+M^{\prime \prime}$ for $M, M^{\prime}, M^{\prime \prime}$ appearing in an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is contained in the kernel of ϕ. So there is an induced group homomorphism $K(\mathcal{C}) \rightarrow \mathbb{Z}$. We have $\phi \circ \varphi=\mathrm{id}_{\mathbb{Z}}$ so φ is injective.
3. $\mathcal{C}=\bmod \left(A_{0}\right)$. The proof goes exactly as in the lecture notes; the only difference is the use of $\mathcal{C} \rightarrow K(\mathcal{C})$ instead of $\mathcal{C} \rightarrow \mathbb{Z}$.
The exact sequence $0 \rightarrow K_{n} \rightarrow M_{n}{ }^{a_{N}} M_{n+d} \rightarrow C_{n+d} \rightarrow 0$ can be broken in two exact sequences : $0 \rightarrow K_{n} \rightarrow M_{n} \xrightarrow{a_{N}} \operatorname{im}\left(a_{N} \cdot\right) \rightarrow 0$ and $0 \rightarrow \operatorname{im}\left(a_{N} \cdot\right) \rightarrow M_{n+d} \rightarrow C_{n+d} \rightarrow 0$. So $\left[M_{n}\right]-\left[K_{n}\right]=\left[\operatorname{im}\left(a_{N} \cdot\right)\right]=\left[M_{n+d}\right]-\left[C_{n+d}\right]$ in $K(\mathcal{C})$ which gives $\left[M_{n}\right]-\left[M_{n+d}\right]=$ $\left[K_{n}\right]-\left[C_{n+d}\right]$ in $K(\mathcal{C})$ (as with the additive function in the lecture notes).

[^0]: Solutions to be handed in before Monday July 6, 4pm.

