Solutions for exercises, Algebra I (Commutative Algebra) - Week 13

Exercise 65. (Dimension)

1. $k[x, y]_{(x, y)} /\left(x^{2}-y^{3}\right)$: We have $\operatorname{dim}\left(k[x, y]_{(x, y)}\right)=2$ (and is an integral domain) so that according to Corollary 18.24, $\operatorname{dim}\left(k[x, y]_{(x, y)} /\left(x^{2}-y^{3}\right)\right)=1$. The maximal ideal of $k[x, y]_{(x, y)} /\left(x^{2}-y^{3}\right)$ is $(x, y)_{(x, y)} /\left(x^{2}-y^{3}\right)$ which is generated by \bar{x} and \bar{y}. If $\bar{x} \in(\bar{y})$ then we can write $f x=y g+\left(x^{2}-y^{3}\right) h$ for a $f \notin(x, y)$ i.e. the constant term $f(0,0)$ of f is not 0 . Evaluating the equality at $y=0$, we see that on the left hand side the coefficient $f(0,0)$ of x is non-zero and the right hand is in $\left(x^{2}\right)$; contradiction. Likewise, we show that \bar{y} is not in the ideal generated by \bar{x}. So \bar{x}, \bar{y} is a minimal set of generators of $(x, y)_{(x, y)} /\left(x^{2}-y^{3}\right)$.
2. $k[x, y]_{(x, y)} /\left(x^{2}-y\right)$:We have $\operatorname{dim}\left(k[x, y]_{(x, y)}\right)=2$ so that according to Corollary 18.24, $\operatorname{dim}\left(k[x, y]_{(x, y)} /\left(x^{2}-y\right)\right)=1$. The maximal ideal of $k[x, y]_{(x, y)} /\left(x^{2}-y\right)$ is $(x, y)_{(x, y)} /\left(x^{2}-\right.$ $y)$ which is generated by \bar{x}; since $\bar{y}=\bar{x}^{2} \in(\bar{x})$. It is necessary a minimal set of generators.
3. $k[x, y]_{(x, y)} /\left(x^{2}, y^{3}\right)$: We have $\operatorname{dim}\left(k[x, y]_{(x, y)}\right)=2$. Moreover $\sqrt{\left(x^{2}, y^{3}\right)}=(x, y)$ which is maximal. So $\left(x^{2}, y^{3}\right)$ is a primary ideal and by Corollary $18.26, \operatorname{dim}\left(k[x, y]_{(x, y)} /\left(x^{2}, y^{3}\right)\right)=$ $2-2=0$.
4. $k[x, y, z]_{(x, y, z)} /\left(x^{2}+y^{2}+z\right)$: We have $\operatorname{dim}\left(k[x, y, z]_{(x, y, z)}\right)=3$ so that according to Corollary $18.24, \operatorname{dim}\left(k[x, y, z]_{(x, y, z)} /\left(x^{2}+y^{2}+z^{n}\right)\right)=2$ and the maximal ideal is generated by $\bar{x}, \bar{y}, \bar{z}$.
$\bar{x} \notin(\bar{y}, \bar{z})$: otherwise, one would be able to write $f x=y g_{1}+z g_{2}+\left(x^{2}+y^{2}+z^{n}\right) g_{3}$ with $f(0,0,0) \neq 0$ (i.e. $f \notin(x, y, z)$). Evaluating at $y=0=z$ (we get polynomials in x), on the left hand side, the coefficient of x is non-zero and on the right hand side the polynomial is in $\left(x^{2}\right)$. Likewise $\bar{y} \notin(\bar{x}, \bar{z})$.
If $n=1$, then $\bar{z}=-\left(\bar{x}^{2}+\bar{y}^{2}\right)$ so that \bar{x}, \bar{y} generate $(x, y, z)_{(x, y, z)} /\left(x^{2}+y^{2}+z^{n}\right)$.
If $n \geq 2$, then $\bar{z} \notin(\bar{x}, \bar{y})$: otherwise, one could write $f y=x g_{1}+y g_{2}+\left(x^{2}+y^{2}+z^{n}\right) g_{3}$ with $f(0,0,0) \neq 0$. Evaluating at $x=0=y$, on the left hand side, the coefficient of z is non-zero whereas on the right hand side the polynomial is in the ideal $\left(z^{n}\right)$. So $(\bar{x}, \bar{y}, \bar{z})$ is a minimal set of generators.

Exercise 66. (Height and dimension)
Set $A=k[x, y, z]_{(x, y, z)} /(x y, x z)$. Looking at $\operatorname{Spec}(A)$ as $V((x y, x z)) \subset \operatorname{Spec}\left(k[x, y, z]_{(x, y, z)}\right)$ and since $(x y, x z) \subset(y, z)$ and $(y, z) \in \operatorname{Spec}\left(k[x, y, z]_{(x, y, z)}\right),(\bar{y}, \bar{z})$ is a prime ideal. Likewise $(x y, x z) \subset(x)$ and $(x) \in \operatorname{Spec}\left(k[x, y, z]_{(x, y, z)}\right)$ so that (\bar{x}) is a prime ideal. Again since $(x, y) \in \operatorname{Spec}\left(k[x, y, z]_{(x, y, z)}\right)$ and $(x y, x z) \subset(x, y),(\bar{x}, \bar{y})$ is in $\operatorname{Spec}(A)$. Finally, $(x, y, z) \in$ $\operatorname{Spec}\left(k[x, y, z]_{(x, y, z)}\right)$ and $(x y, x z) \subset(x, y, z),(\bar{x}, \bar{y}, \bar{z})$ is in $\operatorname{Spec}(A)$. Thus we have in A, the chain of prime ideals $(\bar{x}) \subset(\bar{x}, \bar{y}) \subset(\bar{x}, \bar{y}, \bar{z})$. The inclusions are strict, which proves that $\operatorname{dim}(A) \geq 2$: assume $f y=x g+x y \alpha+x z \beta$, with $f(0,0,0) \neq 0$; evaluating at $x=0$, we get a contradiction so $(\bar{x}) \subsetneq(\bar{x}, \bar{y})$. Likewise (evaluating an equality $f z=x g_{1}+y g_{2}+x y \alpha+x z \beta$, with $f(0,0,0) \neq 0$, at $x=0=y), \bar{z} \notin(\bar{x}, \bar{y})$.
Moreover, since $x y \in k[x, y, z]_{(x, y, z)}$ is not a zero divisor, we have $\operatorname{dim}\left(k[x, y, z]_{(x, y, z)} /(x y)\right)=$ 2 and since $k[x, y, z]_{(x, y, z)} \rightarrow A$ (i.e. $\left.\operatorname{Spec}(A) \subset \operatorname{Spec}\left(k[x, y, z]_{(x, y, z)}\right)\right), \operatorname{dim}(A) \leq 2$. So

[^0]$\operatorname{dim}(A)=2$.
On the other hand we have $V((x, y, x z))=V((x) \cdot(y, z))=V(x) \cup V(y, z)$; so (y, z) and $(x) \in \operatorname{Spec}($ are minimal primes containing $(x y, x z)$ i.e. (\bar{x}) and (\bar{y}, \bar{z}) are minimal (associated, isolated) primes of A. In particular $\operatorname{ht}((\bar{x}))=0=\operatorname{ht}((\bar{y}, \bar{z}))$.
We have $A /(\bar{y}, \bar{z}) \simeq k[x, y, z]_{(x, y, z)} /(y, z)+(x y, x z) \simeq k[x, y, z]_{(x, y, z)} /(y, z) ;$ which is readily seen to have dimension $1((x, y, z)$ is a regular sequence and use Corollary 18.26). So we get $\operatorname{dim}(A)=2>0+1=\operatorname{ht}((\bar{y}, \bar{z}))+\operatorname{dim}(A /(\bar{y}, \bar{z})$.

Exercise 67. (Fibre dimension)
The homomorphism $A \rightarrow B$ is indeed an inclusion: if $f \in k[x, y]$ is in $(y z-x)$ i.e. $f=(y z-x) g$, evaluating at $z=0=x$, we get $f(0, y)=0$ i.e. $f \in(x) \subset k[x, y]$ so we can write $x f_{1}=(y z-x) g$. But then we must have $x \mid g$ so we can write $f_{1}=(y z-x) g_{1}$ for some g_{1}. So we can repeat the argument; hence by induction $f=a x^{n}=(y z-x) g_{n}(a \in k)$ which is possible only if $a=0$ and $g_{n}=0$.

1. The contraction of \mathfrak{q} in $k[x, y, z]$ is $(y, z)+(y z-x)$. For $f \in k[x, y] \cap(y, z)+(y z-x)$ then $f(x, y, 0)=f$ and f can be written $f=y g_{1}+z g_{2}+(y z-x) g_{3}$; evaluating at $z=0$, we get $f(x, y, 0)=f=y g_{1}(x, y, 0)-x g_{3}(x, y, 0)$ i.e. $f \in(x, y)$.
2. We have the inclusions of prime ideals in $A:(0) \subset(x) \subset(x, y)$ so $\operatorname{ht}((x, y))=2$. Likewise since $B \simeq k[y, z], \operatorname{ht}((\bar{y}, \bar{z}))=2$.
3. We have $B_{\mathfrak{q}} / \mathfrak{p} B_{\mathfrak{q}} \simeq k[y, z]_{(y, z)} /(y z, y) \simeq k[y, z]_{(y, z)} /(y)$ so $\operatorname{dim}\left(B_{\mathfrak{q}} / \mathfrak{p} B_{\mathfrak{q}}\right)=1$.

Exercise 68. (Singular points and the Jacobi criterion)
We can define a linear map $\varphi: k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}} \rightarrow k^{n}$ by $\frac{f}{g} \mapsto\left(\frac{1}{g} \frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right), \ldots, \frac{1}{g} \frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right)\right)$ (since $f\left(a_{1}, \ldots, a_{n}\right)=0$ and $\left.g\left(a_{1}, \ldots, a_{n}\right) \neq 0\right)$. For any i, we have $\varphi\left(\right.$ fracx $\left._{i}-a_{i} 1\right)=$ $(0, \ldots 0,1,0 \ldots 0)$ the $i^{\text {th }}$ vector of the canonical basis of k^{n}. So $\varphi_{\mid \mathrm{m}}$ is surjective. Moreover for any i, j,

$$
\varphi\left(\frac{\left(x_{i}-a_{i}\right)}{1} \frac{\left(x_{j}-a_{j}\right)}{1}\right)=(0, \ldots, 0, \underbrace{a_{i}-a_{i}}_{j^{\text {th }} \text { component }}, 0 \ldots, 0, \underbrace{a_{j}-a_{j}}_{i^{\text {th }} \text { component }}, 0, \ldots 0)=0
$$

so $\mathfrak{m}^{2} \subset \operatorname{ker}\left(\varphi_{\mid \mathfrak{m}}\right)$ and we get an induced surjective map $\bar{\varphi}: \mathfrak{m}_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}^{2} \rightarrow k^{n}$.
But since $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ is regular of dimension $n, \operatorname{dim}_{k}\left(\mathfrak{m}_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}^{2}\right)=n$ (see Example 18.27 and Prop. 18.28); thus $\bar{\varphi}$ is an isomorphism. Notice that $k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}} \simeq\left(k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{m}\right)_{\mathfrak{m}} \simeq$ $(k)_{\mathfrak{m}} \simeq(k)_{(0)} \simeq k$.
By definition, the point $\mathfrak{m} \in V(f)$ is singular if and only if $\bar{\varphi}\left(\frac{f}{1}\right)=0$.
According to Corollary 18.24, $\operatorname{dim}\left(k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}} /(f)\right)=n-1$ and its maximal ideal is $\mathfrak{m}_{\mathfrak{m}} /(f)$. So $\mathfrak{m}_{\mathfrak{m}} /(f) /\left(\mathfrak{m}_{\mathfrak{m}} /(f)\right)^{2} \simeq \mathfrak{m} /\left((f)+\mathfrak{m}_{\mathfrak{m}}^{2}\right)$. To see the isomorphism, start with the (obviously) surjective $p: \mathfrak{m}_{\mathfrak{m}} \rightarrow \mathfrak{m}_{\mathfrak{m}} /(f) /\left(\mathfrak{m}_{\mathfrak{m}} /(f)\right)^{2}$ and notice that its kernel is exactly $\mathfrak{m}_{\mathfrak{m}}+(f)$.
Thus if $\mathfrak{m} \in V(f)$ is singular, then $\bar{\varphi}(f)=0$, which since $\bar{\varphi}$ is an isomorphism, means $\frac{f}{1}=0 \in \mathfrak{m}_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}^{2}$ i.e. $\frac{f}{1} \in \mathfrak{m}_{\mathfrak{m}}^{2}$. So $\left(\frac{f}{1}\right)+\mathfrak{m}_{\mathfrak{m}}^{2}=\mathfrak{m}_{\mathfrak{m}}^{2}$ so that $\operatorname{dim}_{k}\left(\mathfrak{m}_{\mathfrak{m}} /(f) /\left(\mathfrak{m}_{\mathfrak{m}} /(f)\right)^{2}\right)=$ $\operatorname{dim}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=n>\operatorname{dim}\left(k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}} /(f)\right)$ i.e. $k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}} /(f)$ is not regular.
Conversely, according to Corollary 18.12 we have $\operatorname{dim}_{k}\left(\mathfrak{m}_{\mathfrak{m}} /(f) /\left(\mathfrak{m}_{\mathfrak{m}} /(f)\right)^{2}\right) \geq \operatorname{dim}\left(k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}} /(f)\right)=$ $n-1$, so if $k\left[x_{1}, \ldots, x_{n}\right]_{\mathfrak{m}} /(f)$ not regular, $\operatorname{dim}_{k}\left(\mathfrak{m}_{\mathfrak{m}} /(f) /\left(\mathfrak{m}_{\mathfrak{m}} /(f)\right)^{2}\right) \geq n$. Using $\mathfrak{m}_{\mathfrak{m}} /(f) /\left(\mathfrak{m}_{\mathfrak{m}} /(f)\right)^{2} \simeq$ $\mathfrak{m}_{\mathfrak{m}} /\left((f)+\mathfrak{m}_{\mathfrak{m}}^{2}\right)$, this happens only if $\left(\frac{f}{1}\right) \subset \mathfrak{m}_{\mathfrak{m}}^{2}$; in which case $\frac{f}{1}=0 \bmod \mathfrak{m}_{\mathfrak{m}}^{2}$ so $\bar{\varphi}\left(\frac{f}{1}\right)=\bar{\varphi}(0)=$ $0=\left(\frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right), \ldots, \frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right)\right)$.

[^0]: You can still hand in solutions, but they will not be (necessarily) corrected anymore.

