Solutions for exercises, Algebra I (Commutative Algebra) – Week 13

Exercise 65. (Dimension)

- 1. $k[x,y]_{(x,y)}/(x^2-y^3)$: We have $dim(k[x,y]_{(x,y)}) = 2$ (and is an integral domain) so that according to Corollary 18.24, $dim(k[x,y]_{(x,y)}/(x^2-y^3)) = 1$. The maximal ideal of $k[x,y]_{(x,y)}/(x^2-y^3)$ is $(x,y)_{(x,y)}/(x^2-y^3)$ which is generated by \overline{x} and \overline{y} . If $\overline{x} \in (\overline{y})$ then we can write $fx = yg + (x^2 - y^3)h$ for a $f \notin (x,y)$ i.e. the constant term f(0,0)of f is not 0. Evaluating the equality at y = 0, we see that on the left hand side the coefficient f(0,0) of x is non-zero and the right hand is in (x^2) ; contradiction. Likewise, we show that \overline{y} is not in the ideal generated by \overline{x} . So $\overline{x}, \overline{y}$ is a minimal set of generators of $(x,y)_{(x,y)}/(x^2-y^3)$.
- 2. $k[x,y]_{(x,y)}/(x^2-y)$: We have $dim(k[x,y]_{(x,y)}) = 2$ so that according to Corollary 18.24, $dim(k[x,y]_{(x,y)}/(x^2-y)) = 1$. The maximal ideal of $k[x,y]_{(x,y)}/(x^2-y)$ is $(x,y)_{(x,y)}/(x^2-y)$ which is generated by \overline{x} ; since $\overline{y} = \overline{x}^2 \in (\overline{x})$. It is necessary a minimal set of generators.
- 3. $k[x,y]_{(x,y)}/(x^2,y^3)$: We have $dim(k[x,y]_{(x,y)}) = 2$. Moreover $\sqrt{(x^2,y^3)} = (x,y)$ which is maximal. So (x^2,y^3) is a primary ideal and by Corollary 18.26, $dim(k[x,y]_{(x,y)}/(x^2,y^3)) = 2-2 = 0$.
- 4. $k[x, y, z]_{(x,y,z)}/(x^2 + y^2 + z)$: We have $dim(k[x, y, z]_{(x,y,z)}) = 3$ so that according to Corollary 18.24, $dim(k[x, y, z]_{(x,y,z)}/(x^2 + y^2 + z^n)) = 2$ and the maximal ideal is generated by $\overline{x}, \overline{y}, \overline{z}$.

 $\overline{x} \notin (\overline{y}, \overline{z})$: otherwise, one would be able to write $fx = yg_1 + zg_2 + (x^2 + y^2 + z^n)g_3$ with $f(0, 0, 0) \neq 0$ (i.e. $f \notin (x, y, z)$). Evaluating at y = 0 = z (we get polynomials in x), on the left hand side, the coefficient of x is non-zero and on the right hand side the polynomial is in (x^2) . Likewise $\overline{y} \notin (\overline{x}, \overline{z})$.

If n = 1, then $\overline{z} = -(\overline{x}^2 + \overline{y}^2)$ so that $\overline{x}, \overline{y}$ generate $(x, y, z)_{(x,y,z)}/(x^2 + y^2 + z^n)$. If $n \ge 2$, then $\overline{z} \notin (\overline{x}, \overline{y})$: otherwise, one could write $fy = xg_1 + yg_2 + (x^2 + y^2 + z^n)g_3$ with $f(0, 0, 0) \neq 0$. Evaluating at x = 0 = y, on the left hand side, the coefficient of z is non-zero whereas on the right hand side the polynomial is in the ideal (z^n) . So $(\overline{x}, \overline{y}, \overline{z})$ is a minimal set of generators.

Exercise 66. (Height and dimension)

Set $A = k[x, y, z]_{(x,y,z)}/(xy, xz)$. Looking at Spec(A) as $V((xy, xz)) \subset \text{Spec}(k[x, y, z]_{(x,y,z)})$ and since $(xy, xz) \subset (y, z)$ and $(y, z) \in \text{Spec}(k[x, y, z]_{(x,y,z)})$, $(\overline{y}, \overline{z})$ is a prime ideal. Likewise $(xy, xz) \subset (x)$ and $(x) \in \text{Spec}(k[x, y, z]_{(x,y,z)})$ so that (\overline{x}) is a prime ideal. Again since $(x, y) \in \text{Spec}(k[x, y, z]_{(x,y,z)})$ and $(xy, xz) \subset (x, y)$, $(\overline{x}, \overline{y})$ is in Spec(A). Finally, $(x, y, z) \in \text{Spec}(k[x, y, z]_{(x,y,z)})$ and $(xy, xz) \subset (x, y, z)$, $(\overline{x}, \overline{y}, \overline{z})$ is in Spec(A). Finally, $(x, y, z) \in \text{Spec}(k[x, y, z]_{(x,y,z)})$ and $(xy, xz) \subset (x, y, z)$, $(\overline{x}, \overline{y}, \overline{z})$ is in Spec(A). Thus we have in A, the chain of prime ideals $(\overline{x}) \subset (\overline{x}, \overline{y}) \subset (\overline{x}, \overline{y}, \overline{z})$. The inclusions are strict, which proves that $\dim(A) \ge 2$: assume $fy = xg + xy\alpha + xz\beta$, with $f(0, 0, 0) \neq 0$; evaluating at x = 0, we get a contradiction so $(\overline{x}) \subsetneq (\overline{x}, \overline{y})$. Likewise (evaluating an equality $fz = xg_1 + yg_2 + xy\alpha + xz\beta$, with $f(0, 0, 0) \neq 0$, at x = 0 = y), $\overline{z} \notin (\overline{x}, \overline{y})$.

with $f(0,0,0) \neq 0$, at x = 0 = y), $\overline{z} \notin (\overline{x}, \overline{y})$. Moreover, since $xy \in k[x, y, z]_{(x,y,z)}$ is not a zero divisor, we have $dim(k[x, y, z]_{(x,y,z)}/(xy)) = 2$ and since $k[x, y, z]_{(x,y,z)} \twoheadrightarrow A$ (i.e. Spec $(A) \subset \text{Spec}(k[x, y, z]_{(x,y,z)})$), $dim(A) \leq 2$. So

You can still hand in solutions, but they will not be (necessarily) corrected anymore.

 $\dim(A) = 2.$

On the other hand we have $V((x, y, xz)) = V((x) \cdot (y, z)) = V(x) \cup V(y, z)$; so (y, z) and $(x) \in$ Spec(are minimal primes containing (xy, xz) i.e. (\overline{x}) and $(\overline{y}, \overline{z})$ are minimal (associated, isolated) primes of A. In particular $\operatorname{ht}((\overline{x})) = 0 = \operatorname{ht}((\overline{y}, \overline{z}))$.

We have $A/(\overline{y},\overline{z}) \simeq k[x,y,z]_{(x,y,z)}/(y,z) + (xy,xz) \simeq k[x,y,z]_{(x,y,z)}/(y,z)$; which is readily seen to have dimension 1 ((x,y,z) is a regular sequence and use Corollary 18.26). So we get $dim(A) = 2 > 0 + 1 = \operatorname{ht}((\overline{y},\overline{z})) + dim(A/(\overline{y},\overline{z})).$

Exercise 67. (Fibre dimension)

The homomorphism $A \to B$ is indeed an inclusion: if $f \in k[x, y]$ is in (yz-x) i.e. f = (yz-x)g, evaluating at z = 0 = x, we get f(0, y) = 0 i.e. $f \in (x) \subset k[x, y]$ so we can write $xf_1 = (yz - x)g$. But then we must have x|g so we can write $f_1 = (yz - x)g_1$ for some g_1 . So we can repeat the argument; hence by induction $f = ax^n = (yz - x)g_n$ $(a \in k)$ which is possible only if a = 0 and $g_n = 0$.

- 1. The contraction of \mathfrak{q} in k[x, y, z] is (y, z) + (yz x). For $f \in k[x, y] \cap (y, z) + (yz x)$ then f(x, y, 0) = f and f can be written $f = yg_1 + zg_2 + (yz - x)g_3$; evaluating at z = 0, we get $f(x, y, 0) = f = yg_1(x, y, 0) - xg_3(x, y, 0)$ i.e. $f \in (x, y)$.
- 2. We have the inclusions of prime ideals in A: $(0) \subset (x) \subset (x, y)$ so ht((x, y)) = 2. Likewise since $B \simeq k[y, z]$, $ht((\overline{y}, \overline{z})) = 2$.
- 3. We have $B_{\mathfrak{q}}/\mathfrak{p}B_{\mathfrak{q}} \simeq k[y,z]_{(y,z)}/(yz,y) \simeq k[y,z]_{(y,z)}/(y)$ so $\dim(B_{\mathfrak{q}}/\mathfrak{p}B_{\mathfrak{q}}) = 1$.

Exercise 68. (Singular points and the Jacobi criterion)

We can define a linear map $\varphi : k[x_1, \ldots, x_n]_{\mathfrak{m}} \to k^n$ by $\frac{f}{g} \mapsto (\frac{1}{g} \frac{\partial f}{\partial x_1}(a_1, \ldots, a_n), \ldots, \frac{1}{g} \frac{\partial f}{\partial x_1}(a_1, \ldots, a_n))$ (since $f(a_1, \ldots, a_n) = 0$ and $g(a_1, \ldots, a_n) \neq 0$). For any i, we have $\varphi(fracx_i - a_i 1) = (0, \ldots, 0, 1, 0, \ldots, 0)$ the i^{th} vector of the canonical basis of k^n . So $\varphi_{|\mathfrak{m}}$ is surjective. Moreover for any i, j,

$$\varphi(\frac{(x_i - a_i)}{1} \frac{(x_j - a_j)}{1}) = (0, \dots, 0, \underbrace{a_i - a_i}_{j^{th} \text{ component}}, 0, \dots, 0, \underbrace{a_j - a_j}_{i^{th} \text{ component}}, 0, \dots, 0) = 0$$

so $\mathfrak{m}^2 \subset \ker(\varphi_{|\mathfrak{m}})$ and we get an induced surjective map $\overline{\varphi} : \mathfrak{m}_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}}^2 \to k^n$. But since $\operatorname{Spec}(k[x_1,\ldots,x_n])$ is regular of dimension $n, \dim_k(\mathfrak{m}_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}}^2) = n$ (see Example 18.27 and Prop. 18.28); thus $\overline{\varphi}$ is an isomorphism. Notice that $k[x_1,\ldots,x_n]_{\mathfrak{m}} \simeq (k[x_1,\ldots,x_n]/\mathfrak{m})_{\mathfrak{m}} \simeq (k)_{\mathfrak{m}} \simeq (k)_{\mathfrak{m}} \simeq k$.

By definition, the point $\mathfrak{m} \in V(f)$ is singular if and only if $\overline{\varphi}(\frac{f}{1}) = 0$.

According to Corollary 18.24, $\dim(k[x_1, \ldots, x_n]_{\mathfrak{m}}/(f)) = n-1$ and its maximal ideal is $\mathfrak{m}_{\mathfrak{m}}/(f)$. So $\mathfrak{m}_{\mathfrak{m}}/(f)/(\mathfrak{m}_{\mathfrak{m}}/(f))^2 \simeq \mathfrak{m}/((f) + \mathfrak{m}_{\mathfrak{m}}^2)$. To see the isomorphism, start with the (obviously) surjective $p : \mathfrak{m}_{\mathfrak{m}} \to \mathfrak{m}_{\mathfrak{m}}/(f)/(\mathfrak{m}_{\mathfrak{m}}/(f))^2$ and notice that its kernel is exactly $\mathfrak{m}_{\mathfrak{m}} + (f)$.

Thus if $\mathfrak{m} \in V(f)$ is singular, then $\overline{\varphi}(f) = 0$, which since $\overline{\varphi}$ is an isomorphism, means $\frac{f}{1} = 0 \in \mathfrak{m}_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}}^2$ i.e. $\frac{f}{1} \in \mathfrak{m}_{\mathfrak{m}}^2$. So $(\frac{f}{1}) + \mathfrak{m}_{\mathfrak{m}}^2 = \mathfrak{m}_{\mathfrak{m}}^2$ so that $\dim_k(\mathfrak{m}_{\mathfrak{m}}/(f)/(\mathfrak{m}_{\mathfrak{m}}/(f))^2) = \dim_k(\mathfrak{m}/\mathfrak{m}) = n > \dim(k[x_1, \ldots, x_n]_{\mathfrak{m}}/(f))$ i.e. $k[x_1, \ldots, x_n]_{\mathfrak{m}}/(f)$ is not regular.

$$\begin{split} & \lim_{k \to \infty} \lim_{m \to \infty} \lim_{k \to \infty} \frac{1}{2} \lim_{m \to \infty} \frac{1}{2} \lim_{$$