
Solutions for Exercise sheet 2, Algebra I (Commutative Algebra) – Week 2

The first two exercise sheets will only use material you should be familiar with already. Some
of it is covered and recalled by the first three lectures. These two sheets are not compulsory
but the points can be counted towards your final score of the necessary 50% to get admitted
to the exams.

Exercise 5. (Factor rings of polynomial rings)

1. For a ∈ k, let us consider the evaluation map eva : k[x] → k, P 7→ P (a). We have
seen in the previous set of exercises that eva is a ring homomorphism (as composition
of k[x] → Maps(k, k) → k) but we can recall in few words how to show that: we have
eva(1) = 1 and since ((x− a)i)i∈N is a basis of k[x], for P,Q,R ∈ k[x], writing them as
P =

∑
i pi(x− a)i, Q =

∑
i qi(x− a)i and R =

∑
i ri(x− a)i, we get

eva(P (Q+R)) = eva(
∑

ij∈N pj(qi + ri)(x− a)i+j)
= p0(q0 + r0)
= eva(P )(eva(Q) + eva(R))

So eva is a ring homomorphism. It is surjective: for b ∈ k we have eva((x− a) + b) = b.
Let us analyse its kernel: for P ∈ ker(eva), we have P (a) = 0 hence (Euclidean division)
x−a|P i.e. P ∈ (x−a) (where (x−a) designates the principal ideal generated by x−a)
thus ker(eva) ⊂ (x− a). Moreover, it is easy (eva is a ring homomorphism) to see that
(x− a) ⊂ ker(eva). Therefore ker(eva) = (x− a). In particular there exists an induced

isomorphism of rings eva : k[x]/ker(eva)
∼→ k.

2. Let us show that there is a isomorphism of k-vector spaces k[x]/(f) ' k[x]≤d−1, where
k[x]≤d−1 designates the k-vector space of polynomials of degree at most d − 1. We
define a map Rf : k[x] → k[x]≤d−1 by Euclidean division by f which ensures that for
any P ∈ k[x] there are a unique q ∈ k[x] and a unique r ∈ k[x] with deg(r) < deg(f) = d
such that P = qf + r. The uniqueness of r allows us to define a map Rf as claimed by
P 7→ r.
It is a group homomorphism: for P1, P2 ∈ k[x], consider the data given by Euclidean
division by f namely q1, q2 ∈ k[x] and r1, r2 ∈ k[x] with deg(r1) < d and deg(r2) < d,
such that Pi = qif + ri, i = 1, 2; we have P1 + P2 = (q1 + q2)f + (r1 + r2). But since
deg(r1 + r2) ≤ max(deg(r1), deg(r2)) < d, by uniqueness of the outputs of Euclidean
division, r1 + r2 = Rf (P1) + Rf (P2) is the remainder of the division of P1 + P2 by
f i.e. Rf (P1 + P2) = r1 + r2 = Rf (P1) + Rf (P2). It is clear that Rf commute with
multiplication by scalars by uniqueness of the outputs of Euclidean division. So Rf is
a linear map.
The linear map Rf is surjective: for any r ∈ k[x]≤d−1, we have r = 0 · f + r and
deg(r) < d = deg(f) so that by uniqueness of the outputs of in Euclidean division
Rf (r) = r.
Let us analyse its kernel: for P ∈ k[x] such that Rf (P ) = 0, Euclidean division writes
P = qf i.e. P ∈ (f). Conversely, if P ∈ (f) i.e. P = Qf for some Q ∈ k[x], by uniqueness
of the outputs of in Euclidean division, Rf (P ) = 0. So ker(Rf ) = (f). Therefore there is

an induced isomorphism of k-vector spaces Rf : k[x]/ker(Rf )
∼→ k[x]≤d−1. To conclude

it is sufficient to notice that dimk(k[x]≤d−1) = d (a basis being (1, x, · · · , xd−1)).
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3. Let us begin by proving that ϕa is a ring homomorphism (in an inelegant way). For a

n-uple d = (d1, . . . , dn) ∈ Nn, we denote xd the monomial xd11 · · ·xdnn and we denote ad

the element ad11 · · · adnn ∈ k. We have ϕa(1) = 1 and for P =
∑

d∈Nn pdx
d ∈ k[x1, . . . , xn]

and Q =
∑

d∈Nn qdx
d, we have

ϕa(P +Q) =
∑

d(pd + qd)ad

=
∑

d pda
d + qda

d

= ϕa(P ) + ϕa(Q)

and
ϕa(PQ) =

∑
d, d′ pdqd′a

d+d′

=
∑

d, d′ pda
dqd′a

d′

= (
∑

d pda
d) · (

∑
d′ qd′a

d′)
= ϕa(P ) · ϕa(Q)

So ϕa is a ring homomorphism. It is easily seen to be surjective: for b ∈ k, we can
consider the constant polynomial b ∈ k[x1, . . . , xn], for which we have ϕa(b) = b. Observe
that for any i ∈ {1, . . . , n} and any P ∈ k[x1, . . . , xn], we have ϕa((xi − ai)P ) =
ϕa(xi − ai)ϕa(P ) = 0ϕa(P ) = 0. So that the ideal

(x1−a1, . . . , xn−an) = {P ∈ k[x1, . . . , xn], ∃(q1, . . . , qn) ∈ k[x1, . . . , xn]n, P =
∑
i

(xi−ai)qi}

generated by the xi − ai’s is contained in the kernel of ϕa.
To conclude, we can either prove that (x1 − a1, . . . , xn − an) is maximal - which will
yield, since ϕa 6= 0, ker(ϕa) = (x1 − a1, . . . , xn − an) - or directly prove the reverse
inclusion (or any other solution that works).
For the first solution, notice that for a = (0, . . . , 0), it is obvious that k[x1, . . . , xn]/(x1, . . . , xn) '
k so that (x1, . . . , xn) is a maximal ideal of k[x1, . . . , xn]. Now given a b = (b1, . . . , bn) ∈
kn define the linear map tb : k[x1, . . . , xn] → k[x1, . . . , xn] defined by (extend linear-
ly) xd 7→ (x1 + b1)

d1 · · · (xn + bn)dn . Then by the same kind of calculation as above,
tb is a ring homomorphism. Moreover tb ◦ t−b = idk[x1,...,xn] so that tb is an isomor-

phism of rings for any b ∈ kn. We have (x1 − a1, . . . , xn − an) = t−1a ((x1, . . . , xn)) so
(x1−a1, . . . , xn−an) is a prime ideal. Moreover, as ta is an isomorphism, it is immediate
to deduce maximality of (x1 − a1, . . . , xn − an) from maximality of (x1, . . . , xn).

To prove the reverse inclusion directly, instead: take P ∈ ker(ϕa) and write the Eucli-
dean division of P by (xn − an) in the polynomial ring k(x1, . . . , xn−1)[xn] (whe-
re k(x1, . . . , xn−1) is the field of fractions of the integral ring k[x1, . . . , xn−1]): P =

(xn − an)A1
B1

+ P1
R1

where A1 ∈ k[x1, . . . , xn−1][xn] ' k[x1, . . . , xn] and B1, P1, R1 ∈
k[x1, . . . , xn−1] with B1, R1 monic and the fractions are irreducible. We have

P (x1, . . . , xn−1, an) =
P1

R1
;

the left hand side being a polynomial, we get R1 = 1 (the fraction is irreducible). So
rewriting the result of the Euclidean division as:

P − P1 = (xn − an)
A1

B1

we see that B1 = 1 (left hand side polynomial). So the Euclidean division gives in fact
an equality of polynomials P = (xn − an)A1 + P1 with P1 ∈ k[x1, . . . , xn−1]. Moreover
we have

0 = P (a1, . . . , an) = (an − an)A1(a1, . . . , an−1) + P1(a1, . . . , an−1) = P1(a1, . . . , an−1).
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So let i ≥ 1 such that P can be written P =
∑i−1

j=0(xn−j − an−j)Aj+1 + Pi with

Aj ∈ k[x1, . . . , xn] and Pi ∈ k[x1, . . . , xn−i] such that Pi(a1, . . . , an−i) = 0. Write the
Euclidean division of Pi by (xn−i − an−i) in k(x1, . . . , xn−i−1)[xn−1]:

Pi = (xn−i − an−i)
Ai+1

Bi
+
Pi+1

Ri

with Ai+1 ∈ k[x1, . . . , xn−i−1][xn−i] and Bi, Pi+1, Ri ∈ k[x1, . . . , xn−i−1] with Bi, Ri mo-

nic and the fractions irreducible. We have Pi(x1, . . . , xn−i−1, an−1) = Pi+1

Ri
so that Ri = 1

and again rewriting the Euclidean division, we get Bi = 1 i.e. Pi = (xn−i−an−i)Ai+1 +
Pi+1 in k[x1, . . . , xn−i], with Pi+1 ∈ k[x1, . . . , xn−i−1] and Pi+1(a1, . . . , an−i−1) = 0 (as
we can see evaluating the equality at (a1, . . . , an−i)). Thus, by induction we have pro-
ved that we can write P ∈ ker(ϕa) as

∑
i(xi − ai)Ai with Ai ∈ k[x1, . . . , xn] i.e. that

ker(ϕa) = (x1 − a1, . . . , xn − an).

In particular, ϕa induces a isomorphism of rings ϕa : k[x1, . . . , xn]/ker(ϕa)
∼→ k. As k

is a field, we get that ker(ϕa) = (x1 − a1, . . . , xn − an) is a maximal ideal (indeed if
α ∈ k[x1, . . . , xn]\ker(ϕa) then ϕa(α) 6= 0 in k so there is a β ∈ k[x1, . . . , xn] such that
αβ = 1 mod (x1 − a1, . . . , xn − an) i.e. 1 ∈ (x1 − a1, . . . , xn − an, α)).

Exercise 6. (Quotient modules)

1. Let us define ϕ : M/M1 →M/M2 by m mod M1 7→ m mod M2. It is a well-defined map
since for m ∈M and m1 ∈M1, ϕ(m+m1 mod M1) = m+m1mod M2 = m mod M2 =
ϕ(m) (as M1 ⊂ M2). It is a homomorphism of A-modules since for m,n ∈ M , and
a ∈ A, we have

ϕ(a(m− n) mod M1) = a(m− n) mod M2

= am− an mod M2

= aϕ(m mod M1)− aϕ(n mod M1) mod M2

.

Moreover, ϕ is surjective: for m mod M2 ∈ M/M2 with m ∈ M a representative,
we have ϕ(m mod M1) = m mod M2. Let us analyse its kernel: if m ∈ M is such
that m mod M1 ∈ ker(ϕ), then m = 0 mod M2 i.e. m ∈ M2. So ker(ϕ) ⊂ M2/M1.
Conversely for m ∈ M2/M1, we can take a representative m ∈ M2 then we have
ϕ(m) = ϕ(m mod M1) = m mod M2 = 0 mod M2. So ker(ϕ) = M2/M1. So ϕ induces

an isomorphism of A-modules ϕ : (M/M1)/(M2/M1)
∼→M/M2.

2. Let us define ϕ : M2 → (M1 + M2)/M1 to be the composition of the inclusion M2 ↪→
M1 +M2 and the quotient M1 +M2 → (M1 +M2)/M1. Then ϕ is a homomorphism of
A-modules as composition of homomorphisms of A-modules. Moreover, ϕ is surjective:
indeed, for a α ∈ (M1 + M2)/M1 take a representative

∑
im

1
i + m2

i ∈ M1 + M2 of α
with m1

i ∈M1 and m2
i ∈M2, ∀i; then we have

ϕ(
∑
i

m2
i ) =

∑
i

m2
i mod M1 =

∑
i

m1
i +m2

i mod M1 = α.

Let us analyse the kernel of ϕ: if m ∈ ker(ϕ), then m mod M1 = 0 i.e. m ∈ M1, thus
m ∈ M1 ∩M2. Conversely, for m ∈ M1 ∩M2, we have ϕ(m) = m mod M1 = 0 so
that ker(ϕ) = M1 ∩ M2. As a consequence, ϕ induces a isomorphism of A-modules

ϕ : M2/(M1 ∩M1)
∼→ (M1 +M2)/M1.

Exercise 7. (Module homomorphisms)

1. Let us first prove that HomA(M,N) has a structure of commutative group. We define
0Hom ∈ HomA(M,N) by m 7→ 0 and for f ∈ HomA(M,N), −f ∈ HomA(M,N) by
m 7→ −f(m). For f, g ∈ HomA(M,N), we define f +Hom g ∈ HomA(M,N) by m 7→
f(m) + g(m). Then associativity of +Hom follows from associativity of +:

(f +Hom g) +Hom h = [m 7→ (f + g)(m) + h(m)] = [m 7→ (f(m) + g(m)) + h(m)]

= [m 7→ f(m) + (g(m) + h(m))] = f +Hom (g +Hom h)
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for f, g, h ∈ HomA(M,N). We also have

f +Hom 0Hom = [m 7→ f(m) + 0] = [m 7→ f(m)] = f

and

f +Hom (−f) = [m 7→ f(m) + (−f(m))] = [m 7→ f(m)− f(m)] = [m 7→ 0] = 0Hom.

So HomA(M,N) is a commutative (checked by the same kind of computations) group.
Let us define a structure of A-module by the following rule: for a ∈ A and f ∈
HomA(M,N), define af := [m 7→ af(m)].
Then for a, b ∈ A, and f, g ∈ HomA(M,N), we have

a(f +Hom g) = [m 7→ a(f(m) + g(m))] = [m 7→ af(m) + ag(m)] N is a A−module

= af +Hom ag

and

(a+ b)f = [m 7→ (a+ b)f(m)] = [m 7→ af(m) + bf(m)] N is a A−module

= af +Hom bf

and
(ab)f = [m 7→ (ab)f(m)] = [m 7→ a(bf(m))] N is a A−module

= a(bf)

and finally
1 · f = [m 7→ 1 · f(m)] = [m 7→ f(m)] N is a A−module

= f

As a conclusion, HomA(M,N) admits a natural structure of A-module.

2. Let us define ϕ : HomA(A,M) → M by f 7→ f(1). Then for a ∈ A and f, g ∈
HomA(A,M), we have

ϕ(a(f + g)) = a(f(1) + g(1)) = af(1) + ag(1) M is a A−module

= aϕ(f) + aϕ(g)

so ϕ is a homomorphism of A-modules. This homomorphism is injective: if ϕ(f) = 0
then for any a, f(a) = f(a · 1) = af(1) = aϕ(f) = 0 since f is a homomorphism of
A-modules, so f = 0Hom.
The homomorphism is also surjective: given a m ∈ M , define fm : a 7→ am. Then for
a, b, c ∈ A, f(a(b+c)) = a(b+c)m = abm+acm = af(b)+af(c) since M is a A-module,
as a consequence f ∈ HomA(A,M) and ϕ(f) = m. As a conclusion, ϕ is a isomorphism
of A-modules.

3. For n > 1, Z/nZ 6= {0} is a commutative group and as such it is a Z-module. Now take
f ∈ HomZ(Z/nZ,Z), we have

Z 3 0 = f(0) = f(1 + · · ·+ 1︸ ︷︷ ︸
n−times

) = f(1) + · · ·+ f(1)︸ ︷︷ ︸
n−times

f group homomorphism

= nf(1) ∈ Z

so (Z integral domain) f(1) = 0. So for a a ∈ Z/nZ, take a representative a ∈ {0, . . . , n−
1} then

f(a) = f(1 + · · ·+ 1︸ ︷︷ ︸
a−times

) = f(1) + · · ·+ f(1)︸ ︷︷ ︸
a−times

= af(1) = 0

so f = 0Hom. So HomZ(Z/nZ,Z) = 0.

4. In terms of abelian groups, the first item says that forG1, G2 abelian groups, HomZ(G1, G2)
is again an abelian group. The second item says that for any abelian group G, there is
a isomorphism of groups G ' HomZ(Z, G).
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Exercise 8. (Spectrum of a ring)

1. Case A = Fp[x]. It is known (see Examples 3.5 in the lecture) that Fp[x] is a principal
ideal domain. According to Lemma 3.6 the maximal ideals of A are of the form (f) for
f ∈ Fp[x] an irreducible polynomial. So MaxSpec(A) = {(f), f ∈ Fp[x], f irreducible}.
Let (f) ⊂ Fp[x] (Fp[x] is a principal ideal domain) be a prime ideal, then f is a prime
element. As Fp[x] is a domain, f is irreducible. So as A is an integral domain, Spec(A) =
MaxSpec(A) ∪ {(0)}.

2. Case A = k[x]/(x3). We use the bijection between Spec(A) and {(x3) ⊂ p, p ⊂
k[x] is prime} and since k[x] is a principal ideal domain, Spec(A) is in bijection with
{(f), (x3) ⊂ (f), f ∈ k[x] is prime} = {(f), f |x3, f ∈ k[x] is prime} = {(x)}. Since
k[[x]]/(x) ' k (the constant term), (x) is a maximal ideal. So MaxSpec(A) = {(x)} =
Spec(A).

3. Case A = k[[x]]. Let f =
∑

i≥0 aix
i ∈ A such that a0 6= 0 then there is a g ∈ k[[x]]

such that fg = 1 (g =
∑

i bix
i with bi ∈ k defined by induction, b0 = a−10 and bi+1 =

−a−10

∑i
j=0 ai+1−jbj). As a consequence, a proper ideal a of k[[x]] cannot contain such

an element so that we have a ⊂ (x) for any proper ideal a ⊂ k[[x]].
Now, let 0 6= a ⊂ k[[x]] be a proper ideal and 0 6= f =

∑
i aix

i ∈ a. Set d := min{i, ai 6=
0} > 0 (by the previous observation). We have f = xd(

∑
i≥0 ad+ix

i); since
∑

i≥0 ad+ix
i

has non-zero constant term, we can find a g ∈ k[[x]] such g(
∑

i≥0 ad+ix
i) = 1 so that

a 3 fg = xd(g(
∑

i≥0 ad+ix
i)) = xd.

Set now 0 < da := min{min{i, ai(f) 6= 0}, 0 6= f ∈ a} where f =
∑

i ai(f)xi. Then by

the previous computation, (xda) ⊂ a and by definition of da, a ⊂ (xda) so that a = (xda).
But among the (xd)’s (d > 0), the only prime ideal is (x). Looking at the terms of least
degree in a product, we see that k[[x]] is an integral domain i.e. (0) is a prime ideal, so
Spec(A) = {(0), (x)}. The only maximal ideal is (x).
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