Solutions for exercises, Algebra I (Commutative Algebra) - Week 3

Exercise 9. (Adjunction)
Let us define $\chi: \operatorname{Hom}_{A}\left(M,{ }_{A} N\right) \rightarrow \operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right)$ by $\varphi \mapsto \chi(\varphi)=[m \otimes b \mapsto b \varphi(m)]$.
For $\varphi \in \operatorname{Hom}_{A}\left(M,{ }_{A} N\right), \chi(\varphi) \in \operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right)$: indeed for $m, m^{\prime} \in M$ and $b, b^{\prime}, b^{\prime \prime} \in B$,

$$
\begin{aligned}
\chi(\varphi)\left(b^{\prime \prime}\left(m \otimes b+m^{\prime} \otimes b^{\prime}\right)\right)=\chi(\varphi)\left(m \otimes b^{\prime \prime} b+m^{\prime} \otimes b^{\prime \prime} b^{\prime}\right) & =\chi(\varphi)\left(m \otimes b^{\prime \prime} b\right)+\chi(\varphi)\left(m^{\prime} \otimes b^{\prime \prime} b^{\prime}\right) \\
& =b^{\prime \prime} b \varphi(m)+b^{\prime \prime} b^{\prime} \varphi\left(m^{\prime}\right) \\
& =b^{\prime \prime} \chi(\varphi)(m \otimes b)+b^{\prime \prime} \chi(\varphi)\left(m^{\prime} \otimes b^{\prime}\right)
\end{aligned}
$$

χ is a group homomorphism: for $\varphi, \psi \in \operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$,

$$
\begin{aligned}
\chi(\varphi-\psi)=[m \otimes b \mapsto b(\varphi(m)-\psi(m))] & =[m \otimes b \mapsto b \varphi(m)-b \psi(m))] \\
& =[m \otimes b \mapsto \chi(\varphi(m \otimes b))-\chi(\psi(m \otimes b))] \\
& =\chi(\varphi)-\chi(\psi)
\end{aligned}
$$

χ is injective: if $\chi(\varphi)=0$, then for $m \in M$, we have $0=\chi(\varphi)(m \otimes 1)=1 \cdot \varphi(m)=\varphi(m)$ so $\varphi=0$.
χ is surjective: given $\psi \in \operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right)$, let us define $\varphi: M \rightarrow N$ by $m \mapsto \psi(m \otimes 1)$. Then φ is clearly a group homomorphism and for $a \in A$, and $m \in M, \varphi(a m)=\psi(a m \otimes$ 1) $=\psi(m \otimes f(a))=f(a) \psi(m \otimes 1)=f(a) \varphi(m)$ so $\varphi \in \operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$. Now, we have $\chi(\varphi)=[m \otimes b \mapsto b \varphi(m)]=[m \otimes b \mapsto b \psi(m \otimes 1)]=[m \otimes b \mapsto \psi(m \otimes b)]=\psi$.
So χ is a group isomorphism.

The B-module structure on $\operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right)$ is the structure seen in Exercise 7. For any $\varphi \in \operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$ and $b \in B$ let us define, using the structure of B-module on N, $b \varphi: m \mapsto b \varphi(m)$; then $b \varphi \in \operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$: for $a \in A$ and $m, m^{\prime} \in M$,

$$
\begin{aligned}
b \varphi\left(a\left(m+m^{\prime}\right)\right)=b \varphi(a m)+b \varphi\left(a m^{\prime}\right) & =b f(a) \varphi(m)+b f(a) \varphi\left(m^{\prime}\right) \\
& =f(a) b \varphi(m)+f(a) b \varphi\left(m^{\prime}\right) \\
& =a \cdot b \varphi(m)+a \cdot b \varphi\left(m^{\prime}\right)
\end{aligned}
$$

Because of the structure of B-module on N, (it is easy to check that) the operation just defined $B \times \operatorname{Hom}_{A}\left(M,{ }_{A} N\right) \rightarrow \operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$ satisfies all the axioms required to give a B module structure on $\operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$.
Moreover, $\chi(b \varphi)=\left[m \otimes b^{\prime} \mapsto b^{\prime} b \varphi(m)\right]=\left[m \otimes b^{\prime} \mapsto b b^{\prime} \varphi(m)\right]=b\left[m \otimes b^{\prime} \mapsto b^{\prime} \varphi(m)\right]=b \chi(\varphi)$ so χ is a homomorphism of B-modules (thus an isomorphism of B-modules) when $\operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$ is given B-module structure just defined.

The A-module structure on $\operatorname{Hom}_{A}\left(M,{ }_{A} N\right)$ is the structure seen in Exercise 7 . We give $\operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right)$ the A-module structure ${ }_{A} \operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right)$. Then for $a \in A$ and $\varphi \in \operatorname{Hom}_{A}\left(M,{ }_{A} N\right), \chi(a \cdot \varphi)=[m \otimes b \mapsto b(a \cdot \varphi)(m)]=[m \otimes b \mapsto b f(a) \varphi(m)]=[m \otimes b \mapsto$ $f(a) b(m)]=f(a)[m \otimes b \mapsto b \varphi(m)]=a \cdot \chi(\varphi)$ so χ is a homomorphism of A-modules.

Solutions to be handed in before Monday April 27, 4pm.

Exercise 10. (Deducing exactness)
Let us start by proving that $f \circ g=0$ i.e. that $\operatorname{im}(g) \subset \operatorname{ker}(f)$: apply the assumption to $N=M_{3}$, we get that

$$
0 \rightarrow \operatorname{Hom}\left(M_{3}, M_{3}\right) \xrightarrow{\circ f} \operatorname{Hom}\left(M_{2}, M_{3}\right) \xrightarrow{\circ g} \operatorname{Hom}\left(M_{1}, M_{3}\right)
$$

is exact. In particular, $\operatorname{id}_{M_{3}} \circ f \circ g=0 \in \operatorname{Hom}\left(M_{1}, M_{3}\right)$ i.e. $f \circ g=0$.

To prove the reverse inclusion i.e. $\operatorname{ker}(f) \subset \operatorname{im}(g)$, apply the assumption to $N=M_{2} / \operatorname{im}(g)$:

$$
0 \rightarrow \operatorname{Hom}\left(M_{3}, M_{2} / \mathrm{im}(g)\right) \stackrel{\circ f}{\rightarrow} \operatorname{Hom}\left(M_{2}, M_{2} / \operatorname{im}(g)\right) \stackrel{\circ g}{\rightarrow} \operatorname{Hom}\left(M_{1}, M_{2} / \operatorname{im}(g)\right)
$$

is exact. The exactness in the middle can be written $\operatorname{ker}(-\circ g)=\operatorname{im}(-\circ f)$. Now, consider the projection homomorphism $\pi: M_{2} \rightarrow M_{2} / \operatorname{im}(g)$. We have $\pi \in \operatorname{ker}(-\circ g)$ so there is a $\varphi \in \operatorname{Hom}\left(M_{3}, M_{2} / \operatorname{im}(g)\right)$ such that $\pi=\varphi \circ f$. Let $m_{2} \in \operatorname{ker}(f)$, we have $\pi\left(m_{2}\right)=\varphi \circ f\left(m_{2}\right)=\varphi\left(f\left(m_{2}\right)\right)=\varphi(0)=0$ i.e. $m_{2} \in \operatorname{im}(g)$. So we get $\operatorname{ker}(f) \subset \operatorname{im}(g)$. Hence $\operatorname{ker}(f)=\operatorname{im}(g)$.

To prove that f is surjective, apply the assumption to $N=M_{3} / \operatorname{im}(f)$:

$$
0 \rightarrow \operatorname{Hom}\left(M_{3}, M_{3} / \operatorname{im}(f)\right) \xrightarrow{\circ f} \operatorname{Hom}\left(M_{2}, M_{3} / \operatorname{im}(f)\right) \xrightarrow{\circ g} \operatorname{Hom}\left(M_{1}, M_{3} / \operatorname{im}(f)\right)
$$

is exact. Consider the projection $\pi: M_{3} \rightarrow M_{3} / \operatorname{im}(f) \in \operatorname{Hom}\left(M_{3}, M_{3} / \operatorname{im}(f)\right)$; we have of course $\pi \circ f=0 \in \operatorname{Hom}\left(M_{2}, M_{3} / \operatorname{im}(f)\right)$ but since $-\circ f$ is injective, we get $\pi=0$ i.e. $M_{3} / \operatorname{im}(f)=0$ i.e. $M_{3}=\operatorname{im}(f)$.

Exercise 11. (Examples of exact sequences)

1. The map β is surjective: $\left(m_{1},-m_{2}\right) \in M_{1} \oplus M_{2}$ is a preimage of $m_{1}+m_{2} \in M_{1}+M_{2}$. The map α is injective: if $\alpha(m)=(0,0)$, then $m=0$.
For $m \in M_{1} \cap M_{2}$, we have $\beta \circ \alpha(m)=\beta((m, m))=m-m=0$ i.e. $\operatorname{im}(\alpha) \subset \operatorname{ker}(\beta)$.
Now, let $\left(m_{1}, m_{2}\right) \in \operatorname{ker}(\beta)$, then $m_{1}-m_{2}=0$ i.e. $M_{1} \ni m_{1}=m_{2} \in M_{2}$ hence $m_{1}=m_{2} \in M_{1} \cap M_{2}$. Thus $\left(m_{1}, m_{2}\right)=\alpha\left(m_{1}\right)$. So we get $\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$.

We start by proving some properties of the sequence of the two last items that are independent of $f \in k[x, y, z]$.
φ_{1} is surjective: by assumption, an element $a \in \mathfrak{a}$ can be written $a=(x+z) p+q y+r f$ for some $p, q, r \in A$ so we have $\varphi_{1}(p, q, r)=a$.
We have $\varphi_{1} \circ \varphi_{2}=0$ i.e. $\operatorname{im}\left(\varphi_{2}\right) \subset \operatorname{ker}\left(\varphi_{1}\right)$: for $(p, q, r) \in A^{3}$,

$$
\begin{aligned}
\varphi_{1} \circ \varphi_{2}\left(p e_{1} \wedge e_{2}+q e_{1} \wedge e_{3}+r e_{2} \wedge e_{3}\right) & =\varphi_{1}\left((x+z) p e_{2}-y p e_{1}+q(x+z) e_{3}-q f e_{1}+y r e_{3}-r f e_{2}\right) \\
& =(x+z) p y-y p(x+z)+(x+z) q f-q f(x+z)+y r f-r f y \\
& =0
\end{aligned}
$$

We have $\varphi_{2} \circ \varphi_{3}=0$ i.e. $\operatorname{im}\left(\varphi_{3}\right) \subset \operatorname{ker}\left(\varphi_{2}\right)$: for $p \in A$,

$$
\begin{aligned}
\varphi_{2} \circ \varphi_{3}\left(p e_{1} \wedge e_{2} \wedge e_{3}\right) & =\varphi_{2}\left((x+z) p e_{2} \wedge e_{3}-y p e_{1} \wedge e_{3}+p f e_{1} \wedge e_{2}\right) \\
& =(x+z) p y e_{3}-(x+z) p f e_{2}-y p(x+z) e_{3}+y p f e_{1}+p f(x+z) e_{2}-p f y e_{1} \\
& =0
\end{aligned}
$$

φ_{3} is injective: we have $\wedge^{3} A^{3} \simeq A e_{1} \wedge e_{2} \wedge e_{3}$ and the image of the generator is not 0 and A is an integral domain.
2. Let us show that $\operatorname{ker}\left(\varphi_{1}\right) \subset \operatorname{im}\left(\varphi_{2}\right)$: By a direct calculation $(0,-z, y),(-z, 0, x+z)$ and $(-y, x+z, 0)$ belong to $\operatorname{ker}\left(\varphi_{1}\right)$. By a direct calculation, we also see that (taking the basis $\left(e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{3}\right)$ for $\left.\wedge^{2} A^{3}\right) \varphi_{2}(1,0,0)=(-y, x+z, 0), \varphi_{2}(0,1,0)=(-z, 0, x+z)$ and $\varphi_{2}(0,0,1)=(0,-z, y)$. So to prove the claim, it is sufficient to prove that $(0,-z, y)$, $(-z, 0, x+z)$ and $(-y, x+z, 0)$ generate $\operatorname{ker}\left(\varphi_{1}\right)$.
So let $(p, q, r) \in \operatorname{ker}\left(\varphi_{1}\right)$ then

$$
\begin{equation*}
p(x+z)+q y+r z=0 . \tag{}
\end{equation*}
$$

(Partially) evaluating (*) at $(x, y, 0)$, we get $p(x, y, 0) x+q(x, y, 0) y=0$ in $k[x, y]$. In particular $y \mid p(x, y, 0)$ and $x \mid q(x, y, 0)$. So we can write $p=y p_{1}+z p_{2}$ and $q=x q_{1}+z q_{2}$ for some polynomials $p_{1}, q_{1} \in k[x, y]$ and $p_{2}, q_{2} \in A$. Looking back to the evaluation at $(x, y, 0)$, we have $x y\left(p_{1}+q_{1}\right)=0$ so $p_{1}=-q_{1}$ in $k[x, y]$.

Now, evaluating (*) at $(x, 0, z)$, we get in $k[x, z]$,

$$
0=p(x, 0, z)(x+z)+r(x, 0, z) z=z\left((x+z) p_{2}(x, 0, z)+r(x, 0, z)\right)
$$

So $(x+z) \mid r(x, 0, z)$ i.e. we can write $r=(x+z) r_{1}+y r_{2}$ for some polynomials $r_{1} \in k[x, z]$ and $r_{2} \in A$. Looking back to the evaluation at $(x, 0, z)$, we get $0=z(x+z)\left(p_{2}(x, 0, z)+\right.$ $\left.r_{1}\right)$ in $k[x, z]$. Thus $p_{2}=-r_{1}+y p_{3}$ for some $p_{3} \in A$.
Evaluating (*) at $(x, y,-x)$, we get in $k[x, y]$,

$$
0=q(x, y,-x) y-x r(x, y,-x)=x y\left(q_{1}(x, y)-q_{2}(x, y,-x)-r_{2}(x, y,-x)\right)
$$

so we can write $q_{2}=q_{3}+(x+z) q_{4}, r_{2}=q_{1}-q_{3}+(x+z) r_{3}$ for some $q_{3} \in k[x, y]$ and $q_{4}, r_{3} \in A$. At this point, we have:

$$
\begin{gathered}
p=p_{1} y-z r_{1}+y z p_{3} \\
q=-p_{1} x+z q_{3}+(x+z) z q_{4} \\
r=(x+z) r_{1}-\left(p_{1}+q_{3}\right) y+y(x+z) r_{3}
\end{gathered}
$$

Now plugging it into (*), we get $p_{3}+q_{4}+r_{3}=0$.
Now check that $\left(\begin{array}{c}p \\ q \\ r\end{array}\right)=-p_{1}\left(\begin{array}{c}-y \\ x+z \\ 0\end{array}\right)-\left(y p_{3}-r_{1}\right)\left(\begin{array}{c}-z \\ 0 \\ x+z\end{array}\right)-\left(p_{1}+q_{3}+(x+z) q_{4}\right)\left(\begin{array}{c}0 \\ -z \\ y\end{array}\right)$ proving that $\operatorname{ker}\left(\varphi_{1}\right) \subset \operatorname{im}\left(\varphi_{2}\right)$.

Let us show that $\operatorname{ker}\left(\varphi_{2}\right) \subset \operatorname{im}\left(\varphi_{3}\right):$ let $(p, q, r) \in \operatorname{ker}\left(\varphi_{2}\right)$ then we have

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\varphi_{2}\left(\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)\right)=\left(\begin{array}{c}
-p y-q z \\
(x+z) p-r z \\
q(x+z)+r y
\end{array}\right)
$$

Looking at the first line: we get $z \mid p$ and $y \mid q$; so let us write $p=z p_{1}$ and $q=y q_{1}$. Looking again at the first line, we get $p_{1}=-q_{1}$.
Looking at the second line, we get $(x+z) \mid r$ so we can write $r=(x+z) r_{1}$. The second line again, gives $p_{1}=r_{1}$. So $\varphi_{3}\left(p_{1}\right)=\left(\begin{array}{c}p_{1} z \\ -y p_{1} \\ p_{1}(x+z)\end{array}\right)=\left(\begin{array}{c}p \\ q \\ r\end{array}\right)$ proving $\operatorname{ker}\left(\varphi_{2}\right) \subset \operatorname{im}\left(\varphi_{3}\right)$.
3. It is immediate to check that $(1,-y,-1) \in A^{3}$ (i.e. $e_{1}-y e_{2}-e_{3}$) is in the kernel of φ_{1} since $(x+z)+(-y) y+(-1)\left(x-y^{2}+z\right)=0$. Suppose that the sequence is exact. Then we have a $(p, q, r) \in \wedge^{2} A^{3}$ (i.e. $\left.p e_{1} \wedge e_{2}+q e_{1} \wedge e_{3}+r e_{2} \wedge e_{3}\right)$, such that $\varphi_{2}(p, q, r)=(1,-y,-1)$. On the first component, we get $1=p y-q\left(x-y^{2}+z\right)$. But evaluating the equality at $(0,0,0) \in k^{3}$, we have $1=p(0,0,0) \cdot 0-q(0,0,0) \cdot 0$ which is absurd so the inclusion $\operatorname{im}\left(\varphi_{2}\right) \subset \operatorname{ker}\left(\varphi_{1}\right)$ is strict i.e. the sequence is not exact.

Exercise 12. (Flat, free, projective)

1. Since A is an integral domain, the principal ideal (a) is a free module $A \stackrel{\varphi}{\simeq} A a=M$ as A module (if $a x=\varphi(x)=0$ then $x=0$ and by definition an element $x \in M$ can be written $x=a y$, with $y \in A$, so $x=\varphi(y)$).
2. Let us prove that $k(x)$ is a flat $k[x]$-module. Let $\alpha: N \hookrightarrow N^{\prime}$ be an injective homomorphism of $k[x]$-modules; we want to see that $\alpha \otimes \operatorname{id}_{k(x)}: N \otimes_{k[x]} k(x) \rightarrow N^{\prime} \otimes_{k[x]} k(x)$ is injective [[[be careful; the proof in the previous version contained a mistake]]]. Let $\sum_{i} n_{i} \otimes \frac{p_{i}}{q_{i}} \in N \otimes_{k[x]} k(x)$ such that $\alpha \otimes \operatorname{id}_{k(x)}\left(\sum_{i} n_{i} \otimes \frac{p_{i}}{q_{i}}\right)=0$, then:

$$
\begin{aligned}
0=\alpha \otimes \operatorname{id}_{k(x)}\left(\sum_{i} n_{i} \otimes \frac{p_{i}}{q_{i}}\right) & =\alpha \otimes \operatorname{id}_{k(x)}\left(\sum_{i} n_{i} \otimes_{k[x]} \frac{p_{i}}{q_{i}}\right) \\
& =\alpha \otimes \operatorname{id}_{k(x)}\left(\sum_{i} n_{i} \otimes_{k[x]} \frac{p_{i}}{\Pi_{k} q_{k}} \Pi_{k \neq i} q_{k}\right) \\
& =\alpha \otimes \operatorname{id}_{k(x)}\left(\sum_{i} p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i} \otimes_{k[x]} \frac{1}{\Pi_{k} q_{k}}\right) \\
& =\alpha\left(\sum_{i} p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i}\right) \otimes_{k[x]} \frac{1}{\Pi_{k} q_{k}}
\end{aligned}
$$

Now look at the homomorphism of $k[x]$-modules $\mu: k[x] \rightarrow N$ given by $f \mapsto f \sum_{i} p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i}$. If $\alpha \circ \mu$ is injective, it gives an isomorphism of $k[x]$-modules $k[x] \simeq \operatorname{im}(\alpha \circ \mu)=$ $\left\langle\alpha\left(\sum_{i} p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i}\right)\right\rangle$ (i.e. $\operatorname{im}(\alpha \circ \mu)$ is a free submodule of $\left.N^{\prime}\right)$. Then $\operatorname{im}(\alpha \circ \mu) \otimes_{k[x]}$ $k(x) \simeq k[x] \otimes_{k[x]} k(x) \simeq k(x)$. In particular $\alpha\left(\sum_{i} p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i}\right) \otimes_{k[x]} \frac{1}{\Pi_{k} q_{k}}=\neq 0$; contradiction. So $\alpha \circ \mu$ is not injective and since α is injective, we get that μ is not injective. Its kernel is a $k[x]$-submodule of $k[x]$ i.e. an ideal (the annihilator of $\left.\sum_{i} p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i}\right)$ and since $k[x]$ is a principal ideal domain, $\operatorname{ker}(\mu)=(g)$ for some $g \in k[x] \backslash\{0\}$. Then we have in $N \otimes_{k[x]} k(x)$:

$$
\begin{aligned}
\sum_{i} n_{i} \otimes_{k[x]} \frac{p_{i}}{q_{i}} & =\sum_{i} n_{i} \otimes_{k[x]} \frac{g p_{i}}{g q_{i}} \\
& =\sum_{i} n_{i} \otimes_{k[x]} \frac{g p_{i}}{g \Pi_{k} q_{k}} \Pi_{k \neq i} q_{k} \\
& =\sum_{i} g p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i} \otimes_{k[x]} \frac{1}{g \Pi_{k} q_{k}} \\
& =g\left(\sum_{i} p_{i}\left(\Pi_{k \neq i} q_{k}\right) n_{i}\right) \otimes_{k[x]} \frac{1}{g \Pi_{k} q_{k}} \\
& =0 \otimes_{k[x]} \frac{1}{g \Pi_{k} q_{k}}=0
\end{aligned}
$$

so $\alpha \otimes \mathrm{id}_{k(x)}$ is injective.
The $k[x]$-module $k(x)$ is not projective. An easy way to see that is to use the following fact:

$$
\begin{align*}
& \text { Let } P \text { be a } A \text {-module. Then } P \text { is projective if and only if } \\
& \exists M \simeq \oplus_{i \in I} A \text { and an } A \text {-module } N \text { such that } M \simeq P \oplus N \tag{}
\end{align*}
$$

(i.e. P is a direct summand of a free module). To prove this, look at the surjective morphism $\oplus_{p \in P} A \xrightarrow{\alpha} P$ given, on the component associated to $p \in P$, by $a \mapsto a p$ and use the fact that P is projective to lift id_{P}. Conversely, if P is a direct summand of a free module $\oplus_{i} A \simeq P \oplus Q$, then the projection $p_{P}: \oplus_{i} A \rightarrow P$ and the inclusion $i_{P}: P \rightarrow \oplus_{i} A$ satisfy $p_{P} \circ i_{P}=\operatorname{id}_{P}$. Now let $g: M \rightarrow N$ be a surjective homomorphism of A-modules, and $f: P \rightarrow N$ a homomorphism. Then $f \circ p_{P}: \oplus_{i} A \rightarrow N$ gives us
a homomorphism and since free modules are flat, there is a $f^{\prime}: \oplus_{i} A \rightarrow M$ such that $g \circ f^{\prime}=f \circ p_{P}$. Now $f^{\prime} \circ i_{P}: P \rightarrow M$ satisfies $g \circ f^{\prime} \circ i_{P}=f \circ p_{P} \circ i_{P}=f$.

So if $k(x)$ is projective, we should have, in particular, an injective homomorphism of $k[x]$-module $\alpha: k(x) \rightarrow \oplus_{i \in I} k[x]$ for some set I. Looking at one of its components (compose α with the projection $\oplus_{i \in I} k[x] \rightarrow k[x]$), we get a homomorphism of $k[x]$ modules $\alpha_{i}: k(x) \rightarrow k[x]$. Let us denote $f=\alpha_{i}(1) \in k[x]$. If $f \neq 0$, it as finitely many irreducible divisors so take $g \in k[x]$ irreducible not dividing f. We have $\underbrace{g \alpha_{i}\left(\frac{1}{g}\right)}_{\in k[x]}=$ $\alpha_{i}\left(g \frac{1}{g}\right)=\alpha_{i}(1)=f$ so $g \mid f$. Contradiction. So $\alpha_{i}(1)=0$. Thus (i was arbitrary), $\alpha=0$. In particular there is no injection of $k[x]$-module from $k(x)$ to a free $k[x]$-module. So $k(x)$ is not projective (in particular not free).
3. The injection $M \hookrightarrow A$ is a homomorphism of A modules. So (by definition of A), M is a direct summand of the free A-module A and as such, it is projective (in particular it is flat).
But M is not free: indeed M is a finitely generated non-zero A-module so if M is free, there is an isomorphism of A-modules $M \simeq A^{d}$ for a $d>0$. But have $\operatorname{dim}_{k}\left(A^{d}\right)=$ $d \operatorname{dim}_{k}(A)=d(\operatorname{deg}(f)+1)>1=\operatorname{dim}_{k} M$. Contradiction.
Exercise 13. (Long exact cohomology sequences)
Let us first prove that for any i, the sequence

$$
0 \rightarrow \operatorname{ker}\left(a_{i}\right) \xrightarrow{f_{i \mid \operatorname{ker}\left(a_{i}\right)}} \operatorname{ker}\left(b_{i}\right) \xrightarrow{g_{i \mid \operatorname{ker}\left(b_{i}\right)}} \operatorname{ker}\left(c_{i}\right)
$$

is exact. First, the sequence is well-defined:
For $x \in \operatorname{ker}\left(a_{i}\right), b_{i}\left(f_{i}(x)\right)=b_{i} \circ f_{i}(x)=f_{i+1} \circ a_{i}(x)=f_{i+1}(0)=0$. Thus $\operatorname{im}\left(f_{i \mid \operatorname{ker}\left(a_{i}\right)}\right) \subset \operatorname{ker}\left(b_{i}\right)$. Similarly, using $c_{i} \circ g_{i}=g_{i+1} \circ b_{i}$, one sees that $\operatorname{im}\left(g_{i \mid \operatorname{ker}\left(b_{i}\right)}\right) \subset \operatorname{ker}\left(c_{i}\right)$. So the sequence is well-defined.
The restriction of an injective morphism to a subset is clearly injective (as composition of two injective maps) so $f_{i \mid \operatorname{ker}\left(a_{i}\right)}$ is injective.
As $g_{i} \circ f_{i}=0$, by restriction $g_{i \mid \operatorname{ker}\left(b_{i}\right)} \circ f_{i \mid \operatorname{ker}\left(a_{i}\right)}=0$ i.e. $\operatorname{im}\left(f_{i \mid \operatorname{ker}\left(a_{i}\right)}\right) \subset \operatorname{ker}\left(g_{i \mid \operatorname{ker}\left(b_{i}\right)}\right)$. For $y \in \operatorname{ker}\left(g_{i \mid \operatorname{ker}\left(b_{i}\right)}\right)$ let $x \in M^{i}$ such that $f_{i}(x)=y$ (by exactness $\left.0 \rightarrow M^{i} \rightarrow N^{i} \rightarrow P^{i} \rightarrow 0\right)$; then $f_{i+1} \circ a_{i}(x)=b_{i}\left(f_{i}(x)\right)=b_{i}(y)=0\left(y \in \operatorname{ker}\left(b_{i}\right)\right)$ so $a_{i}(x) \in \operatorname{ker}\left(f_{i+1}\right)$; but f_{i+1} is assumed to be injective so $a_{i}(x)=0$ i.e. $x \in \operatorname{ker}\left(a_{i}\right)$ i.e. $\operatorname{im}\left(f_{i \mid \operatorname{ker}\left(a_{i}\right)}\right)=\operatorname{ker}\left(g_{i \mid \operatorname{ker}\left(b_{i}\right)}\right)$.

Similarly, for any i, the sequence:

$$
M^{i+1} / \mathrm{im}\left(a_{i}\right) \xrightarrow{\overline{f_{i+1}}} N^{i+1} / \mathrm{im}\left(b_{i}\right) \xrightarrow{\overline{g_{i+1}}} P^{i+1} / \mathrm{im}\left(c_{i}\right) \rightarrow 0
$$

is exact. It is a well-defined since for $x \in M^{i+1}$ and $x^{\prime} \in M^{i}, f_{i+i}\left(x+a_{i}\left(x^{\prime}\right)\right)=f_{i+1}(x)+$ $f_{i+1} \circ a_{i}\left(x^{\prime}\right)=f_{i+1}(x)+\underbrace{b_{i}\left(f_{i}\left(x^{\prime}\right)\right)}_{\in \operatorname{im}\left(b_{i}\right)}$. A similar calculation shows that $\overline{g_{i+1}}$ is a well defined homomorphism of A-modules.
The surjectivity of $\overline{g_{i+1}}$ follows directly from the surjectivity of g_{i+1} so does the equality $\overline{g_{i+1}} \circ \overline{f_{i+1}}=0$ from $g_{i+1} \circ f_{i+1}=0$. The equality $\operatorname{im}\left(\overline{f_{i+1}}\right)=\operatorname{ker}\left(\overline{g_{i+1}}\right)$ follows also from the corresponding the corresponding equality before passing to the quotients.

For any i, by assumption, we have: $\operatorname{im}\left(a_{i}\right) \subset \operatorname{ker}\left(a_{i+1}\right), \operatorname{im}\left(b_{i}\right) \subset \operatorname{ker}\left(b_{i+1}\right)$ and $\operatorname{im}\left(c_{i}\right) \subset$ $\operatorname{ker}\left(c_{i+1}\right)$. So have the following commutative (follows from the commutativity $b_{i} \circ f_{i}=f_{i+1} \circ a_{i}$, $\left.c_{i} \circ g_{i}=g_{i+1} \circ b_{i}\right)$ diagram with exact rows:

Now go through the proof of the snake lemma and check that neither the surjectivity of (what corresponds here to) $g_{1 \mid \operatorname{ker}\left(b_{1}\right)}$ nor the injectivity of (what corresponds here to) f_{0} were used to construction of the boundary homomorphism $\delta: \operatorname{ker}\left(c_{0}\right)=H^{0}\left(M^{\bullet}\right) \rightarrow \operatorname{Coker}\left(a_{0}\right)=$ $\operatorname{ker}\left(a_{1}\right) / \operatorname{im}\left(a_{0}\right)=H^{1}\left(M^{\bullet}\right)$ and neither were they used to prove the exactness of the induced sequence; so the following sequence of A-modules is exact:

$$
H^{0}\left(M^{\bullet}\right) \rightarrow H^{0}\left(N^{\bullet}\right) \rightarrow H^{0}\left(P^{\bullet}\right) \rightarrow H^{1}\left(M^{\bullet}\right) \rightarrow H^{1}\left(N^{\bullet}\right) \rightarrow H^{1}\left(P^{\bullet}\right)
$$

Moreover, we have also seen that $H^{0}\left(M^{\bullet}\right)=\operatorname{ker}\left(a_{0}\right) \hookrightarrow \operatorname{ker}\left(b_{0}\right)=H^{0}\left(N^{\bullet}\right)$.
Using the preliminary discussion, and again that $\operatorname{im}\left(a_{i}\right) \subset \operatorname{ker}\left(a_{i+1}\right), \operatorname{im}\left(b_{i}\right) \subset \operatorname{ker}\left(b_{i+1}\right)$ and $\operatorname{im}\left(c_{i}\right) \subset \operatorname{ker}\left(c_{i+1}\right)$, we have, for $i \geq 1$, the following commutative diagram with exact rows:

By the previous remark (namely that the proof of the snake lemma presented in the lecture requires less hypothesis than assumed in the statement) we get the following exact sequence:

$$
H^{i}\left(M^{\bullet}\right) \rightarrow H^{i}\left(N^{\bullet}\right) \rightarrow H^{i}\left(P^{\bullet}\right) \rightarrow H^{i+1}\left(M^{\bullet}\right) \rightarrow H^{i+1}\left(N^{\bullet}\right) \rightarrow H^{i+1}\left(P^{\bullet}\right)
$$

Exercise 14. (Direct limit)
Let us denote $\pi_{M}: \oplus M_{i} \rightarrow \underset{\longrightarrow}{\lim } M_{i}$ the canonical projection.

1. For $x \in \underset{\longrightarrow}{\lim } M_{i}$, take $m \in \oplus_{i} M_{i}$ such that $x=\pi_{M}(m)$. We can write $m=\sum_{k=1}^{n} m_{i_{k}}$ with $m_{i_{k}} \in M_{i_{k}}$. By hypothesis, we can find a $i_{1}, i_{2} \leq \ell^{\prime}$ and next a $i_{3}, \ell^{\prime} \leq \ell^{\prime \prime}$. Then $i_{1}, i_{2}, i_{3} \leq \ell^{\prime \prime}$. So we see that by an elementary induction, we can find a $\ell \in I$ such that $i_{1}, \ldots, i_{k} \leq \ell$. Set $m^{\prime}=\sum_{k=1}^{n} f_{i_{k} \ell}\left(m_{i_{k}}\right) \in M_{\ell}$. We have $m-m^{\prime}=\sum_{k=1}^{n} m_{i_{k}}-f_{i_{k} \ell}\left(m_{i_{k}}\right) ;$ in particular $m-m^{\prime} \in \operatorname{ker}\left(\pi_{M}\right)$ so $\pi_{M}\left(m^{\prime}\right)=x$.
2. Let us begin by proving the following fact:

$$
\begin{equation*}
\text { Let } m \in M_{i} \cap \operatorname{ker}\left(\pi_{M}\right), \text { then } \exists j \geq i \text { such that } f_{i j}(m)=0 \in M_{j} \tag{*}
\end{equation*}
$$

For such $m \in M_{i} \cap \operatorname{ker}\left(\pi_{M}\right)$, we can write $m=\sum_{k=1}^{n} n_{i_{k}}-f_{i_{k} j_{k}}\left(n_{i_{k}}\right)$ for some elements $i_{k} \leq j_{k}(k=1, \ldots n)$ of I and $n_{i_{k}} \in M_{i_{k}}$. Since we have a direct sum $\left(\oplus_{i} M_{i}\right)$, and $m \in M_{i}$, in the previous sum, all the terms that are lying on a M_{l} with $l \neq i$ have to vanish. So let us reorganise the sum: $m=\sum_{k=1}^{n} n_{i_{k}}-f_{i_{k} j_{k}}\left(n_{i_{k}}\right)=\sum_{k} w_{p_{k}}$ where $w_{p_{k}} \in M_{p_{k}}$, the p_{k} 's are chosen among $\cup_{\ell=1}^{n}\left\{i_{\ell}, j_{\ell}\right\}$ and $w_{p_{k}}=0$ for $p_{k} \neq i$ (so in the sum there is just $m=w_{i}$). Let us choose $r \in \bar{I}$ such that $r \geq j_{k} \geq i_{k}$ for any $k \in\{1, \ldots, n\}$. Then

$$
f_{i, r}(m)=f_{i, r}\left(w_{i}\right)=f_{i, r}\left(w_{i}\right)+\sum_{p_{k} \neq i} \underbrace{f_{p_{k} r}\left(w_{p_{k}}\right)}_{f_{p_{k} r}(0)=0}
$$

Now, each $w_{p_{k}}$ is of the form $\sum n_{a}-\sum f_{q p_{k}}\left(n_{q}\right)$ for some $n_{a} \in M_{p_{k}}$ and $q \leq p_{k}$ and $n_{q} \in M_{q}$; so $f_{p_{k} r}\left(w_{p_{k}}\right)=\sum f_{p_{k} r}\left(n_{a}\right)-\sum f_{p_{k} r} \circ f_{q p_{k}}\left(n_{q}\right)$ so we can reorganize terms as follow:

$$
\begin{aligned}
f_{i, r}(m)=f_{i, r}\left(w_{i}\right)+\sum_{p_{k} \neq i} f_{p_{k} r}\left(w_{p_{k}}\right) & =\sum_{p_{k}} f_{p_{k} r}\left(w_{p_{k}}\right) \\
& =\sum_{k=1}^{n} f_{i_{k} r}\left(n_{i_{k}}\right)-f_{j_{k} r} \circ f_{i_{k} j_{k}}\left(n_{i_{k}}\right) \\
& =\sum_{k=1}^{n} f_{i_{k} r}\left(n_{i_{k}}\right)-f_{i_{k} r}\left(n_{i_{k}}\right) \\
& =0 \text { proving the fact. }
\end{aligned}
$$

Now, let $\left(g_{i}: M_{i} \rightarrow N\right)_{i \in I}$ be a system of homomorphisms of A-modules, such that $g_{i}=g_{j} \circ f_{i j}$ for any $i \leq j$. Define a map $g: \xrightarrow{\lim } M_{i} \rightarrow N$ by $x \mapsto g_{i}(m)$ where $m \in M_{i}$ is such that $\pi_{M}(m)=x$ (which exists by the first question).
Let us first prove that it is well-defined. For $x \in \underset{\longrightarrow}{\lim } M_{i}$, let $m \in M_{i}$ and $m^{\prime} \in M_{j}$ such that $\pi_{M}(m)=x=\pi_{M}\left(m^{\prime}\right)$. Pick a $i, j \leq k$ then by definition $m-f_{i k}(m) \in \operatorname{ker}\left(\pi_{M}\right)$, $m^{\prime}-f_{i k}\left(m^{\prime}\right) \in \operatorname{ker}\left(\pi_{M}\right)$ and by assumption $m-m^{\prime} \in \operatorname{ker}\left(\pi_{M}\right)$ so $f_{i k}(m)-f_{j k}\left(m^{\prime}\right) \in$ $\operatorname{ker}\left(\pi_{M}\right) \cap M_{k}$. By (*), there is a $\ell \geq k$, such that $f_{k \ell}\left(f_{i k}(m)-f_{j k}\left(m^{\prime}\right)\right)=0 \in M_{\ell}$ which can be written $f_{i \ell}(m)=f_{j \ell}\left(m^{\prime}\right)$. So we get

$$
g_{i}(m)=g_{\ell} \circ f_{i \ell}(m)=g_{\ell}\left(f_{i \ell}(m)\right)=g_{\ell}\left(f_{j \ell}\left(m^{\prime}\right)\right)=g_{j}(m)
$$

so the map g is well-defined. Now for $x, y \in \xrightarrow{\lim } M_{i}$ and $a \in A$, pick $m \in M_{i}$ and $n \in M_{j}$ such that $\pi_{M}(m)=x$ and $\pi_{M}(n)=y$. Choose $\vec{k} \geq i, j$. We have $a\left(f_{i k}(m)+f_{j k}(n)\right) \in M_{k}$ and
$\pi_{M}\left(a\left(f_{i k}(m)+f_{j k}(n)\right)\right)=\pi_{M}(a(m+n))+\pi_{M}\left(a\left(f_{i k}(m)-m+f_{j k}(n)-n\right)\right)=\pi_{M}(a(m+n))=a(x+y)$
so $g(a(x+y))=g_{k}\left(a\left(f_{i k}(m)+f_{j k}(n)\right)\right)=a g_{k} \circ f_{i k}(m)+a g_{k} \circ f_{j k}(n)$ since g_{k} and $f_{i k}, f_{j k}$ are homomorphism of A-modules and since $\pi_{M}\left(f_{i k}(m)\right)=x, \pi_{M}\left(f_{j k}(n)\right)=y$, the previous equality can be written $g(a(x+y))=a g(x)+a g(y)$. So g is a homomorphism of A-modules.
Let $h: \lim M_{i} \rightarrow N$ be another homomorphism of A-modules through which the system $\left(g_{i}\right)$ factorizes. For $x \in \lim M_{i}$, take $m \in M_{i}$ lifting x i.e. $f_{i}(m)=\pi_{M}(m)=x$; we have $h(x)=h\left(f_{i}(m)\right)=g_{i}\left(\overrightarrow{m)}\right.$ since h factorizes $\left(g_{i}\right)$; but by definition of $g, g_{i}(m)=g(x)$ thus $h=g$ hence the uniqueness of the homomorphism factorizing $\left(g_{i}\right)$.

Now, let $\left(g_{i}: M_{i} \rightarrow N\right)_{i \in I}$ be a system of homomorphisms of A-modules, for which there are $i_{0} \leq j_{0}$ such that $g_{i_{0}} \neq g_{j_{0}} \circ f_{i_{0} j_{0}}$. Assume there a homomorphism $g: \underset{\longrightarrow}{\lim } M_{i} \rightarrow N$ factorizing $\left(g_{i}\right)$. By assumption, there is a $m \in M_{i_{0}}$ such that $g_{i_{0}}(m) \neq g_{j_{0}} \circ f_{i_{0} j_{0}}(m)$. Then for $x=\pi_{M}(m)=f_{i_{0}}(m)$, we have on one hand $g(x)=g\left(f_{i_{0}}(m)\right)=g_{i_{0}}(m)$ and on the other, $x=\pi_{M}\left(f_{i_{0} j_{0}}(m)+m-f_{i_{0} j_{0}}(m)\right)=\pi_{M}\left(f_{i_{0} j_{0}}(m)\right)=f_{j_{0}}\left(f_{i_{0} j_{0}}(m)\right)$ so $g(x)=g\left(f_{j_{0}}\left(f_{i_{0} j_{0}}(m)\right)\right)=g_{j_{0}}\left(f_{i_{0} j_{0}}(m)\right)$. Thus $g(x)=g_{i_{0}}(m) \neq g_{j_{0}}\left(f_{i_{0} j_{0}}(m)\right)=g(x)$. So there is no such map g.
3. The sequence exists because the homomorphisms in each exact sequence commute with the homomorphisms in the directed systems. For example, denoting α_{i} the homomor$\operatorname{phism} M_{i} \rightarrow N_{i}$ for each i, and $\overline{\alpha_{i}}: M_{i} \rightarrow \underline{\lim } N_{k}$ the composition $\pi_{N} \circ \alpha_{i}=f_{i}^{N} \circ \alpha_{i}$, we have for any $i \leq j$,

$$
\begin{aligned}
\overline{\alpha_{j}} \circ f_{i j}^{M}=f_{j}^{N} \circ \alpha_{j} \circ f_{i j}^{M}=f_{j}^{N} \circ f_{i j}^{N} \circ \alpha_{i} & =\pi_{N \mid N_{j}} \circ f_{i j}^{N} \circ \alpha_{i} \\
& =\pi_{N} \circ(\underbrace{f_{i j}^{N}-\operatorname{id}_{M_{i}}}_{i m(-) \subset \operatorname{ker}\left(\pi_{N}\right)}+\mathrm{id}_{M_{i}}) \circ \alpha_{i} \\
& =\pi_{N \mid M_{i}} \circ \alpha_{i} \\
& =f_{i}^{N} \circ \alpha_{i}=\overline{\alpha_{i}}
\end{aligned}
$$

So by the universal property there is a unique homomorphism of A-modules $\alpha: \underset{\longrightarrow}{\lim } M_{i} \rightarrow$ $\underset{\longrightarrow}{\lim } N_{i}$.
$\overrightarrow{\text { Let }}$ us denote β_{i} the homomorphism $N_{i} \rightarrow P_{i}$ for each i, and $\beta: \underset{\longrightarrow}{\lim } N_{i} \rightarrow \underset{\underset{i}{\lim } P_{i} \text { the }}{ }$ homomorphism given by the universal property.
α is injective: let $x \in \lim M_{i}$, such that $\alpha(x)=0$. Take $m \in M_{i}$ (by item 1) lifting x. Then $0=\alpha(x)=\alpha\left(f_{i}^{M}(m)\right)=\pi_{N} \circ \alpha_{i}(m)$. By (*), there is a $j \geq i$ such that $f_{i j}^{N}\left(\alpha_{i}(m)\right)=0$ but $\alpha_{j} \circ f_{i j}^{M}=f_{i j}^{N} \circ \alpha_{i}$ by hypothesis; so $\alpha_{j} \circ f_{i j}^{M}(m)=0$. But since α_{j} is injective (exactness of the $j^{\text {th }}$-sequence), we get $f_{i j}^{M}(m)=0$. So projecting to $\underset{\longrightarrow}{\lim } M_{i}$,
we get $x=0$.
$\operatorname{im}(\alpha) \subset \operatorname{ker}(\beta):$ let $x \in \underset{\longrightarrow}{\lim } M_{i}$ and $m \in M_{i}$ lifting x. Then $\alpha_{i}(m) \in N_{i}$ lifts $\alpha(x)$ and $\beta_{i} \circ \alpha_{i}(m)=0$ by assumption (exactness of the $i^{t h}$-sequence). So we get $\beta(\alpha(x))=0$. $\operatorname{ker}(\beta) \subset \operatorname{im}(\alpha)$: let $x \in \operatorname{ker}(\beta)$ and $n \in N_{i}$ lifting x. We have $\pi_{P}\left(\beta_{i}(n)\right)=0$. By (*), there is a $j \geq i$ such that $f_{i j}^{P}\left(\beta_{i}(n)\right)=0 \in P_{j}$; using the commutativity we get $\beta_{j}\left(f_{i j}^{N}(n)\right)=f_{i j}^{P}\left(\beta_{i}(n)\right)=0$. By exactness of the $j^{t h}$-sequence, there is a $m \in M_{j}$, such that $\alpha_{j}(m)=f_{i j}^{N}(n)$. Since $\pi_{N}(n)=\pi_{N}\left(f_{i j}^{N}(n)\right)$, we get $\alpha(y)=x$ for $y=\pi_{M}(m)$.
β is surjective: let $y \in \underset{\longrightarrow}{\lim } P_{i}$ and $p \in P_{i}$ lifting y. By exactness of the $i^{\text {th }}$-sequence, there is a $n \in N_{i}$ such that $\beta(n)=y$. Then $\beta(x)=y$ for $x=\pi_{N}(n)$.

