
Solutions for exercises, Algebra I (Commutative Algebra) – Week 3

Exercise 9. (Adjunction)
Let us define χ : HomA(M,AN)→ HomB(M ⊗A B,N) by ϕ 7→ χ(ϕ) = [m⊗ b 7→ bϕ(m)].
For ϕ ∈ HomA(M,AN), χ(ϕ) ∈ HomB(M ⊗A B,N): indeed for m,m′ ∈M and b, b′, b′′ ∈ B,

χ(ϕ)(b′′(m⊗ b+m′ ⊗ b′)) = χ(ϕ)(m⊗ b′′b+m′ ⊗ b′′b′) = χ(ϕ)(m⊗ b′′b) + χ(ϕ)(m′ ⊗ b′′b′)
= b′′bϕ(m) + b′′b′ϕ(m′)

= b′′χ(ϕ)(m⊗ b) + b′′χ(ϕ)(m′ ⊗ b′).

χ is a group homomorphism: for ϕ,ψ ∈ HomA(M,AN),

χ(ϕ− ψ) = [m⊗ b 7→ b(ϕ(m)− ψ(m))] = [m⊗ b 7→ bϕ(m)− bψ(m))]

= [m⊗ b 7→ χ(ϕ(m⊗ b))− χ(ψ(m⊗ b))]
= χ(ϕ)− χ(ψ).

χ is injective: if χ(ϕ) = 0, then for m ∈ M , we have 0 = χ(ϕ)(m⊗ 1) = 1 · ϕ(m) = ϕ(m) so
ϕ = 0.

χ is surjective: given ψ ∈ HomB(M ⊗A B,N), let us define ϕ : M → N by m 7→ ψ(m ⊗ 1).
Then ϕ is clearly a group homomorphism and for a ∈ A, and m ∈ M , ϕ(am) = ψ(am ⊗
1) = ψ(m ⊗ f(a)) = f(a)ψ(m ⊗ 1) = f(a)ϕ(m) so ϕ ∈ HomA(M,AN). Now, we have
χ(ϕ) = [m⊗ b 7→ bϕ(m)] = [m⊗ b 7→ bψ(m⊗ 1)] = [m⊗ b 7→ ψ(m⊗ b)] = ψ.
So χ is a group isomorphism.

The B-module structure on HomB(M ⊗A B,N) is the structure seen in Exercise 7. For
any ϕ ∈ HomA(M,AN) and b ∈ B let us define, using the structure of B-module on N ,
bϕ : m 7→ bϕ(m); then bϕ ∈ HomA(M,AN): for a ∈ A and m,m′ ∈M ,

bϕ(a(m+m′)) = bϕ(am) + bϕ(am′) = bf(a)ϕ(m) + bf(a)ϕ(m′)

= f(a)bϕ(m) + f(a)bϕ(m′)

= a · bϕ(m) + a · bϕ(m′)

Because of the structure of B-module on N , (it is easy to check that) the operation just
defined B × HomA(M,AN) → HomA(M,AN) satisfies all the axioms required to give a B-
module structure on HomA(M,AN).
Moreover, χ(bϕ) = [m⊗b′ 7→ b′bϕ(m)] = [m⊗b′ 7→ bb′ϕ(m)] = b[m⊗b′ 7→ b′ϕ(m)] = bχ(ϕ) so
χ is a homomorphism ofB-modules (thus an isomorphism ofB-modules) when HomA(M,AN)
is given B-module structure just defined.

The A-module structure on HomA(M,AN) is the structure seen in Exercise 7. We give
HomB(M ⊗A B,N) the A-module structure AHomB(M ⊗A B,N). Then for a ∈ A and
ϕ ∈ HomA(M,AN), χ(a · ϕ) = [m ⊗ b 7→ b(a · ϕ)(m)] = [m ⊗ b 7→ bf(a)ϕ(m)] = [m ⊗ b 7→
f(a)b(m)] = f(a)[m⊗ b 7→ bϕ(m)] = a · χ(ϕ) so χ is a homomorphism of A-modules.

Solutions to be handed in before Monday April 27, 4pm.



Exercise 10. (Deducing exactness)
Let us start by proving that f ◦ g = 0 i.e. that im(g) ⊂ ker(f): apply the assumption to
N = M3, we get that

0→ Hom(M3,M3)
◦f→ Hom(M2,M3)

◦g→ Hom(M1,M3)

is exact. In particular, idM3 ◦ f ◦ g = 0 ∈ Hom(M1,M3) i.e. f ◦ g = 0.

To prove the reverse inclusion i.e. ker(f) ⊂ im(g), apply the assumption to N = M2/im(g):

0→ Hom(M3,M2/im(g))
◦f→ Hom(M2,M2/im(g))

◦g→ Hom(M1,M2/im(g))

is exact. The exactness in the middle can be written ker(− ◦ g) = im(− ◦ f). Now, con-
sider the projection homomorphism π : M2 → M2/im(g). We have π ∈ ker(− ◦ g) so
there is a ϕ ∈ Hom(M3,M2/im(g)) such that π = ϕ ◦ f . Let m2 ∈ ker(f), we have
π(m2) = ϕ ◦ f(m2) = ϕ(f(m2)) = ϕ(0) = 0 i.e. m2 ∈ im(g). So we get ker(f) ⊂ im(g).
Hence ker(f) = im(g).

To prove that f is surjective, apply the assumption to N = M3/im(f):

0→ Hom(M3,M3/im(f))
◦f→ Hom(M2,M3/im(f))

◦g→ Hom(M1,M3/im(f))

is exact. Consider the projection π : M3 → M3/im(f) ∈ Hom(M3,M3/im(f)); we have of
course π ◦ f = 0 ∈ Hom(M2,M3/im(f)) but since − ◦ f is injective, we get π = 0 i.e.
M3/im(f) = 0 i.e. M3 = im(f).

Exercise 11. (Examples of exact sequences)

1. The map β is surjective: (m1,−m2) ∈M1 ⊕M2 is a preimage of m1 +m2 ∈M1 +M2.
The map α is injective: if α(m) = (0, 0), then m = 0.
For m ∈M1 ∩M2, we have β ◦ α(m) = β((m,m)) = m−m = 0 i.e. im(α) ⊂ ker(β).
Now, let (m1,m2) ∈ ker(β), then m1 − m2 = 0 i.e. M1 3 m1 = m2 ∈ M2 hence
m1 = m2 ∈M1 ∩M2. Thus (m1,m2) = α(m1). So we get im(α) = ker(β).

We start by proving some properties of the sequence of the two last items that are
independent of f ∈ k[x, y, z].
ϕ1 is surjective: by assumption, an element a ∈ a can be written a = (x+ z)p+ qy+ rf
for some p, q, r ∈ A so we have ϕ1(p, q, r) = a.
We have ϕ1 ◦ ϕ2 = 0 i.e. im(ϕ2) ⊂ ker(ϕ1): for (p, q, r) ∈ A3,

ϕ1 ◦ ϕ2(pe1 ∧ e2 + qe1 ∧ e3 + re2 ∧ e3) = ϕ1((x+ z)pe2 − ype1 + q(x+ z)e3 − qfe1 + yre3 − rfe2)

= (x+ z)py − yp(x+ z) + (x+ z)qf − qf(x+ z) + yrf − rfy
= 0

We have ϕ2 ◦ ϕ3 = 0 i.e. im(ϕ3) ⊂ ker(ϕ2): for p ∈ A,

ϕ2 ◦ ϕ3(pe1 ∧ e2 ∧ e3) = ϕ2((x+ z)pe2 ∧ e3 − ype1 ∧ e3 + pfe1 ∧ e2)

= (x+ z)pye3 − (x+ z)pfe2 − yp(x+ z)e3 + ypfe1 + pf(x+ z)e2 − pfye1

= 0

ϕ3 is injective: we have ∧3A3 ' Ae1 ∧ e2 ∧ e3 and the image of the generator is not 0
and A is an integral domain.
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2. Let us show that ker(ϕ1) ⊂ im(ϕ2): By a direct calculation (0,−z, y), (−z, 0, x+z) and
(−y, x+z, 0) belong to ker(ϕ1). By a direct calculation, we also see that (taking the basis
(e1 ∧ e2, e1 ∧ e3, e2 ∧ e3) for ∧2A3) ϕ2(1, 0, 0) = (−y, x+ z, 0), ϕ2(0, 1, 0) = (−z, 0, x+ z)
and ϕ2(0, 0, 1) = (0,−z, y). So to prove the claim, it is sufficient to prove that (0,−z, y),
(−z, 0, x+ z) and (−y, x+ z, 0) generate ker(ϕ1).
So let (p, q, r) ∈ ker(ϕ1) then

p(x+ z) + qy + rz = 0. (*)

(Partially) evaluating (*) at (x, y, 0), we get p(x, y, 0)x + q(x, y, 0)y = 0 in k[x, y]. In
particular y|p(x, y, 0) and x|q(x, y, 0). So we can write p = yp1 + zp2 and q = xq1 + zq2

for some polynomials p1, q1 ∈ k[x, y] and p2, q2 ∈ A. Looking back to the evaluation at
(x, y, 0), we have xy(p1 + q1) = 0 so p1 = −q1 in k[x, y].

Now, evaluating (*) at (x, 0, z), we get in k[x, z],

0 = p(x, 0, z)(x+ z) + r(x, 0, z)z = z((x+ z)p2(x, 0, z) + r(x, 0, z))

So (x+z)|r(x, 0, z) i.e. we can write r = (x+z)r1 +yr2 for some polynomials r1 ∈ k[x, z]
and r2 ∈ A. Looking back to the evaluation at (x, 0, z), we get 0 = z(x+z)(p2(x, 0, z)+
r1) in k[x, z]. Thus p2 = −r1 + yp3 for some p3 ∈ A.
Evaluating (*) at (x, y,−x), we get in k[x, y],

0 = q(x, y,−x)y − xr(x, y,−x) = xy(q1(x, y)− q2(x, y,−x)− r2(x, y,−x))

so we can write q2 = q3 + (x+ z)q4, r2 = q1 − q3 + (x+ z)r3 for some q3 ∈ k[x, y] and
q4, r3 ∈ A. At this point, we have:

p = p1y − zr1 + yzp3

q = −p1x+ zq3 + (x+ z)zq4

r = (x+ z)r1 − (p1 + q3)y + y(x+ z)r3

Now plugging it into (*), we get p3 + q4 + r3 = 0.

Now check that

pq
r

 = −p1

 −yx+ z
0

−(yp3−r1)

 −z
0

x+ z

−(p1+q3+(x+z)q4)

 0
−z
y


proving that ker(ϕ1) ⊂ im(ϕ2).

Let us show that ker(ϕ2) ⊂ im(ϕ3): let (p, q, r) ∈ ker(ϕ2) then we have0
0
0

 = ϕ2

pq
r

 =

 −py − qz
(x+ z)p− rz
q(x+ z) + ry


Looking at the first line: we get z|p and y|q; so let us write p = zp1 and q = yq1. Looking
again at the first line, we get p1 = −q1.
Looking at the second line, we get (x+ z)|r so we can write r = (x+ z)r1. The second

line again, gives p1 = r1. So ϕ3(p1) =

 p1z
−yp1

p1(x+ z)

 =

pq
r

 proving ker(ϕ2) ⊂ im(ϕ3).

3. It is immediate to check that (1,−y,−1) ∈ A3 (i.e. e1 − ye2 − e3) is in the kernel
of ϕ1 since (x + z) + (−y)y + (−1)(x − y2 + z) = 0. Suppose that the sequence is
exact. Then we have a (p, q, r) ∈ ∧2A3 (i.e. pe1 ∧ e2 + qe1 ∧ e3 + re2 ∧ e3), such that
ϕ2(p, q, r) = (1,−y,−1). On the first component, we get 1 = py − q(x − y2 + z). But
evaluating the equality at (0, 0, 0) ∈ k3, we have 1 = p(0, 0, 0) · 0− q(0, 0, 0) · 0 which is
absurd so the inclusion im(ϕ2) ⊂ ker(ϕ1) is strict i.e. the sequence is not exact.
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Exercise 12. (Flat, free, projective)

1. Since A is an integral domain, the principal ideal (a) is a free module A
ϕ
' Aa = M as

A module (if ax = ϕ(x) = 0 then x = 0 and by definition an element x ∈ M can be
written x = ay, with y ∈ A, so x = ϕ(y)).

2. Let us prove that k(x) is a flat k[x]-module. Let α : N ↪→ N ′ be an injective homomor-
phism of k[x]-modules; we want to see that α ⊗ idk(x) : N ⊗k[x] k(x) → N ′ ⊗k[x] k(x)
is injective [[[be careful; the proof in the previous version contained a mistake]]]. Let∑

i ni ⊗
pi
qi
∈ N ⊗k[x] k(x) such that α⊗ idk(x)(

∑
i ni ⊗

pi
qi

) = 0, then:

0 = α⊗ idk(x)(
∑
i

ni ⊗
pi
qi

) = α⊗ idk(x)(
∑
i

ni ⊗k[x]
pi
qi

)

= α⊗ idk(x)(
∑
i

ni ⊗k[x]
pi

Πkqk
Πk 6=iqk)

= α⊗ idk(x)(
∑
i

pi(Πk 6=iqk)ni ⊗k[x]
1

Πkqk
)

= α(
∑
i

pi(Πk 6=iqk)ni)⊗k[x]
1

Πkqk

Now look at the homomorphism of k[x]-modules µ : k[x]→ N given by f 7→ f
∑

i pi(Πk 6=iqk)ni.
If α ◦ µ is injective, it gives an isomorphism of k[x]-modules k[x] ' im(α ◦ µ) =
〈α(

∑
i pi(Πk 6=iqk)ni)〉 (i.e. im(α ◦ µ) is a free submodule of N ′). Then im(α ◦ µ) ⊗k[x]

k(x) ' k[x]⊗k[x] k(x) ' k(x). In particular α(
∑

i pi(Πk 6=iqk)ni)⊗k[x]
1

Πkqk
=6= 0; contra-

diction. So α ◦ µ is not injective and since α is injective, we get that µ is not injective.
Its kernel is a k[x]-submodule of k[x] i.e. an ideal (the annihilator of

∑
i pi(Πk 6=iqk)ni)

and since k[x] is a principal ideal domain, ker(µ) = (g) for some g ∈ k[x]\{0}. Then we
have in N ⊗k[x] k(x):∑

i

ni ⊗k[x]
pi
qi

=
∑
i

ni ⊗k[x]
gpi
gqi

=
∑
i

ni ⊗k[x]
gpi

gΠkqk
Πk 6=iqk

=
∑
i

gpi(Πk 6=iqk)ni ⊗k[x]
1

gΠkqk

= g(
∑
i

pi(Πk 6=iqk)ni)⊗k[x]
1

gΠkqk

= 0⊗k[x]
1

gΠkqk
= 0

so α⊗ idk(x) is injective.

The k[x]-module k(x) is not projective. An easy way to see that is to use the following
fact:

Let P be a A−module. Then P is projective if and only if

∃M ' ⊕i∈IA and an A−module N such that M ' P ⊕N (*)

(i.e. P is a direct summand of a free module). To prove this, look at the surjective

morphism ⊕p∈PA
α→ P given, on the component associated to p ∈ P , by a 7→ ap and

use the fact that P is projective to lift idP . Conversely, if P is a direct summand of
a free module ⊕iA ' P ⊕ Q, then the projection pP : ⊕iA → P and the inclusion
iP : P → ⊕iA satisfy pP ◦ iP = idP . Now let g : M → N be a surjective homomorphism
of A-modules, and f : P → N a homomorphism. Then f ◦ pP : ⊕iA → N gives us
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a homomorphism and since free modules are flat, there is a f ′ : ⊕iA → M such that
g ◦ f ′ = f ◦ pP . Now f ′ ◦ iP : P →M satisfies g ◦ f ′ ◦ iP = f ◦ pP ◦ iP = f .

So if k(x) is projective, we should have, in particular, an injective homomorphism of
k[x]-module α : k(x) → ⊕i∈Ik[x] for some set I. Looking at one of its components
(compose α with the projection ⊕i∈Ik[x] → k[x]), we get a homomorphism of k[x]-
modules αi : k(x)→ k[x]. Let us denote f = αi(1) ∈ k[x]. If f 6= 0, it as finitely many

irreducible divisors so take g ∈ k[x] irreducible not dividing f . We have g αi(
1

g
)︸ ︷︷ ︸

∈k[x]

=

αi(g
1
g ) = αi(1) = f so g|f . Contradiction. So αi(1) = 0. Thus (i was arbitrary), α = 0.

In particular there is no injection of k[x]-module from k(x) to a free k[x]-module. So
k(x) is not projective (in particular not free).

3. The injection M ↪→ A is a homomorphism of A modules. So (by definition of A), M is
a direct summand of the free A-module A and as such, it is projective (in particular it
is flat).
But M is not free: indeed M is a finitely generated non-zero A-module so if M is free,
there is an isomorphism of A-modules M ' Ad for a d > 0. But have dimk(A

d) =
ddimk(A) = d(deg(f) + 1) > 1 = dimkM . Contradiction.

Exercise 13. (Long exact cohomology sequences)
Let us first prove that for any i, the sequence

0→ ker(ai)
fi|ker(ai)−→ ker(bi)

gi|ker(bi)−→ ker(ci)

is exact. First, the sequence is well-defined:
For x ∈ ker(ai), bi(fi(x)) = bi◦fi(x) = fi+1◦ai(x) = fi+1(0) = 0. Thus im(fi|ker(ai)) ⊂ ker(bi).
Similarly, using ci ◦ gi = gi+1 ◦ bi, one sees that im(gi|ker(bi)) ⊂ ker(ci). So the sequence is
well-defined.
The restriction of an injective morphism to a subset is clearly injective (as composition of
two injective maps) so fi|ker(ai) is injective.
As gi ◦ fi = 0, by restriction gi|ker(bi) ◦ fi|ker(ai) = 0 i.e. im(fi|ker(ai)) ⊂ ker(gi|ker(bi)). For

y ∈ ker(gi|ker(bi)) let x ∈ M i such that fi(x) = y (by exactness 0 → M i → N i → P i → 0);
then fi+1 ◦ ai(x) = bi(fi(x)) = bi(y) = 0 (y ∈ ker(bi)) so ai(x) ∈ ker(fi+1); but fi+1 is
assumed to be injective so ai(x) = 0 i.e. x ∈ ker(ai) i.e. im(fi|ker(ai)) = ker(gi|ker(bi)).

Similarly, for any i, the sequence:

M i+1/im(ai)
fi+1→ N i+1/im(bi)

gi+1→ P i+1/im(ci)→ 0

is exact. It is a well-defined since for x ∈ M i+1 and x′ ∈ M i, fi+i(x + ai(x
′)) = fi+1(x) +

fi+1 ◦ ai(x′) = fi+1(x) + bi(fi(x
′))︸ ︷︷ ︸

∈im(bi)

. A similar calculation shows that gi+1 is a well defined

homomorphism of A-modules.
The surjectivity of gi+1 follows directly from the surjectivity of gi+1 so does the equality
gi+1 ◦ fi+1 = 0 from gi+1 ◦ fi+1 = 0. The equality im(fi+1) = ker(gi+1) follows also from the
corresponding the corresponding equality before passing to the quotients.

For any i, by assumption, we have: im(ai) ⊂ ker(ai+1), im(bi) ⊂ ker(bi+1) and im(ci) ⊂
ker(ci+1). So have the following commutative (follows from the commutativity bi◦fi = fi+1◦ai,
ci ◦ gi = gi+1 ◦ bi) diagram with exact rows:

0 //M0 f0 //

a0
��

N0 g0 //

b0
��

P 0

c0
��

// 0

0 // ker(a1)
f1|ker(a1)// ker(b1)

g1|ker(b1)// ker(c1)
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Now go through the proof of the snake lemma and check that neither the surjectivity of
(what corresponds here to) g1|ker(b1) nor the injectivity of (what corresponds here to) f0 were

used to construction of the boundary homomorphism δ : ker(c0) = H0(M•) → Coker(a0) =
ker(a1)/im(a0) = H1(M•) and neither were they used to prove the exactness of the induced
sequence; so the following sequence of A-modules is exact:

H0(M•)→ H0(N•)→ H0(P •)→ H1(M•)→ H1(N•)→ H1(P •).

Moreover, we have also seen that H0(M•) = ker(a0) ↪→ ker(b0) = H0(N•).

Using the preliminary discussion, and again that im(ai) ⊂ ker(ai+1), im(bi) ⊂ ker(bi+1) and
im(ci) ⊂ ker(ci+1), we have, for i ≥ 1, the following commutative diagram with exact rows:

M i/im(ai−1)
fi //

ai
��

N i/im(bi−1)
gi //

bi
��

P i/im(ci−1)

ci
��

// 0

0 // ker(ai+1)
fi+1|ker(ai+1)// ker(bi+1)

gi+1|ker(bi+1)// ker(ci+1)

By the previous remark (namely that the proof of the snake lemma presented in the lecture
requires less hypothesis than assumed in the statement) we get the following exact sequence:

H i(M•)→ H i(N•)→ H i(P •)→ H i+1(M•)→ H i+1(N•)→ H i+1(P •).

Exercise 14. (Direct limit)
Let us denote πM : ⊕Mi → lim−→Mi the canonical projection.

1. For x ∈ lim−→Mi, take m ∈ ⊕iMi such that x = πM (m). We can write m =
∑n

k=1mik

with mik ∈ Mik . By hypothesis, we can find a i1, i2 ≤ `′ and next a i3, `
′ ≤ `′′. Then

i1, i2, i3 ≤ `′′. So we see that by an elementary induction, we can find a ` ∈ I such that
i1, . . . , ik ≤ `. Set m′ =

∑n
k=1 fik`(mik) ∈M`. We have m−m′ =

∑n
k=1mik−fik`(mik);

in particular m−m′ ∈ ker(πM ) so πM (m′) = x.

2. Let us begin by proving the following fact:

Let m ∈Mi ∩ ker(πM ), then ∃j ≥ i such that fij(m) = 0 ∈Mj (*)

For such m ∈Mi ∩ ker(πM ), we can write m =
∑n

k=1 nik − fikjk(nik) for some elements
ik ≤ jk (k = 1, . . . n) of I and nik ∈ Mik . Since we have a direct sum (⊕iMi), and
m ∈ Mi, in the previous sum, all the terms that are lying on a Ml with l 6= i have
to vanish. So let us reorganise the sum: m =

∑n
k=1 nik − fikjk(nik) =

∑
k wpk where

wpk ∈Mpk , the pk’s are chosen among ∪n`=1{i`, j`} and wpk = 0 for pk 6= i (so in the sum
there is just m = wi). Let us choose r ∈ I such that r ≥ jk ≥ ik for any k ∈ {1, . . . , n}.
Then

fi,r(m) = fi,r(wi) = fi,r(wi) +
∑
pk 6=i

fpkr(wpk)︸ ︷︷ ︸
fpkr(0)=0

.

Now, each wpk is of the form
∑
na −

∑
fqpk(nq) for some na ∈ Mpk and q ≤ pk and

nq ∈ Mq; so fpkr(wpk) =
∑
fpkr(na)−

∑
fpkr ◦ fqpk(nq) so we can reorganize terms as

follow:

fi,r(m) = fi,r(wi) +
∑
pk 6=i

fpkr(wpk) =
∑
pk

fpkr(wpk)

=

n∑
k=1

fikr(nik)− fjkr ◦ fikjk(nik)

=

n∑
k=1

fikr(nik)− fikr(nik)

= 0 proving the fact.
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Now, let (gi : Mi → N)i∈I be a system of homomorphisms of A-modules, such that
gi = gj ◦ fij for any i ≤ j. Define a map g : lim−→Mi → N by x 7→ gi(m) where m ∈ Mi

is such that πM (m) = x (which exists by the first question).
Let us first prove that it is well-defined. For x ∈ lim−→Mi, let m ∈Mi and m′ ∈Mj such

that πM (m) = x = πM (m′). Pick a i, j ≤ k then by definition m − fik(m) ∈ ker(πM ),
m′ − fik(m′) ∈ ker(πM ) and by assumption m −m′ ∈ ker(πM ) so fik(m) − fjk(m′) ∈
ker(πM )∩Mk. By (*), there is a ` ≥ k, such that fk`(fik(m)−fjk(m′)) = 0 ∈M` which
can be written fi`(m) = fj`(m

′). So we get

gi(m) = g` ◦ fi`(m) = g`(fi`(m)) = g`(fj`(m
′)) = gj(m)

so the map g is well-defined. Now for x, y ∈ lim−→Mi and a ∈ A, pick m ∈Mi and n ∈Mj

such that πM (m) = x and πM (n) = y. Choose k ≥ i, j. We have a(fik(m)+fjk(n)) ∈Mk

and

πM (a(fik(m)+fjk(n))) = πM (a(m+n))+πM (a(fik(m)−m+fjk(n)−n)) = πM (a(m+n)) = a(x+y)

so g(a(x+y)) = gk(a(fik(m)+fjk(n))) = agk ◦fik(m)+agk ◦fjk(n) since gk and fik, fjk
are homomorphism of A-modules and since πM (fik(m)) = x, πM (fjk(n)) = y, the pre-
vious equality can be written g(a(x+ y)) = ag(x) + ag(y). So g is a homomorphism of
A-modules.
Let h : lim−→Mi → N be another homomorphism of A-modules through which the system

(gi) factorizes. For x ∈ lim−→Mi, take m ∈Mi lifting x i.e. fi(m) = πM (m) = x; we have

h(x) = h(fi(m)) = gi(m) since h factorizes (gi); but by definition of g, gi(m) = g(x)
thus h = g hence the uniqueness of the homomorphism factorizing (gi).

Now, let (gi : Mi → N)i∈I be a system of homomorphisms of A-modules, for which there
are i0 ≤ j0 such that gi0 6= gj0 ◦ fi0j0 . Assume there a homomorphism g : lim−→Mi → N

factorizing (gi). By assumption, there is a m ∈ Mi0 such that gi0(m) 6= gj0 ◦ fi0j0(m).
Then for x = πM (m) = fi0(m), we have on one hand g(x) = g(fi0(m)) = gi0(m) and
on the other, x = πM (fi0j0(m) + m − fi0j0(m)) = πM (fi0j0(m)) = fj0(fi0j0(m)) so
g(x) = g(fj0(fi0j0(m))) = gj0(fi0j0(m)). Thus g(x) = gi0(m) 6= gj0(fi0j0(m)) = g(x). So
there is no such map g.

3. The sequence exists because the homomorphisms in each exact sequence commute with
the homomorphisms in the directed systems. For example, denoting αi the homomor-
phism Mi → Ni for each i, and αi : Mi → lim−→Nk the composition πN ◦ αi = fNi ◦ αi,
we have for any i ≤ j,

αj ◦ fMij = fNj ◦ αj ◦ fMij = fNj ◦ fNij ◦ αi = πN |Nj
◦ fNij ◦ αi

= πN ◦ ( fNij − idMi︸ ︷︷ ︸
im(−)⊂ker(πN )

+idMi) ◦ αi

= πN |Mi
◦ αi

= fNi ◦ αi = αi

So by the universal property there is a unique homomorphism ofA-modules α : lim−→Mi →
lim−→Ni.
Let us denote βi the homomorphism Ni → Pi for each i, and β : lim−→Ni → lim−→Pi the
homomorphism given by the universal property.
α is injective: let x ∈ lim−→Mi, such that α(x) = 0. Take m ∈ Mi (by item 1) lifting

x. Then 0 = α(x) = α(fMi (m)) = πN ◦ αi(m). By (*), there is a j ≥ i such that
fNij (αi(m)) = 0 but αj ◦ fMij = fNij ◦ αi by hypothesis; so αj ◦ fMij (m) = 0. But since αj
is injective (exactness of the jth-sequence), we get fMij (m) = 0. So projecting to lim−→Mi,
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we get x = 0.
im(α) ⊂ ker(β): let x ∈ lim−→Mi and m ∈ Mi lifting x. Then αi(m) ∈ Ni lifts α(x) and

βi ◦ αi(m) = 0 by assumption (exactness of the ith-sequence). So we get β(α(x)) = 0.
ker(β) ⊂ im(α): let x ∈ ker(β) and n ∈ Ni lifting x. We have πP (βi(n)) = 0. By
(*), there is a j ≥ i such that fPij (βi(n)) = 0 ∈ Pj ; using the commutativity we get

βj(f
N
ij (n)) = fPij (βi(n)) = 0. By exactness of the jth-sequence, there is a m ∈Mj , such

that αj(m) = fNij (n). Since πN (n) = πN (fNij (n)), we get α(y) = x for y = πM (m).

β is surjective: let y ∈ lim−→Pi and p ∈ Pi lifting y. By exactness of the ith-sequence,

there is a n ∈ Ni such that β(n) = y. Then β(x) = y for x = πN (n).
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