
Exercises, Algebra I (Commutative Algebra) – Week 5

Exercise 22. (Annihilator, 2 pts)
Let m1, . . . ,mk ∈M be a set of generators of M .

1. Let a
s ∈ Ann(S−1M). For any i we have a

s
mi
1 = 0; thus there is a ti ∈ S, such that

ti(ami) = 0. In particular tia ∈ Ann(mi). Thus for ta = Πk
i=1ti, we get tami = 0 for

any i i.e. (since (mi)i generate M) ta ∈ Ann(M). Thus a
s = taa

tas
∈ S−1Ann(M) i.e.

Ann(S−1M) ⊂ S−1Ann(M).
Conversely, if a

s ∈ S
−1Ann(M), with a ∈ Ann(M), then for any m

t ∈ S
−1M , a

s ·
m
t =

am
st = 0

st = 0. Thus a
s ∈ Ann(S−1M), proving that Ann(S−1M) = S−1Ann(M).

2. If S−1M = 0 then for each i, mi
1 = 0 ∈ S−1M i.e. there is a si ∈ S such that

simi = 0 ∈ M . Set s = Πk
i=1si ∈ S. Then smi = 0 for any i thus ((mi)i generate M)

sm = 0 ∈M for any m ∈M i.e. s ∈ Ann(M). So s ∈ S ∩Ann(M).
Conversely, if s ∈ S ∩Ann(M), since sm = 0 for any m ∈M and t ∈ S (by definition)
m
t = 0 ∈ S−1M i.e. S−1M = 0.

Exercise 23. (Nakayama lemma, 3 points)
Let us denote Q = Coker(N →M). Since M is finitely generated and Q is a quotient of M ,
Q is also finitely generated (for example by the image of a set of generators of M).

Tensoring the exact sequence N →M
π→ Q→ 0 by A/a we get the exact sequence N/aN →

M/aM
π⊗idA/a→ Q/aQ → 0. Thus Q/aQ is the cokernel of N/aN → M/aM , which is 0 by

assumption. So Q = aQ.

1. Since a ⊂ R, Nakayama lemma (iii) yields Q = 0 i.e. N →M is surjective.

2. In this case, Nakayama lemma (ii) provides a b = 1 + a ∈ A, with a ∈ a, such that
bQ = 0. In particular, bq = 0 for any q ∈ Q. Since b is invertible in Ab, we get that
q
bi

= 0 in Qb for any q ∈ Q and i ≥ 0 i.e. Qb = 0. But tensoring the exact sequence
N →M → Q→ 0 by Ab we get the exact sequence Nb →Mb → Qb → 0 i.e. Qb = 0 is
the cokernel of Nb →Mb. Hence the claimed surjectivity.

3. Define a homomorphism of A-modules g : ⊕ni=1Aei →M by (extend linearly) ei 7→ mi.
By assumption, g ⊗ idA/a : ⊕ni=1A/aei → M/aM is surjective. Then by the previous
question, there is a b = 1 + a, with a ∈ a, such that g ⊗ idAb

: ⊕ni=1Abei → Mb is
surjective i.e. m1

1 , . . . ,
mn
1 generate Mb as Ab-module.

Exercise 24. (Non-zero divisors as multiplicative set, 3 points)

1. Let a ∈ ker(A→ S−1A); we have a
1 = 0 in S−1A i.e. there is a s ∈ S such that sa = 0

in A. So if a 6= 0, s is a zero-divisor. Contradiction. So a = 0. Hence the injectivity of
A→ S−1A.
For a multiplicative set S ( S′ containing S, consider the localization g : A → S′−1A.
Pick a s′ ∈ S′\S. By definition of S, s′ ∈ A is a zero-divisor. Thus there is a A 3 a 6= 0
such that s′a = 0 in A. So we get g(a) = a

1 = 0. i.e. g is not injective.

Solutions to be handed in before Monday May 11, 4pm.



2. If a
s ∈ S−1A is not a zero-divisor then for any S−1A 3 b

s′ 6= 0, with b ∈ A and

s′ ∈ S, a
s
b
s′ 6= 0. Since A → S−1A is injective (according to the first question), for any

A 3 b 6= 0, b
1 6= 0; in particular ab

s 6= 0 i.e. for any s′ ∈ S, s′ab 6= 0 in A. As a result we
get that for any A 3 b 6= 0 ab 6= 0 i.e. a is not a zero divisor. Thus a ∈ S and a

s
s
a = 1

in S−1A.

3. Under the assumption of this question, we have S ⊂ A∗ and since a unit cannot be a
zero divisor (A 6= 0), we actually have A∗ = S. Using the first question, we only have
to check that f : A → S−1A is surjective: for a

s ∈ S
−1A, since s ∈ S = A∗, consider

s−1a ∈ A; since ss−1a− a = 0, we get f(s−1a) = s−1a
1 = a

s in S−1A.

Exercise 25. (Flat scalar extensions, 5 points)

1. Z→ Fp: F−p is not flat over Z as shown by the inclusion f : Z ↪→ Z, k 7→ pk. Tensoring
with Fp, we get that f ⊗ idFp : Fp → Fp, is k 7→ pk which is the 0 map, in particular it
is not injective.

2. Z → Q: Q is a flat Z-module: notice first that Q ' Z(0), the localization at the prime
ideal (0) ⊂ Z. Indeed for an injective homomorphism of Z-modules f : M ↪→ M ′ let∑n

i=1mi ⊗ pi
qi
∈ ker(f ⊗Z idQ); we have

n∑
i=1

mi ⊗
pi
qi

=
∑
i

mi ⊗
pi

Πn
`=1q`

Πk 6=iqk =
∑
i

mipiΠk 6=iqk ⊗
1

Π`q`
= (

∑
i

mipiΠk 6=iqk)⊗
1

Π`q`

and f(
∑

imipiΠk 6=iqk) ⊗ 1
Π`q`

= 0 ∈ M ′ ⊗ Q. Now since M ′ ⊗ Q ' M ′ ⊗ Z(0) ' M ′(0),

M ′(0) 3 0 = f(
∑

imipiΠk 6=iqk)⊗ 1
Π`q`

=
f(

∑
imipiΠk 6=iqk)

Π`q`
means that there is a b ∈ Z\{0}

such that f(b
∑

imipiΠk 6=iqk) = bf(
∑

imipiΠk 6=iqk) = 0 ∈ M ′. As f is injective, we

get b
∑

imipiΠk 6=iqk = 0 ∈M . In particular,
∑

imipiΠk 6=iqk
Π`q`

= 0 ∈M(0). Thus f ⊗ idZ is
injective.

3. A → A[x]: by definition, A[x] is a free A-module ((xi)i∈N being a basis) so it is in
particular flat.

4. Actually the question is trivial (as noticed by G.Andreychev) since Q[x, y]/(y2 − x) is
a Q-vector space, as such it is a free Q-module. So it is flat over Q ans since Q is flat
over Z, we get, by Proposition 5.6, that Q[x, y]/(y2 − x) is flat over Z.
The question is more interesting for Z→ Z[x, y]/(y2−x): Let us prove that Z[x, y]/(y2−
x) is a flat Z-module. This ring homomorphism can be decomposed as

Z→ Z[x]→ Z[x][y] ' Z[x, y]→ Z[x, y]/(y2 − x)

the last homomorphism being the quotient by the principal ideal of Z[x, y] generated
by y2−x. We have just seen that Z[x] is a flat Z-module. Now, since Euclidean division
by monic polynomials works in A[y] for any ring A, we have:

Let A 6= 0 be a ring and a ∈ A, then ϕ : A2 → A[y]/(y2 − a), (b, c) 7→ by + c

is an isomorphism of A−modules
(*)

(see the proof below) Applying this remark to A = Z[x] and a = x, we get that
Z[x, y]/(y2 − x) is a free (thus flat) Z[x]-module. As a conclusion (Proposition 5.6),
Z[x, y]/(y2 − x) is a flat Z-module.

Beweis. Notice that (even if A happened to have zero-divisors) for any non-zero poly-
nomial f =

∑n
i=0 biy

i ∈ A[y], ith bn 6= 0 deg((y2 − a)f) = 2 + deg(f) since its leading
term is bny

n+2 6= 0. So, let (b, c) ∈ ker(ϕ) we have by + c ∈ (y2 − a) in A[y]; but any
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non-zero polynomial in (y2 − a) has degree at least 2. Thus by + c = 0 ∈ A[y] i.e.
(b, c) = (0, 0), proving that ϕ is injective.
Now let us prove by induction that any polynomial f ∈ A[y] can be written f =
(y2−a)g+h where g, h ∈ A[y] and deg(h) < 2. It is clear for polynomial of degree 0 and 1.
Now let k > 0 such that the property is true for polynomials of degree at most k. Given

f =
∑k+1

i=0 biy
i ∈ A[x] of degree k+1 (i.e. b−k + 1 6= 0), f ′ = f−bk+1y

k−1(y2−a) ∈ A[y]
has degree < 0 so by our induction hypothesis, there are g, h ∈ A[y] with deg(h) < 2,
such that f ′ = (y2− a)g+ h. So we get f = (y2− a)(g+ bk+1y

k−1) + h and deg(h) < 2.
Thus by induction, the property is true.
So let f ∈ A[y]/(y2 − a) and f ∈ A[y] in its preimage. By the above property, we
can write f = (y2 − a)g + h for some g, h ∈ A[y] with deg(h) < 2. In particular
f = h mod (y2 − a). Writing h = by + c, we get ϕ(b, c) = f proving the surjectivity of
ϕ.

Exercise 26. (Localization, 4 points)

1. We have 1 = 1 + x2 · 0 ∈ S, and for f1(x1) + x2g1(x1), f2(x1) + x2g2(x1) ∈ S, with
f1 6= 0, f2 6= 0, we have

(f1(x1)+x2g1(x1))(f2(x1)+x2g2(x1)) = f1f2+x2(f1g2+f2g1)+x2
2(g1g2) = f1f2+x2(f1g2+f2g1)

in A and f1f2 6= 0 since they belongs to the integral domain k[x1] ⊂ A. So (f1(x1) +
x2g1(x1))(f2(x1) + x2g2(x1)) ∈ S i.e. S is a multiplicative set.
Since we have a ring isomorphism k[x1][x2] ' k[x1, x2], and and inclusion of rings
k[x1] ⊂ k(x1), we have an induced ring homomorpism α : A → k(x1)[x2]/(x2

2). For
f + x2g ∈ S, we have

(f + x2g)
f − x2g

f2
=
f2 − x2

2g
2

f2
=
f2

f2
= 1

thus α(S) is contained in the group of invertible elements of k(x1)[x2]/(x2
2). Now let ϕ :

A→ B be a ring homomorphism such that g(S) ⊂ B∗. Define ϕ : k(x1)[x2]/(x2
2)→ B by

f(x1)+x2g(x2)
h(x1) 7→ (ϕ(h(x1)))−1ϕ(f(x1) + x2g(x2)). It is well-defined since k[x1]\{0} ⊂ S

so its image under ϕ is contained B∗; moreover any other representative of a given
f(x1)+x2g(x1)

h(x1) is of the form h′(x1)f(x1)+x2h′(x1)g(x1)
h′(x1)h(x1) for some h′ 6= 0 and using that ϕ is a

ring homomorphism

(ϕ(h′(x1)h(x1)))−1ϕ(h′(x1)(f(x1) + x2g(x1))) = ϕ(h(x1))−1ϕ(h′(x1))−1ϕ(h′(x1))ϕ(f(x1) + x2g(x1))

= (ϕ(h(x1)))−1ϕ(f(x1) + x2g(x2)).

One check that ϕ is a ring homomorphism the same way

ϕ(
f1 + x2g1

h1
+
f2 + x2g2

h2
) = ϕ(

h2(f1 + x2g1) + h1(f2 + x2g2)

h1h2
)

= ϕ(h1h2)−1ϕ(h2(f1 + x2g1) + h1(f2 + x2g2))

= ϕ(h2)−1ϕ(h1)−1(ϕ(h2)ϕ(f1 + x2g1) + ϕ(h1)ϕ(f2 + x2g2))

= ϕ(h1)−1ϕ(f1 + x2g1) + ϕ(h2)−1ϕ(f2 + x2g2)

= ϕ(
f1 + x2g1

h1
) + ϕ(

f2 + x2g2

h2
)

and

ϕ(
f1 + x2g1

h1
· f2 + x2g2

h2
) = ϕ(

(f1 + x2g1)(f2 + x2g2)

h1h2
)

= ϕ(h1h2)−1ϕ((f1 + x2g1)(f2 + x2g2))

= ϕ(h1)−1ϕ(f1 + x2g1)ϕ(h2)−1ϕ(f2 + x2g2)

= ϕ(
f1 + x2g1

h1
) · ϕ(

f2 + x2g2

h2
)
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finally ϕ(1) = ϕ(1
1) = ϕ(1)−1ϕ(1) = 1. And a direct calculation shows that ϕ = ϕ ◦ α.

Moreover if β : k(x1)[x2]/(x2
2)→ B is a ring homomorphism satisfying ϕ = β ◦α. Then

for any h ∈ k[x1]\{0} ⊂ S, β(α(h)) = β(h) = ϕ(h) = ϕ(h) from which we also see that
β(h) is invertible and since 1 = β(1) = β(hh) = β( 1

h)β(h) we have β( 1
h) = β(h)−1. We

also have β(α(f + x2g)) = β(f + x2g) = ϕ(f + x2g) = ϕ(f + x2g). Thus

β(
f + x2g

h
) = β(

1

h
)β(f + x2g) = β(h)−1β(f + x2g) = ϕ(h)−1ϕ(f + x2g) = ϕ(

f + x2g

h
)

Hence the uniqueness of such ϕ. As a conclusion α satisfies the universal property of
the localization; so it is isomorphic to the localization of A with respect to S.

2. Look at the first projection p1 : A × B → A which is a ring homomorphism satisfying
p1(S) = {1} ⊂ A∗. Let g : A× B → C be a ring homomorphism such that g(S) ⊂ C∗.
Since (1, 0)2 = (1, 0), we get g((1, 0)) = g((1, 0)2) = g((1, 0))2 in C which, as g((1, 0))
is invertible, yields g((1, 0)) = 1.
Now, define a map f : A → C by a 7→ g((a, 0)). It is well-defined and it is a ring
homomorphism: f(1) = g((1, 0)) = 1 by the above discussion.
For any a, a′ ∈ A, using that g is a ring homomorphism, we get:

f(a+ a′) = g((a+ a′, 0)) = g((a, 0) + (a′, 0)) = g((a, 0)) + g((a′, 0)) = f(a) + f(a′)

and f(aa′) = g((aa′, 0)) = g((a, 0)(a′, 0)) = g((a, 0))g((a′, 0)) = f(a)f(a′).
To see that g = f ◦ p1 it is sufficient to prove that g((0, b)) = 0 for any b ∈ B (since
g((a, b)) = g((a, 0)+(0, b)) = g((a, 0))+g((0, b))); but for any b ∈ B, (0, b)(1, 0) = (0, 0)
so that (g ring homomorphism) 0 = g((0, 0)) = g((0, b))g((1, 0)) = g((0, b)) · 1.
Let us prove the uniqueness of f : let h : A → C be a ring homomorphism satisfying
g = h ◦ p1. For a ∈ A, we have h(a) = h(p1((a, 0))) = g((a, 0)) = f(a); thus f = h. So
p1 : A×B → A is the localization with respect to S.

3. (⇒) Assume M → S−1M is bijective. Let s ∈ S. If M
s·→M is not injective, then there

is a m ∈M\{0} such that sm = 0 ∈M . But this means that m
1 = 0 ∈ S−1M i.e. that

M → S−1M is not injective. Contradiction. So for any s ∈ S, M
s·→M is injective.

Now, let us prove the surjectivity of the homomorphisms M
s·→M . Take a s ∈ S. Given

a m ∈M , since M → S−1M is surjective, there is a n ∈M such that n
1 = m

s in S−1M
which means that there is a s′ ∈ S, such that s′(sn −m) = 0 ∈ M . But by the above

discussion M
s′·→M is injective; thus sn = m i.e. M

s·→M is surjective.

(⇐) If m ∈ ker(M → S−1M), then m
1 = 0 ∈ S−1M i.e. there is a s ∈ S such that

sm = 0 ∈M . But since M
s·→M is injective, we get m = 0 i.e. M → S−1M .

Now, consider m
s ∈ S

−1M . By sujectivity of M
s·→ M , we can find a n ∈ M such that

m = sn ∈M . We then have n
1 = m

s ∈ S
−1M . thus M → S−1M is surjective.
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