Exercises, Algebra I (Commutative Algebra) - Week 5

Exercise 22. (Annihilator, 2 pts)
Let $m_{1}, \ldots, m_{k} \in M$ be a set of generators of M.

1. Let $\frac{a}{s} \in \operatorname{Ann}\left(S^{-1} M\right)$. For any i we have $\frac{a}{s} \frac{m_{i}}{1}=0$; thus there is a $t_{i} \in S$, such that $t_{i}\left(a m_{i}\right)=0$. In particular $t_{i} a \in \operatorname{Ann}\left(m_{i}\right)$. Thus for $t_{a}=\Pi_{i=1}^{k} t_{i}$, we get tami $=0$ for any i i.e. $\left(\right.$ since $\left(m_{i}\right)_{i}$ generate $\left.M\right) t a \in \operatorname{Ann}(M)$. Thus $\frac{a}{s}=\frac{t_{a} a}{t_{a} s} \in S^{-1} \operatorname{Ann}(M)$ i.e. $\operatorname{Ann}\left(S^{-1} M\right) \subset S^{-1} \operatorname{Ann}(M)$.
Conversely, if $\frac{a}{s} \in S^{-1} \operatorname{Ann}(M)$, with $a \in \operatorname{Ann}(M)$, then for any $\frac{m}{t} \in S^{-1} M, \frac{a}{s} \cdot \frac{m}{t}=$ $\frac{a m}{s t}=\frac{0}{s t}=0$. Thus $\frac{a}{s} \in \operatorname{Ann}\left(S^{-1} M\right)$, proving that $\operatorname{Ann}\left(S^{-1} M\right)=S^{-1} \operatorname{Ann}(M)$.
2. If $S^{-1} M=0$ then for each $i, \frac{m_{i}}{1}=0 \in S^{-1} M$ i.e. there is a $s_{i} \in S$ such that $s_{i} m_{i}=0 \in M$. Set $s=\Pi_{i=1}^{k} s_{i} \in S$. Then $s m_{i}=0$ for any i thus $\left(\left(m_{i}\right)_{i}\right.$ generate $\left.M\right)$ $s m=0 \in M$ for any $m \in M$ i.e. $s \in \operatorname{Ann}(M)$. So $s \in S \cap \operatorname{Ann}(M)$. Conversely, if $s \in S \cap \operatorname{Ann}(M)$, since $s m=0$ for any $m \in M$ and $t \in S$ (by definition) $\frac{m}{t}=0 \in S^{-1} M$ i.e. $S^{-1} M=0$.

Exercise 23. (Nakayama lemma, 3 points)
Let us denote $Q=\operatorname{Coker}(N \rightarrow M)$. Since M is finitely generated and Q is a quotient of M, Q is also finitely generated (for example by the image of a set of generators of M).
Tensoring the exact sequence $N \rightarrow M \xrightarrow{\pi} Q \rightarrow 0$ by A / \mathfrak{a} we get the exact sequence $N / \mathfrak{a} N \rightarrow$ $M / \mathfrak{a} M \xrightarrow{\pi \otimes \operatorname{id}_{A / \mathfrak{a}}} Q / \mathfrak{a} Q \rightarrow 0$. Thus $Q / \mathfrak{a} Q$ is the cokernel of $N / \mathfrak{a} N \rightarrow M / \mathfrak{a} M$, which is 0 by assumption. So $Q=\mathfrak{a} Q$.

1. Since $\mathfrak{a} \subset \mathfrak{R}$, Nakayama lemma (iii) yields $Q=0$ i.e. $N \rightarrow M$ is surjective.
2. In this case, Nakayama lemma (ii) provides a $b=1+a \in A$, with $a \in \mathfrak{a}$, such that $b Q=0$. In particular, $b q=0$ for any $q \in Q$. Since b is invertible in A_{b}, we get that $\frac{q}{b^{i}}=0$ in Q_{b} for any $q \in Q$ and $i \geq 0$ i.e. $Q_{b}=0$. But tensoring the exact sequence $N \rightarrow M \rightarrow Q \rightarrow 0$ by A_{b} we get the exact sequence $N_{b} \rightarrow M_{b} \rightarrow Q_{b} \rightarrow 0$ i.e. $Q_{b}=0$ is the cokernel of $N_{b} \rightarrow M_{b}$. Hence the claimed surjectivity.
3. Define a homomorphism of A-modules $g: \oplus_{i=1}^{n} A e_{i} \rightarrow M$ by (extend linearly) $e_{i} \mapsto m_{i}$. By assumption, $g \otimes \mathrm{id}_{A / \mathfrak{a}}: \oplus_{i=1}^{n} A / \mathfrak{a} e_{i} \rightarrow M / \mathfrak{a} M$ is surjective. Then by the previous question, there is a $b=1+a$, with $a \in \mathfrak{a}$, such that $g \otimes \operatorname{id}_{A_{b}}: \oplus_{i=1}^{n} A_{b} e_{i} \rightarrow M_{b}$ is surjective i.e. $\frac{m_{1}}{1}, \ldots, \frac{m_{n}}{1}$ generate M_{b} as A_{b}-module.

Exercise 24. (Non-zero divisors as multiplicative set, 3 points)

1. Let $a \in \operatorname{ker}\left(A \rightarrow S^{-1} A\right)$; we have $\frac{a}{1}=0$ in $S^{-1} A$ i.e. there is a $s \in S$ such that $s a=0$ in A. So if $a \neq 0, s$ is a zero-divisor. Contradiction. So $a=0$. Hence the injectivity of $A \rightarrow S^{-1} A$.
For a multiplicative set $S \subsetneq S^{\prime}$ containing S, consider the localization $g: A \rightarrow S^{\prime-1} A$. Pick a $s^{\prime} \in S^{\prime} \backslash S$. By definition of $S, s^{\prime} \in A$ is a zero-divisor. Thus there is a $A \ni a \neq 0$ such that $s^{\prime} a=0$ in A. So we get $g(a)=\frac{a}{1}=0$. i.e. g is not injective.

[^0]2. If $\frac{a}{s} \in S^{-1} A$ is not a zero-divisor then for any $S^{-1} A \ni \frac{b}{s^{\prime}} \neq 0$, with $b \in A$ and $s^{\prime} \in S, \frac{a}{s} \frac{b}{s^{\prime}} \neq 0$. Since $A \rightarrow S^{-1} A$ is injective (according to the first question), for any $A \ni b \neq 0, \frac{b}{1} \neq 0$; in particular $\frac{a b}{s} \neq 0$ i.e. for any $s^{\prime} \in S, s^{\prime} a b \neq 0$ in A. As a result we get that for any $A \ni b \neq 0 a b \neq 0$ i.e. a is not a zero divisor. Thus $a \in S$ and $\frac{a}{s} \frac{s}{a}=1$ in $S^{-1} A$.
3. Under the assumption of this question, we have $S \subset A^{*}$ and since a unit cannot be a zero divisor $(A \neq 0)$, we actually have $A^{*}=S$. Using the first question, we only have to check that $f: A \rightarrow S^{-1} A$ is surjective: for $\frac{a}{s} \in S^{-1} A$, since $s \in S=A^{*}$, consider $s^{-1} a \in A$; since $s s^{-1} a-a=0$, we get $f\left(s^{-1} a\right)=\frac{s^{-1} a}{1}=\frac{a}{s}$ in $S^{-1} A$.
Exercise 25. (Flat scalar extensions, 5 points)

1. $\mathbb{Z} \rightarrow \mathbb{F}_{p}: \mathbb{F}-p$ is not flat over \mathbb{Z} as shown by the inclusion $f: \mathbb{Z} \hookrightarrow \mathbb{Z}, k \mapsto p k$. Tensoring with \mathbb{F}_{p}, we get that $f \otimes \mathrm{id}_{\mathbb{F}_{p}}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$, is $k \mapsto p k$ which is the 0 map, in particular it is not injective.
2. $\mathbb{Z} \rightarrow \mathbb{Q}: \mathbb{Q}$ is a flat \mathbb{Z}-module: notice first that $\mathbb{Q} \simeq Z_{(0)}$, the localization at the prime ideal $(0) \subset \mathbb{Z}$. Indeed for an injective homomorphism of \mathbb{Z}-modules $f: M \hookrightarrow M^{\prime}$ let $\sum_{i=1}^{n} m_{i} \otimes \frac{p_{i}}{q_{i}} \in \operatorname{ker}\left(f \otimes_{\mathbb{Z}} \operatorname{id}_{\mathbb{Q}}\right) ;$ we have
$\sum_{i=1}^{n} m_{i} \otimes \frac{p_{i}}{q_{i}}=\sum_{i} m_{i} \otimes \frac{p_{i}}{\Pi_{\ell=1}^{n} q_{\ell}} \Pi_{k \neq i} q_{k}=\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k} \otimes \frac{1}{\Pi_{\ell} q_{\ell}}=\left(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}\right) \otimes \frac{1}{\Pi_{\ell} q_{\ell}}$
and $f\left(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}\right) \otimes \frac{1}{\Pi_{\ell} q_{\ell}}=0 \in M^{\prime} \otimes \mathbb{Q}$. Now since $M^{\prime} \otimes \mathbb{Q} \simeq M^{\prime} \otimes \mathbb{Z}_{(0)} \simeq M_{(0)}^{\prime}$, $M_{(0)}^{\prime} \ni 0=f\left(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}\right) \otimes \frac{1}{\Pi_{\ell} q_{\ell}}=\frac{f\left(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}\right)}{\Pi_{\ell} q_{\ell}}$ means that there is a $b \in \mathbb{Z} \backslash\{0\}$ such that $f\left(b \sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}\right)=b f\left(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}\right)=0 \in M^{\prime}$. As f is injective, we get $b \sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}=0 \in M$. In particular, $\frac{\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}}{\Pi_{\ell} q_{\ell}}=0 \in M_{(0)}$. Thus $f \otimes \mathrm{id}_{\mathbb{Z}}$ is injective.
3. $A \rightarrow A[x]$: by definition, $A[x]$ is a free A-module $\left(\left(x^{i}\right)_{i \in \mathbb{N}}\right.$ being a basis) so it is in particular flat.
4. Actually the question is trivial (as noticed by G.Andreychev) since $\mathbb{Q}[x, y] /\left(y^{2}-x\right)$ is a \mathbb{Q}-vector space, as such it is a free \mathbb{Q}-module. So it is flat over \mathbb{Q} ans since \mathbb{Q} is flat over \mathbb{Z}, we get, by Proposition 5.6, that $\mathbb{Q}[x, y] /\left(y^{2}-x\right)$ is flat over \mathbb{Z}.
The question is more interesting for $\mathbb{Z} \rightarrow \mathbb{Z}[x, y] /\left(y^{2}-x\right)$: Let us prove that $\mathbb{Z}[x, y] /\left(y^{2}-\right.$ x) is a flat \mathbb{Z}-module. This ring homomorphism can be decomposed as

$$
\mathbb{Z} \rightarrow \mathbb{Z}[x] \rightarrow \mathbb{Z}[x][y] \simeq \mathbb{Z}[x, y] \rightarrow \mathbb{Z}[x, y] /\left(y^{2}-x\right)
$$

the last homomorphism being the quotient by the principal ideal of $\mathbb{Z}[x, y]$ generated by $y^{2}-x$. We have just seen that $\mathbb{Z}[x]$ is a flat \mathbb{Z}-module. Now, since Euclidean division by monic polynomials works in $A[y]$ for any ring A, we have:

Let $A \neq 0$ be a ring and $a \in A$, then $\varphi: A^{2} \rightarrow A[y] /\left(y^{2}-a\right),(b, c) \mapsto b \bar{y}+c$ is an isomorphism of A-modules
(see the proof below) Applying this remark to $A=\mathbb{Z}[x]$ and $a=x$, we get that $\mathbb{Z}[x, y] /\left(y^{2}-x\right)$ is a free (thus flat) $\mathbb{Z}[x]$-module. As a conclusion (Proposition 5.6), $\mathbb{Z}[x, y] /\left(y^{2}-x\right)$ is a flat \mathbb{Z}-module.

Beweis. Notice that (even if A happened to have zero-divisors) for any non-zero polynomial $f=\sum_{i=0}^{n} b_{i} y^{i} \in A[y]$, ith $b_{n} \neq 0 \operatorname{deg}\left(\left(y^{2}-a\right) f\right)=2+\operatorname{deg}(f)$ since its leading term is $b_{n} y^{n+2} \neq 0$. So, let $(b, c) \in \operatorname{ker}(\varphi)$ we have $b y+c \in\left(y^{2}-a\right)$ in $A[y]$; but any
non-zero polynomial in $\left(y^{2}-a\right)$ has degree at least 2. Thus $b y+c=0 \in A[y]$ i.e. $(b, c)=(0,0)$, proving that φ is injective.
Now let us prove by induction that any polynomial $f \in A[y]$ can be written $f=$ $\left(y^{2}-a\right) g+h$ where $g, h \in A[y]$ and $\operatorname{deg}(h)<2$. It is clear for polynomial of degree 0 and 1 . Now let $k>0$ such that the property is true for polynomials of degree at most k. Given $f=\sum_{i=0}^{k+1} b_{i} y^{i} \in A[x]$ of degree $k+1$ (i.e. $b-k+1 \neq 0$), $f^{\prime}=f-b_{k+1} y^{k-1}\left(y^{2}-a\right) \in A[y]$ has degree <0 so by our induction hypothesis, there are $g, h \in A[y]$ with $\operatorname{deg}(h)<2$, such that $f^{\prime}=\left(y^{2}-a\right) g+h$. So we get $f=\left(y^{2}-a\right)\left(g+b_{k+1} y^{k-1}\right)+h$ and $\operatorname{deg}(h)<2$. Thus by induction, the property is true.
So let $\bar{f} \in A[y] /\left(y^{2}-a\right)$ and $f \in A[y]$ in its preimage. By the above property, we can write $f=\left(y^{2}-a\right) g+h$ for some $g, h \in A[y]$ with $\operatorname{deg}(h)<2$. In particular $\bar{f}=h \bmod \left(y^{2}-a\right)$. Writing $h=b y+c$, we get $\varphi(b, c)=\bar{f}$ proving the surjectivity of φ.

Exercise 26. (Localization, 4 points)

1. We have $1=1+x_{2} \cdot 0 \in S$, and for $f_{1}\left(x_{1}\right)+x_{2} g_{1}\left(x_{1}\right), f_{2}\left(x_{1}\right)+x_{2} g_{2}\left(x_{1}\right) \in S$, with $f_{1} \neq 0, f_{2} \neq 0$, we have

$$
\left(f_{1}\left(x_{1}\right)+x_{2} g_{1}\left(x_{1}\right)\right)\left(f_{2}\left(x_{1}\right)+x_{2} g_{2}\left(x_{1}\right)\right)=f_{1} f_{2}+x_{2}\left(f_{1} g_{2}+f_{2} g_{1}\right)+x_{2}^{2}\left(g_{1} g_{2}\right)=f_{1} f_{2}+x_{2}\left(f_{1} g_{2}+f_{2} g_{1}\right)
$$

in A and $f_{1} f_{2} \neq 0$ since they belongs to the integral domain $k\left[x_{1}\right] \subset A$. So $\left(f_{1}\left(x_{1}\right)+\right.$ $\left.x_{2} g_{1}\left(x_{1}\right)\right)\left(f_{2}\left(x_{1}\right)+x_{2} g_{2}\left(x_{1}\right)\right) \in S$ i.e. S is a multiplicative set.
Since we have a ring isomorphism $k\left[x_{1}\right]\left[x_{2}\right] \simeq k\left[x_{1}, x_{2}\right]$, and and inclusion of rings $k\left[x_{1}\right] \subset k\left(x_{1}\right)$, we have an induced ring homomorpism $\alpha: A \rightarrow k\left(x_{1}\right)\left[x_{2}\right] /\left(x_{2}^{2}\right)$. For $f+x_{2} g \in S$, we have

$$
\left(f+x_{2} g\right) \frac{f-x_{2} g}{f^{2}}=\frac{f^{2}-x_{2}^{2} g^{2}}{f^{2}}=\frac{f^{2}}{f^{2}}=1
$$

thus $\alpha(S)$ is contained in the group of invertible elements of $k\left(x_{1}\right)\left[x_{2}\right] /\left(x_{2}^{2}\right)$. Now let φ : $A \rightarrow B$ be a ring homomorphism such that $g(S) \subset B^{*}$. Define $\bar{\varphi}: k\left(x_{1}\right)\left[x_{2}\right] /\left(x_{2}^{2}\right) \rightarrow B$ by $\frac{f\left(x_{1}\right)+x_{2} g\left(x_{2}\right)}{h\left(x_{1}\right)} \mapsto\left(\varphi\left(h\left(x_{1}\right)\right)\right)^{-1} \varphi\left(f\left(x_{1}\right)+x_{2} g\left(x_{2}\right)\right)$. It is well-defined since $k\left[x_{1}\right] \backslash\{0\} \subset S$ so its image under φ is contained B^{*}; moreover any other representative of a given $\frac{f\left(x_{1}\right)+x_{2} g\left(x_{1}\right)}{h\left(x_{1}\right)}$ is of the form $\frac{h^{\prime}\left(x_{1}\right) f\left(x_{1}\right)+x_{2} h^{\prime}\left(x_{1}\right) g\left(x_{1}\right)}{h^{\prime}\left(x_{1}\right) h\left(x_{1}\right)}$ for some $h^{\prime} \neq 0$ and using that φ is a ring homomorphism

$$
\begin{aligned}
\left(\varphi\left(h^{\prime}\left(x_{1}\right) h\left(x_{1}\right)\right)\right)^{-1} \varphi\left(h^{\prime}\left(x_{1}\right)\left(f\left(x_{1}\right)+x_{2} g\left(x_{1}\right)\right)\right) & =\varphi\left(h\left(x_{1}\right)\right)^{-1} \varphi\left(h^{\prime}\left(x_{1}\right)\right)^{-1} \varphi\left(h^{\prime}\left(x_{1}\right)\right) \varphi\left(f\left(x_{1}\right)+x_{2} g\left(x_{1}\right)\right) \\
& =\left(\varphi\left(h\left(x_{1}\right)\right)\right)^{-1} \varphi\left(f\left(x_{1}\right)+x_{2} g\left(x_{2}\right)\right) .
\end{aligned}
$$

One check that $\bar{\varphi}$ is a ring homomorphism the same way

$$
\begin{aligned}
\bar{\varphi}\left(\frac{f_{1}+x_{2} g_{1}}{h_{1}}+\frac{f_{2}+x_{2} g_{2}}{h_{2}}\right) & =\bar{\varphi}\left(\frac{h_{2}\left(f_{1}+x_{2} g_{1}\right)+h_{1}\left(f_{2}+x_{2} g_{2}\right)}{h_{1} h_{2}}\right) \\
& =\varphi\left(h_{1} h_{2}\right)^{-1} \varphi\left(h_{2}\left(f_{1}+x_{2} g_{1}\right)+h_{1}\left(f_{2}+x_{2} g_{2}\right)\right) \\
& =\varphi\left(h_{2}\right)^{-1} \varphi\left(h_{1}\right)^{-1}\left(\varphi\left(h_{2}\right) \varphi\left(f_{1}+x_{2} g_{1}\right)+\varphi\left(h_{1}\right) \varphi\left(f_{2}+x_{2} g_{2}\right)\right) \\
& =\varphi\left(h_{1}\right)^{-1} \varphi\left(f_{1}+x_{2} g_{1}\right)+\varphi\left(h_{2}\right)^{-1} \varphi\left(f_{2}+x_{2} g_{2}\right) \\
& =\bar{\varphi}\left(\frac{f_{1}+x_{2} g_{1}}{h_{1}}\right)+\bar{\varphi}\left(\frac{f_{2}+x_{2} g_{2}}{h_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\varphi}\left(\frac{f_{1}+x_{2} g_{1}}{h_{1}} \cdot \frac{f_{2}+x_{2} g_{2}}{h_{2}}\right) & =\bar{\varphi}\left(\frac{\left(f_{1}+x_{2} g_{1}\right)\left(f_{2}+x_{2} g_{2}\right)}{h_{1} h_{2}}\right) \\
& =\varphi\left(h_{1} h_{2}\right)^{-1} \varphi\left(\left(f_{1}+x_{2} g_{1}\right)\left(f_{2}+x_{2} g_{2}\right)\right) \\
& =\varphi\left(h_{1}\right)^{-1} \varphi\left(f_{1}+x_{2} g_{1}\right) \varphi\left(h_{2}\right)^{-1} \varphi\left(f_{2}+x_{2} g_{2}\right) \\
& =\bar{\varphi}\left(\frac{f_{1}+x_{2} g_{1}}{h_{1}}\right) \cdot \bar{\varphi}\left(\frac{f_{2}+x_{2} g_{2}}{h_{2}}\right)
\end{aligned}
$$

finally $\bar{\varphi}(1)=\bar{\varphi}\left(\frac{1}{1}\right)=\varphi(1)^{-1} \varphi(1)=1$. And a direct calculation shows that $\varphi=\bar{\varphi} \circ \alpha$. Moreover if $\beta: k\left(x_{1}\right)\left[x_{2}\right] /\left(x_{2}^{2}\right) \rightarrow B$ is a ring homomorphism satisfying $\varphi=\beta \circ \alpha$. Then for any $h \in k\left[x_{1}\right] \backslash\{0\} \subset S, \beta(\alpha(h))=\beta(h)=\varphi(h)=\bar{\varphi}(h)$ from which we also see that $\beta(h)$ is invertible and since $1=\beta(1)=\beta\left(\frac{h}{h}\right)=\beta\left(\frac{1}{h}\right) \beta(h)$ we have $\beta\left(\frac{1}{h}\right)=\beta(h)^{-1}$. We also have $\beta\left(\alpha\left(f+x_{2} g\right)\right)=\beta\left(f+x_{2} g\right)=\varphi\left(f+x_{2} g\right)=\bar{\varphi}\left(f+x_{2} g\right)$. Thus
$\beta\left(\frac{f+x_{2} g}{h}\right)=\beta\left(\frac{1}{h}\right) \beta\left(f+x_{2} g\right)=\beta(h)^{-1} \beta\left(f+x_{2} g\right)=\varphi(h)^{-1} \varphi\left(f+x_{2} g\right)=\bar{\varphi}\left(\frac{f+x_{2} g}{h}\right)$
Hence the uniqueness of such $\bar{\varphi}$. As a conclusion α satisfies the universal property of the localization; so it is isomorphic to the localization of A with respect to S.
2. Look at the first projection $p_{1}: A \times B \rightarrow A$ which is a ring homomorphism satisfying $p_{1}(S)=\{1\} \subset A^{*}$. Let $g: A \times B \rightarrow C$ be a ring homomorphism such that $g(S) \subset C^{*}$. Since $(1,0)^{2}=(1,0)$, we get $g((1,0))=g\left((1,0)^{2}\right)=g((1,0))^{2}$ in C which, as $g((1,0))$ is invertible, yields $g((1,0))=1$.
Now, define a map $f: A \rightarrow C$ by $a \mapsto g((a, 0))$. It is well-defined and it is a ring homomorphism: $f(1)=g((1,0))=1$ by the above discussion.
For any $a, a^{\prime} \in A$, using that g is a ring homomorphism, we get:

$$
f\left(a+a^{\prime}\right)=g\left(\left(a+a^{\prime}, 0\right)\right)=g\left((a, 0)+\left(a^{\prime}, 0\right)\right)=g((a, 0))+g\left(\left(a^{\prime}, 0\right)\right)=f(a)+f\left(a^{\prime}\right)
$$

and $f\left(a a^{\prime}\right)=g\left(\left(a a^{\prime}, 0\right)\right)=g\left((a, 0)\left(a^{\prime}, 0\right)\right)=g((a, 0)) g\left(\left(a^{\prime}, 0\right)\right)=f(a) f\left(a^{\prime}\right)$.
To see that $g=f \circ p_{1}$ it is sufficient to prove that $g((0, b))=0$ for any $b \in B$ (since $g((a, b))=g((a, 0)+(0, b))=g((a, 0))+g((0, b))) ;$ but for any $b \in B,(0, b)(1,0)=(0,0)$ so that $(g$ ring homomorphism) $0=g((0,0))=g((0, b)) g((1,0))=g((0, b)) \cdot 1$.
Let us prove the uniqueness of f : let $h: A \rightarrow C$ be a ring homomorphism satisfying $g=h \circ p_{1}$. For $a \in A$, we have $h(a)=h\left(p_{1}((a, 0))\right)=g((a, 0))=f(a)$; thus $f=h$. So $p_{1}: A \times B \rightarrow A$ is the localization with respect to S.
3. (\Rightarrow) Assume $M \rightarrow S^{-1} M$ is bijective. Let $s \in S$. If $M \xrightarrow{s .} M$ is not injective, then there is a $m \in M \backslash\{0\}$ such that $s m=0 \in M$. But this means that $\frac{m}{1}=0 \in S^{-1} M$ i.e. that $M \rightarrow S^{-1} M$ is not injective. Contradiction. So for any $s \in S, M \xrightarrow{s} M$ is injective.
Now, let us prove the surjectivity of the homomorphisms $M \xrightarrow{s .} M$. Take a $s \in S$. Given a $m \in M$, since $M \rightarrow S^{-1} M$ is surjective, there is a $n \in M$ such that $\frac{n}{1}=\frac{m}{s}$ in $S^{-1} M$ which means that there is a $s^{\prime} \in S$, such that $s^{\prime}(s n-m)=0 \in M$. But by the above discussion $M \xrightarrow{s^{\prime}} M$ is injective; thus $s n=m$ i.e. $M \xrightarrow{s .} M$ is surjective.
(\Leftarrow) If $m \in \operatorname{ker}\left(M \rightarrow S^{-1} M\right)$, then $\frac{m}{1}=0 \in S^{-1} M$ i.e. there is a $s \in S$ such that $s m=0 \in M$. But since $M \xrightarrow{s .} M$ is injective, we get $m=0$ i.e. $M \rightarrow S^{-1} M$.
Now, consider $\frac{m}{s} \in S^{-1} M$. By sujectivity of $M \xrightarrow{s} M$, we can find a $n \in M$ such that $m=s n \in M$. We then have $\frac{n}{1}=\frac{m}{s} \in S^{-1} M$. thus $M \rightarrow S^{-1} M$ is surjective.

[^0]: Solutions to be handed in before Monday May 11, 4 pm .

