Exercises, Algebra I (Commutative Algebra) – Week 5

Exercise 22. (Annihilator, 2 pts)

Let $m_1, \ldots, m_k \in M$ be a set of generators of M.

- 1. Let $\frac{a}{s} \in \operatorname{Ann}(S^{-1}M)$. For any i we have $\frac{a}{s}\frac{m_i}{1} = 0$; thus there is a $t_i \in S$, such that $t_i(am_i) = 0$. In particular $t_i a \in \operatorname{Ann}(m_i)$. Thus for $t_a = \prod_{i=1}^k t_i$, we get $tam_i = 0$ for any i i.e. (since $(m_i)_i$ generate M) $ta \in \operatorname{Ann}(M)$. Thus $\frac{a}{s} = \frac{t_a a}{t_a s} \in S^{-1}\operatorname{Ann}(M)$ i.e. $\operatorname{Ann}(S^{-1}M) \subset S^{-1}\operatorname{Ann}(M)$. Conversely, if $\frac{a}{s} \in S^{-1}\operatorname{Ann}(M)$, with $a \in \operatorname{Ann}(M)$, then for any $\frac{m}{t} \in S^{-1}M$, $\frac{a}{s} \cdot \frac{m}{t} = \frac{am}{st} = \frac{0}{st} = 0$. Thus $\frac{a}{s} \in \operatorname{Ann}(S^{-1}M)$, proving that $\operatorname{Ann}(S^{-1}M) = S^{-1}\operatorname{Ann}(M)$.
- 2. If $S^{-1}M = 0$ then for each $i, \frac{m_i}{1} = 0 \in S^{-1}M$ i.e. there is a $s_i \in S$ such that $s_im_i = 0 \in M$. Set $s = \prod_{i=1}^k s_i \in S$. Then $sm_i = 0$ for any i thus $((m_i)_i$ generate M) $sm = 0 \in M$ for any $m \in M$ i.e. $s \in \operatorname{Ann}(M)$. So $s \in S \cap \operatorname{Ann}(M)$. Conversely, if $s \in S \cap \operatorname{Ann}(M)$, since sm = 0 for any $m \in M$ and $t \in S$ (by definition) $\frac{m}{t} = 0 \in S^{-1}M$ i.e. $S^{-1}M = 0$.

Exercise 23. (Nakayama lemma, 3 points)

Let us denote $Q = \operatorname{Coker}(N \to M)$. Since M is finitely generated and Q is a quotient of M, Q is also finitely generated (for example by the image of a set of generators of M). Tensoring the exact sequence $N \to M \xrightarrow{\pi} Q \to 0$ by A/\mathfrak{a} we get the exact sequence $N/\mathfrak{a}N \to M/\mathfrak{a}M \xrightarrow{\pi \otimes \operatorname{id}_{A/\mathfrak{a}}} Q/\mathfrak{a}Q \to 0$. Thus $Q/\mathfrak{a}Q$ is the cokernel of $N/\mathfrak{a}N \to M/\mathfrak{a}M$, which is 0 by assumption. So $Q = \mathfrak{a}Q$.

- 1. Since $\mathfrak{a} \subset \mathfrak{R}$, Nakayama lemma (iii) yields Q = 0 i.e. $N \to M$ is surjective.
- 2. In this case, Nakayama lemma (ii) provides a $b = 1 + a \in A$, with $a \in \mathfrak{a}$, such that bQ = 0. In particular, bq = 0 for any $q \in Q$. Since b is invertible in A_b , we get that $\frac{q}{b^i} = 0$ in Q_b for any $q \in Q$ and $i \ge 0$ i.e. $Q_b = 0$. But tensoring the exact sequence $N \to M \to Q \to 0$ by A_b we get the exact sequence $N_b \to M_b \to Q_b \to 0$ i.e. $Q_b = 0$ is the cokernel of $N_b \to M_b$. Hence the claimed surjectivity.
- 3. Define a homomorphism of A-modules $g: \bigoplus_{i=1}^{n} Ae_i \to M$ by (extend linearly) $e_i \mapsto m_i$. By assumption, $g \otimes \operatorname{id}_{A/\mathfrak{a}} : \bigoplus_{i=1}^{n} A/\mathfrak{a}e_i \to M/\mathfrak{a}M$ is surjective. Then by the previous question, there is a b = 1 + a, with $a \in \mathfrak{a}$, such that $g \otimes \operatorname{id}_{A_b} : \bigoplus_{i=1}^{n} A_b e_i \to M_b$ is surjective i.e. $\frac{m_1}{1}, \ldots, \frac{m_n}{1}$ generate M_b as A_b -module.

Exercise 24. (Non-zero divisors as multiplicative set, 3 points)

1. Let $a \in \text{ker}(A \to S^{-1}A)$; we have $\frac{a}{1} = 0$ in $S^{-1}A$ i.e. there is a $s \in S$ such that sa = 0 in A. So if $a \neq 0$, s is a zero-divisor. Contradiction. So a = 0. Hence the injectivity of $A \to S^{-1}A$.

For a multiplicative set $S \subsetneq S'$ containing S, consider the localization $g: A \to S'^{-1}A$. Pick a $s' \in S' \setminus S$. By definition of $S, s' \in A$ is a zero-divisor. Thus there is a $A \ni a \neq 0$ such that s'a = 0 in A. So we get $g(a) = \frac{a}{1} = 0$. i.e. g is not injective.

Solutions to be handed in before Monday May 11, 4pm.

- 2. If $\frac{a}{s} \in S^{-1}A$ is not a zero-divisor then for any $S^{-1}A \ni \frac{b}{s'} \neq 0$, with $b \in A$ and $s' \in S$, $\frac{a}{s} \frac{b}{s'} \neq 0$. Since $A \to S^{-1}A$ is injective (according to the first question), for any $A \ni b \neq 0$, $\frac{b}{1} \neq 0$; in particular $\frac{ab}{s} \neq 0$ i.e. for any $s' \in S$, $s'ab \neq 0$ in A. As a result we get that for any $A \ni b \neq 0$ $ab \neq 0$ i.e. a is not a zero divisor. Thus $a \in S$ and $\frac{a}{s} \frac{s}{a} = 1$ in $S^{-1}A$.
- 3. Under the assumption of this question, we have $S \subset A^*$ and since a unit cannot be a zero divisor $(A \neq 0)$, we actually have $A^* = S$. Using the first question, we only have to check that $f : A \to S^{-1}A$ is surjective: for $\frac{a}{s} \in S^{-1}A$, since $s \in S = A^*$, consider $s^{-1}a \in A$; since $ss^{-1}a a = 0$, we get $f(s^{-1}a) = \frac{s^{-1}a}{1} = \frac{a}{s}$ in $S^{-1}A$.

Exercise 25. (Flat scalar extensions, 5 points)

- 1. $\mathbb{Z} \to \mathbb{F}_p: \mathbb{F}-p$ is not flat over \mathbb{Z} as shown by the inclusion $f: \mathbb{Z} \hookrightarrow \mathbb{Z}, k \mapsto pk$. Tensoring with \mathbb{F}_p , we get that $f \otimes \operatorname{id}_{\mathbb{F}_p}: \mathbb{F}_p \to \mathbb{F}_p$, is $k \mapsto pk$ which is the 0 map, in particular it is not injective.
- 2. $\mathbb{Z} \to \mathbb{Q}$: \mathbb{Q} is a flat \mathbb{Z} -module: notice first that $\mathbb{Q} \simeq Z_{(0)}$, the localization at the prime ideal $(0) \subset \mathbb{Z}$. Indeed for an injective homomorphism of \mathbb{Z} -modules $f : M \hookrightarrow M'$ let $\sum_{i=1}^{n} m_i \otimes \frac{p_i}{q_i} \in \ker(f \otimes_{\mathbb{Z}} \mathrm{id}_{\mathbb{Q}})$; we have

$$\sum_{i=1}^{n} m_i \otimes \frac{p_i}{q_i} = \sum_i m_i \otimes \frac{p_i}{\prod_{\ell=1}^{n} q_\ell} \prod_{k \neq i} q_k = \sum_i m_i p_i \prod_{k \neq i} q_k \otimes \frac{1}{\prod_{\ell} q_\ell} = (\sum_i m_i p_i \prod_{k \neq i} q_k) \otimes \frac{1}{\prod_{\ell} q_\ell}$$

and $f(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}) \otimes \frac{1}{\Pi_{\ell} q_{\ell}} = 0 \in M' \otimes \mathbb{Q}$. Now since $M' \otimes \mathbb{Q} \simeq M' \otimes \mathbb{Z}_{(0)} \simeq M'_{(0)}$, $M'_{(0)} \ni 0 = f(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}) \otimes \frac{1}{\Pi_{\ell} q_{\ell}} = \frac{f(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k})}{\Pi_{\ell} q_{\ell}}$ means that there is a $b \in \mathbb{Z} \setminus \{0\}$ such that $f(b\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}) = bf(\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}) = 0 \in M'$. As f is injective, we get $b\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k} = 0 \in M$. In particular, $\frac{\sum_{i} m_{i} p_{i} \Pi_{k \neq i} q_{k}}{\Pi_{\ell} q_{\ell}} = 0 \in M_{(0)}$. Thus $f \otimes \operatorname{id}_{\mathbb{Z}}$ is injective.

- 3. $A \to A[x]$: by definition, A[x] is a free A-module $((x^i)_{i \in \mathbb{N}})$ being a basis) so it is in particular flat.
- 4. Actually the question is trivial (as noticed by G.Andreychev) since $\mathbb{Q}[x,y]/(y^2-x)$ is a \mathbb{Q} -vector space, as such it is a free \mathbb{Q} -module. So it is flat over \mathbb{Q} and since \mathbb{Q} is flat over \mathbb{Z} , we get, by Proposition 5.6, that $\mathbb{Q}[x,y]/(y^2-x)$ is flat over \mathbb{Z} . The question is more interesting for $\mathbb{Z} \to \mathbb{Z}[x,y]/(y^2-x)$: Let us prove that $\mathbb{Z}[x,y]/(y^2-x)$

x) is a flat \mathbb{Z} -module. This ring homomorphism can be decomposed as

$$\mathbb{Z} \to \mathbb{Z}[x] \to \mathbb{Z}[x][y] \simeq \mathbb{Z}[x,y] \to \mathbb{Z}[x,y]/(y^2 - x)$$

the last homomorphism being the quotient by the principal ideal of $\mathbb{Z}[x, y]$ generated by $y^2 - x$. We have just seen that $\mathbb{Z}[x]$ is a flat \mathbb{Z} -module. Now, since Euclidean division by monic polynomials works in A[y] for any ring A, we have:

Let $A \neq 0$ be a ring and $a \in A$, then $\varphi : A^2 \to A[y]/(y^2 - a)$, $(b, c) \mapsto b\overline{y} + c$ (*) is an isomorphism of A-modules

(see the proof below) Applying this remark to $A = \mathbb{Z}[x]$ and a = x, we get that $\mathbb{Z}[x, y]/(y^2 - x)$ is a free (thus flat) $\mathbb{Z}[x]$ -module. As a conclusion (Proposition 5.6), $\mathbb{Z}[x, y]/(y^2 - x)$ is a flat \mathbb{Z} -module.

Beweis. Notice that (even if A happened to have zero-divisors) for any non-zero polynomial $f = \sum_{i=0}^{n} b_i y^i \in A[y]$, ith $b_n \neq 0 \operatorname{deg}((y^2 - a)f) = 2 + \operatorname{deg}(f)$ since its leading term is $b_n y^{n+2} \neq 0$. So, let $(b, c) \in \operatorname{ker}(\varphi)$ we have $by + c \in (y^2 - a)$ in A[y]; but any

non-zero polynomial in $(y^2 - a)$ has degree at least 2. Thus $by + c = 0 \in A[y]$ i.e. (b, c) = (0, 0), proving that φ is injective.

Now let us prove by induction that any polynomial $f \in A[y]$ can be written $f = (y^2 - a)g + h$ where $g, h \in A[y]$ and $\deg(h) < 2$. It is clear for polynomial of degree 0 and 1. Now let k > 0 such that the property is true for polynomials of degree at most k. Given $f = \sum_{i=0}^{k+1} b_i y^i \in A[x]$ of degree k+1 (i.e. $b-k+1 \neq 0$), $f' = f - b_{k+1} y^{k-1} (y^2 - a) \in A[y]$ has degree < 0 so by our induction hypothesis, there are $g, h \in A[y]$ with $\deg(h) < 2$, such that $f' = (y^2 - a)g + h$. So we get $f = (y^2 - a)(g + b_{k+1}y^{k-1}) + h$ and $\deg(h) < 2$. Thus by induction, the property is true.

So let $\overline{f} \in A[y]/(y^2 - a)$ and $f \in A[y]$ in its preimage. By the above property, we can write $f = (y^2 - a)g + h$ for some $g, h \in A[y]$ with $\deg(h) < 2$. In particular $\overline{f} = h \mod (y^2 - a)$. Writing h = by + c, we get $\varphi(b, c) = \overline{f}$ proving the surjectivity of φ .

Exercise 26. (Localization, 4 points)

1. We have $1 = 1 + x_2 \cdot 0 \in S$, and for $f_1(x_1) + x_2g_1(x_1)$, $f_2(x_1) + x_2g_2(x_1) \in S$, with $f_1 \neq 0, f_2 \neq 0$, we have

$$(f_1(x_1) + x_2g_1(x_1))(f_2(x_1) + x_2g_2(x_1)) = f_1f_2 + x_2(f_1g_2 + f_2g_1) + x_2^2(g_1g_2) = f_1f_2 + x_2(f_1g_2 + f_2g_1)$$

in A and $f_1 f_2 \neq 0$ since they belongs to the integral domain $k[x_1] \subset A$. So $(f_1(x_1) + x_2g_1(x_1))(f_2(x_1) + x_2g_2(x_1)) \in S$ i.e. S is a multiplicative set.

Since we have a ring isomorphism $k[x_1][x_2] \simeq k[x_1, x_2]$, and and inclusion of rings $k[x_1] \subset k(x_1)$, we have an induced ring homomorphism $\alpha : A \to k(x_1)[x_2]/(x_2^2)$. For $f + x_2g \in S$, we have

$$(f+x_2g)\frac{f-x_2g}{f^2} = \frac{f^2-x_2^2g^2}{f^2} = \frac{f^2}{f^2} = 1$$

thus $\alpha(S)$ is contained in the group of invertible elements of $k(x_1)[x_2]/(x_2^2)$. Now let φ : $A \to B$ be a ring homomorphism such that $g(S) \subset B^*$. Define $\overline{\varphi} : k(x_1)[x_2]/(x_2^2) \to B$ by $\frac{f(x_1)+x_2g(x_2)}{h(x_1)} \mapsto (\varphi(h(x_1)))^{-1}\varphi(f(x_1)+x_2g(x_2))$. It is well-defined since $k[x_1] \setminus \{0\} \subset S$ so its image under φ is contained B^* ; moreover any other representative of a given $\frac{f(x_1)+x_2g(x_1)}{h(x_1)}$ is of the form $\frac{h'(x_1)f(x_1)+x_2h'(x_1)g(x_1)}{h'(x_1)h(x_1)}$ for some $h' \neq 0$ and using that φ is a ring homomorphism

$$\begin{aligned} (\varphi(h'(x_1)h(x_1)))^{-1}\varphi(h'(x_1)(f(x_1)+x_2g(x_1))) &= \varphi(h(x_1))^{-1}\varphi(h'(x_1))^{-1}\varphi(h'(x_1))\varphi(f(x_1)+x_2g(x_1)) \\ &= (\varphi(h(x_1)))^{-1}\varphi(f(x_1)+x_2g(x_2)). \end{aligned}$$

One check that $\overline{\varphi}$ is a ring homomorphism the same way

$$\begin{split} \overline{\varphi}(\frac{f_1 + x_2g_1}{h_1} + \frac{f_2 + x_2g_2}{h_2}) &= \overline{\varphi}(\frac{h_2(f_1 + x_2g_1) + h_1(f_2 + x_2g_2)}{h_1h_2}) \\ &= \varphi(h_1h_2)^{-1}\varphi(h_2(f_1 + x_2g_1) + h_1(f_2 + x_2g_2)) \\ &= \varphi(h_2)^{-1}\varphi(h_1)^{-1}(\varphi(h_2)\varphi(f_1 + x_2g_1) + \varphi(h_1)\varphi(f_2 + x_2g_2)) \\ &= \varphi(h_1)^{-1}\varphi(f_1 + x_2g_1) + \varphi(h_2)^{-1}\varphi(f_2 + x_2g_2) \\ &= \overline{\varphi}(\frac{f_1 + x_2g_1}{h_1}) + \overline{\varphi}(\frac{f_2 + x_2g_2}{h_2}) \end{split}$$

and

$$\overline{\varphi}\left(\frac{f_1 + x_2g_1}{h_1} \cdot \frac{f_2 + x_2g_2}{h_2}\right) = \overline{\varphi}\left(\frac{(f_1 + x_2g_1)(f_2 + x_2g_2)}{h_1h_2}\right)$$
$$= \varphi(h_1h_2)^{-1}\varphi((f_1 + x_2g_1)(f_2 + x_2g_2))$$
$$= \varphi(h_1)^{-1}\varphi(f_1 + x_2g_1)\varphi(h_2)^{-1}\varphi(f_2 + x_2g_2)$$
$$= \overline{\varphi}\left(\frac{f_1 + x_2g_1}{h_1}\right) \cdot \overline{\varphi}\left(\frac{f_2 + x_2g_2}{h_2}\right)$$

finally $\overline{\varphi}(1) = \overline{\varphi}(\frac{1}{1}) = \varphi(1)^{-1}\varphi(1) = 1$. And a direct calculation shows that $\varphi = \overline{\varphi} \circ \alpha$. Moreover if $\beta : k(x_1)[x_2]/(x_2^2) \to B$ is a ring homomorphism satisfying $\varphi = \beta \circ \alpha$. Then for any $h \in k[x_1] \setminus \{0\} \subset S$, $\beta(\alpha(h)) = \beta(h) = \varphi(h) = \overline{\varphi}(h)$ from which we also see that $\beta(h)$ is invertible and since $1 = \beta(1) = \beta(\frac{h}{h}) = \beta(\frac{1}{h})\beta(h)$ we have $\beta(\frac{1}{h}) = \beta(h)^{-1}$. We also have $\beta(\alpha(f + x_2g)) = \beta(f + x_2g) = \varphi(f + x_2g) = \overline{\varphi}(f + x_2g)$. Thus

$$\beta(\frac{f+x_2g}{h}) = \beta(\frac{1}{h})\beta(f+x_2g) = \beta(h)^{-1}\beta(f+x_2g) = \varphi(h)^{-1}\varphi(f+x_2g) = \overline{\varphi}(\frac{f+x_2g}{h})$$

Hence the uniqueness of such $\overline{\varphi}$. As a conclusion α satisfies the universal property of the localization; so it is isomorphic to the localization of A with respect to S.

2. Look at the first projection $p_1 : A \times B \to A$ which is a ring homomorphism satisfying $p_1(S) = \{1\} \subset A^*$. Let $g : A \times B \to C$ be a ring homomorphism such that $g(S) \subset C^*$. Since $(1,0)^2 = (1,0)$, we get $g((1,0)) = g((1,0)^2) = g((1,0))^2$ in C which, as g((1,0)) is invertible, yields g((1,0)) = 1. Now, define a map $f : A \to C$ by $a \mapsto g((a,0))$. It is well-defined and it is a ring

homomorphism: f(1) = g((1,0)) = 1 by the above discussion. For any $a, a' \in A$, using that g is a ring homomorphism, we get:

$$f(a+a') = g((a+a',0)) = g((a,0) + (a',0)) = g((a,0)) + g((a',0)) = f(a) + f(a')$$

and f(aa') = g((aa', 0)) = g((a, 0)(a', 0)) = g((a, 0))g((a', 0)) = f(a)f(a'). To see that $g = f \circ p_1$ it is sufficient to prove that g((0, b)) = 0 for any $b \in B$ (since g((a, b)) = g((a, 0) + (0, b)) = g((a, 0)) + g((0, b)); but for any $b \in B$, (0, b)(1, 0) = (0, 0) so that $(g \text{ ring homomorphism}) 0 = g((0, 0)) = g((0, b))g((1, 0)) = g((0, b)) \cdot 1$. Let us prove the uniqueness of f: let $h : A \to C$ be a ring homomorphism satisfying $g = h \circ p_1$. For $a \in A$, we have $h(a) = h(p_1((a, 0))) = g((a, 0)) = f(a)$; thus f = h. So $p_1 : A \times B \to A$ is the localization with respect to S.

3. (\Rightarrow) Assume $M \to S^{-1}M$ is bijective. Let $s \in S$. If $M \xrightarrow{s} M$ is not injective, then there is a $m \in M \setminus \{0\}$ such that $sm = 0 \in M$. But this means that $\frac{m}{1} = 0 \in S^{-1}M$ i.e. that $M \to S^{-1}M$ is not injective. Contradiction. So for any $s \in S$, $M \xrightarrow{s} M$ is injective. Now, let us prove the surjectivity of the homomorphisms $M \xrightarrow{s} M$. Take a $s \in S$. Given a $m \in M$, since $M \to S^{-1}M$ is surjective, there is a $n \in M$ such that $\frac{n}{1} = \frac{m}{s}$ in $S^{-1}M$ which means that there is a $s' \in S$, such that $s'(sn - m) = 0 \in M$. But by the above discussion $M \xrightarrow{s'} M$ is injective; thus sn = m i.e. $M \xrightarrow{s} M$ is surjective.

 $(\Leftarrow) \text{ If } m \in \ker(M \to S^{-1}M), \text{ then } \frac{m}{1} = 0 \in S^{-1}M \text{ i.e. there is a } s \in S \text{ such that } sm = 0 \in M. \text{ But since } M \xrightarrow{s} M \text{ is injective, we get } m = 0 \text{ i.e. } M \to S^{-1}M. \text{ Now, consider } \frac{m}{s} \in S^{-1}M. \text{ By sujectivity of } M \xrightarrow{s} M, \text{ we can find a } n \in M \text{ such that } m = sn \in M. \text{ We then have } \frac{n}{1} = \frac{m}{s} \in S^{-1}M. \text{ thus } M \to S^{-1}M \text{ is surjective.}$