
Solutions for exercises, Algebra I (Commutative Algebra) – Week 6

Exercise 27. (Basic open sets)
Let p ∈ Spec(Aa), then a /∈ f−1(p) (otherwise, f(a) ∈ p and since, by definition of the
localization, f(a) is invertible in Aa, we would get p = (1); contradiction) i.e. f−1(p) ∈ D(a).
So ϕ factorizes through i : D(a) ↪→ Spec(A) i.e. ϕ = i ◦ ψ for a map ψ : Spec(Aa)→ D(a).
If q ∈ D(a), then f(q)e ∈ Spec(Aa) and f−1(f(q)e) = q (i.e. ψ is surjective): indeed if
b
ak

c
an ∈ f(q)e we can write

b

ak
c

an
=

q

am
in Aa

for some q ∈ q i.e. a`(ambc−qak+n) = 0 in A for aome ` ≥ 0. So we have a`+mbc = a`+k+nq ∈
q; but since a /∈ q and q is prime, we have bc ∈ q. Thus either b ∈ q or c ∈ q i.e. either
b
ak
∈ f(q)e or c

an ∈ f(q)e. Moreover if 1
1 ∈ f(q)e then we can write 1

1 = q
ak

in Aa for some

k ≥ 0 and q ∈ q i.e. ak+m = amq ∈ q; but since q is prime, we get a ∈ q; contradiction. So
1
1 /∈ f(q)e. Thus f(q)e ∈ Spec(Aa).

Now, since f(q) ⊂ f(q)e, we have q ⊂ f−1(f(q)e). Conversely if b ∈ f−1(f(q)e) then
f(b) ∈ f(q)e i.e. b

1 = f(b) = q
ak

in Aa. Thus ak+nb = anq ∈ q and since q is prime and

a /∈ q, b ∈ q. So q = f−1(f(q)e).

For any q ∈ Spec(Aa), f(f−1(q))e = q: indeed, we have by definition, f(f−1(q)) ⊂ q so that
f(f−1(q))e ⊂ q. Conversely, take p

ak
∈ q, we have p

1 = ak p
ak
∈ q i.e. f(p) = p

1 ∈ q. Thus

p ∈ f−1(q), consequently p
ak
∈ f(f−1(q))e.

The map ψ is injective: indeed, if f−1(p1) = f−1(p2) for p1, p2 ∈ Spec(Aa). Then by the
above discussion p1 = f(f−1(p1))

e = f(f−1(p2))
e = p2. Thus ψ is a bijection.

The open subset D(a)
i
⊂ Spec(A) is endowed with the induced topology (i.e. the open subsets

of D(a) are exactly of the form i−1(U) for an open subset U). By Lemma 9.9, ϕ is continuous
and ϕ = i ◦ψ. So for an open subset V ⊂ D(a), write V = i−1(U) for an open subset U thus
ψ−1(V ) = ψ−1(i−1(U)) = ϕ−1(U) is an open set i.e. ψ is continuous.

Now let D( b
ak

) ⊂ Spec(Aa) be an open set with b ∈ A and k ≥ 0. We have D( b
1) = D( b

ak
)

since ak is invertible.
Then we have ψ(D( b

1)) = D(b) ∩ D(a) = D(ab): indeed, if b
1 /∈ p then b /∈ f−1(p) so

ψ(D( b
1)) ⊂ D(b) and by definition of ψ, ψ(D( b

1)) ⊂ D(b) ∩D(a). Conversely, if ab /∈ q then

if ab
1 ∈ f(q)e, we have ab

1 = q
am for some q ∈ q and m ≥ 0 i.e. am+1+nb = anq ∈ q. Since q is

prime and does not contain a, we get b ∈ q; absurb. So ab
1 /∈ f(q)e. In particular b

1 /∈ f(q)e.

Thus ψ(D( b
1)) = D(b) ∩D(a).

As a conclusion ψ is a bijective and open continuous map so it is a homeomorphism.

Exercise 28. (Consecutive localization)
As A\p2 ⊂ A\p1, for any t ∈ A\p2, t

1 ∈ Ap1 is invertible. So let us define g : Ap2 → Ap1 by
a
t 7→

a
t . It is a well-defined map: indeed if a

t = a′

t′ in Ap2 , we have t′′(at′ − a′t) = 0 in A for
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some t′′ ∈ A\p2; but since t, t′, t′′ ∈ A\p2 ⊂ A\p1, the equality t′′(at′ − a′t) = 0 in A tells us

that a
t = a′

t′ in Ap1 .

We have g(1Ap2
) = g(11) = 1

1 = 1Ap1
and it is easy to check the rest of properties to show

that g is a ring homomorphism.
Moreover given a s

t /∈ p1Ap2 , we can choose a representant such that s ∈ A\p1 and t ∈ A\p2,
then g( st ) = s

t is invertible in Ap1 by definition. Thus g(Ap2\p1Ap2) ⊂ A∗p1 .
Let us prove that g is in fact the localization Ap2 → (Ap2)p1Ap2

. Consider a ring homo-

morphism f : Ap2 → B (B 6= 0) such that f(Ap2\p1Ap2) ⊂ B∗ i.e. for any s ∈ A\p1 and

t ∈ A\p2, f( st ) ∈ B
∗. Let us define f : Ap1 → B by a

t 7→ f(a1 )f( t
1)−1. We know that f( t

1)

is invertible for any t
1 ∈ Ap2\p1Ap2 and for a

t = a′

t′ in Ap1 since t′′(at′ − a′t) = 0 in A for

some t′′ ∈ A\p1, we get f( t
′′

1 )(f(a1 )f( t
′

1 )− f(a
′

1 )f( t
1)) = 0 in B which, as f( t

′′

1 ) is invertible,

can be written f(a1 )f( t
′

1 ) = f(a
′

1 )f( t
1) ∈ B and since f( t

1) and f( t
′

1 ) are invertible in B, we

get f(a1 )f( t
1)−1 = f(a

′

1 )f( t
′

1 )−1 in B; so f is well-defined. It is not difficult to check that f

is a ring homomorphism and for a
t ∈ Ap2 (t ∈ A\p2), f(g(at )) = f(at ) = f(a1 )f( t

1)−1 but

since t
1 ∈ Ap2 is invertible we have 1 = f(1t

t
1) = f(1t )f( t

1) i.e. f(1t ) = f( t
1)−1 ∈ B. Thus

f(g(at )) = f(a1 )f( t
1)−1 = f(at ) i.e. f = f ◦ g.

Now, if h : Ap1 → B is a ring homomorphism such that h ◦ g = f . Then for a ∈ A,
h(a1 ) = h(g(a1 )) = f(a1 ) in particular since for t ∈ A\p1, f( t

1) is invertible, h( t
1) = f( t

1) is

invertible (and t
1 ∈ Ap1 is invertible, so h(1t ) = f( t

1)−1). Thus h(at ) = f(a1 )f( t
1)−1 = f(at ) i.e.

f factors uniquely through g.
So g : Ap2 → Ap1 satisfies the universal property of the localization Ap2 → (Ap2)p1Ap2

; thus
it is the localization.

Exercise 29. (Comparing basic open sets)
If ∅ 6= D(a) ⊂ D(b) then {p, a /∈ p} ⊂ {p, b /∈ p}. If b

1 ∈ Aa is not a unit, it is contained in
a maximal (thus prime) ideal m ( Aa. Using D(a) ' Spec(Aa) we see that a /∈ m (or more
precisely the contraction of m in A) but b ∈ m (or more precisely the contraction of m in A),
contradicting D(a) ⊂ D(b). Thus b

1 ∈ Aa is a unit.

Conversely, assume b
1 ∈ Aa is a unit (and a /∈ N otherwise D(a) = ∅ ⊂ D(b) is trivial). Let

a /∈ p with p ∈ Spec(A). If b ∈ p, we get ab
1 ∈ pAa. But since b

1 ∈ Aa is a unit by assumption

and a
1 ∈ Aa is a unit by construction of the localization, ab

1 ∈ pAa tells that pAa is not
a prime ideal (and Aa 6= 0 since a /∈ N), contradicting Spec(Aa) ' D(a). Thus b /∈ p i.e.
D(a) = {p, a /∈ p} ⊂ D(b) = {p, b /∈ p}.

If b
1 ∈ Aa is a unit, define g : Ab → Aa by x

bk
7→ x

1 ( b
k

1 )−1. It is well-defined: if x
bk

= y
b`

then bn(b`x − bky) = 0 ∈ A. In particular bn

1 ( b
`

1
x
1 −

bk

1
y
1 ) = 0 ∈ Aa but since b

1 is a unit,
b`

1
x
1 = bk

1
y
1 ∈ Aa. Thus x

1 ( b
k

1 )−1 = y
1 ( b

`

1 )−1 ∈ Aa.

It is a ring homomorphism: g(1Ab
) = g(11) = 1

1 = 1Aa and check additivity and g respects
products.
Moreover g(a1 ) = a

1 ∈ Aa is invertible in Aa. Denoting f : A→ Ab, a direct calculation shows
that g ◦ f : A→ Aa is given by x 7→ x

1 .

If D(a) = D(b) then a
1 ∈ Ab is invertible and b

1 ∈ Aa is also invertible. Let us prove that g is

an isomorphism of rings. g injective: if x
1 ( b

k

1 )−1 = g( x
bk

) = 0 ∈ Aa then since bk

1 is a unit in

Aa, x
1 = 0 ∈ Aa i.e. anx = 0 ∈ A for some n ≥ 0. Thus anx

1 = 0 ∈ Ab. But anx
1 = (a1 )n x

1 and
a
1 is a unit in Ab, so x

1 = 0 ∈ Ab. In particular x
bk

= 0 ∈ Ab i.e. g is injective.

g surjective: since a
1 ∈ Ab is invertible, we get 1 = g(1) = g((a1 )−1 a1 ) = g((a1 )−1)g(a1 ) =

g((a1 )−1)a1 as g is a ring homomorphism. Thus g((a1 )−1) = g(a1 )−1 = (a1 )−1 = 1
a ∈ Aa. So for

x
ak
∈ Aa, we have g(((a1 )−1)k x

1 ) = g((a1 )−1)k x
1 = 1

ak
x
1 = x

ak
. Thus g is surjective.
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[the wording of the exercise should have been more precise: Aa
f
' Ab with f(a1 ) = a

1 and

f−1( b
1) = b

1 ] Now assume that there is such a ring isomorphism f : Aa → Ab. We have
a
1f( 1a) = f(a1 )f( 1a) = f(a1

1
a) = f(1) = 1 thus a

1 is a unit in Ab. By the first part of the
exercise D(b) ⊂ D(a).
Likewise, b

1f
−1(1b ) = f−1( b

1)f−1(1b ) = f−1( b
1
1
b ) = f−1(1) = 1 thus b

1 is invertible in Aa. Using
again the first part of the exercise D(a) ⊂ D(b).

Exercise 30. (Disconnected Spec(A) and idempotents)
If Spec(A) is disconnected, we can write it as disjoint union of two closed subsets Spec(A) =
V (a)

∐
V (b) for a, b ⊂ A ideals such that V (a) 6= ∅ and V (b) 6= ∅. So we have Spec(A) =

V (a) ∪ V (b) = V (a ∩ b) i.e. for any p ∈ Spec(A), a ∩ b ⊂ p i.e. a ∩ b ⊂ N.
We have ∅ = V (a) ∩ V (b) = V (a + b) i.e. no prime ideal contains a + b; since any proper
ideal is contained in a maximal (thus prime) ideal, a + b = (1). So we can write 1 = a + b,
for a a ∈ a and a b ∈ b. We have ab ∈ a ∩ b ⊂ N i.e. (ab)n = 0 for some n > 0. Now,

1 = (a+ b)n = an + bn + (ab)
n−1∑
i=1

ai−1bn−i−1︸ ︷︷ ︸
=y

and as aby is nilpotent, 1− aby is invertible. Let

us denote z its inverse. We have

zan = (zan)(z(1− aby)︸ ︷︷ ︸
=1

) = (zan)(z(an + bn)) = (zan)2 + (z2anbn) = (zan)2.

So zan is idempotent.
As a ∈ a ⊂ p for at least one prime p ∈ Spec(A) (V (a) 6= ∅), zan ∈ a cannot be a unit (in
particular cannot be 1). Moreover if zan = 0, as z is invertible an = 0; thus 1 = bn+(ab)y and
aby is nilpotent. So bn (in particular b) is a unit. Thus b = (1); contradiction with V (b) 6= ∅.
So zan is an idempotent 6= 0, 1.

Conversely, if there is a e ∈ A\{0, 1} idempotent, then (1−e)2 = 1−2e+e2 = 1−e so 1−e is
also idempotent. We also have (1−e)e = e−e2 = 0. Let us denote p : A→ A/(e) the quotient
by the principal ideal generated by e. Let us define s : A/(e)→ A by x 7→ (1− e)x where for
x ∈ A/(e), x ∈ A designates any element such that p(x) = x. The map s is well-defined: if
p(y) = p(x) = x, we can write y − x = ez for some z ∈ A; then

(1− e)y = (1− e)x+ (1− e)ez = (1− e)x+ 0 · z = (1− e)x.

It is not difficult to check that s is a homomorphism of A-modules. Moreover

p ◦ s(x) = p((1− e)x) = p((1− e)x+ ex) = p(x) = x

as ex ∈ ker(p). Thus s is a section of the surjective homomorphism of A-modules p i.e. the
exact sequence

0→ (e)→ A→ A/(e)→ 0

splits i.e. A = (e)⊕A/(e) as A-modules. Now, we see that s identifies A/(e) with the principal
ideal (1 − e) ⊂ A: by definition im(s) ⊂ (1 − e) and the equality p ◦ s = idA/(e) shows that
p|(1−e) : (1− e)→ A/(e) is surjective. If x ∈ ker(p)∩ (1− e) then x = (1− e)y for some y ∈ A
and p(x) = 0 i.e. x ∈ (e), so let us write x = ez for some z ∈ A. Then

(1− e)x = (1− e)ez = 0 and ex = e(1− e)y = 0 thus x = (1− e)x+ ex = 0. (*)

So p|(1−e) is injective i.e. induces an isomorphism of A-modules (1−e) ' A/(e). So A ' (e)⊕
(1−e) ' (e)×(1−e) as A-modules. But for any x, y ∈ A/(e), s(xy) = (1−e)xy = (1−e)2xy =
(1− e)x · (1− e)y = s(x)s(y) and in particular s(x) = s(1 · x) = s(1)s(x) = (1− e)s(x). So s
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carries the ring structure of A/(e) to (1− e) with 1− e as the unity of (1− e) (associativity
and distributivity are inherited from the corresponding properties for A/(e)).
The ideal (e) as also a ring structure, e being the unity: for any x, y ∈ A, ex ·ey = e2xy = exy
and in particular e · ex = e2x = ex (associativity and distributivity are inherited from the
corresponding properties for A).
Moreover, those ring structures are compatible with the ring structure of A:

xy = ((1− e)x+ ex)((1− e)y + ey) = (1− e)2xy + 2 (1− e)e︸ ︷︷ ︸
=0

xy + e2xy = (1− e)xy + exy.

Thus the decomposition A ' (e)× (1− e) is actually a decomposition as rings.

Now looking at p : A → A/(e) we have Spec(A/(e)) ' V (e). the projection on (e) is just
given by x 7→ ex. Whose kernel is (1−e): if ex = 0 then x = (1−e)x+ex = (1−e)x ∈ (1−e).
On the other hand for any y ∈ A, e(1− e)y = 0 · y = 0.
Thus Spec((e)) ' V ((1 − e)). Since by (*), (e) ∩ (1 − e) = 0 ⊂ ∩p∈Spec(A)p, we get V (e) ∪
V (1− e) = V ((e) ∩ (1− e)) = Spec(A).
Moreover, V (e) ∩ V (1 − e) = V ((e) + (1 − e)) and 1 = e + (1 − e) ∈ (e) + (1 − e). Thus
(e) + (1− e) = A i.e. V ((e) + (1− e)) = ∅. As a conclusion: V (e)

∐
V (1− e) = Spec(A).

Exercise 31. (Irreducible Spec(A))

⇐ Since (D(a))a∈A is a basis of the Zariski topology, it is sufficient to see thatD(a)∩D(b) 6=
∅ for any pair of non-empty D(a), D(b). So let D(a) 6= ∅ and D(b) 6= ∅. If D(a)∩D(b) =
∅, we have D(ab) = ∅ i.e. ab ∈ p for any p ∈ Spec(A) i.e. ab ∈ ∩p∈Spec(A)p = N. By
assumption, either a ∈ N or b ∈ N i.e. either D(a) = ∅ or D(b) = ∅. Contradiction.
Thus D(a) ∩D(b) 6= ∅.

⇒ If ab ∈ N = ∩p∈Spec(A)p, then V (ab) = Spec(A) i.e. D(ab) = ∅. But D(ab) = D(a) ∩
D(b). Since the Zariski topology on Spec(A) is irreducible, D(a) = ∅ or D(b) = ∅ which
means a ∈ ∩p∈Spec(A)p = N or b ∈ ∩p∈Spec(A)p = N. Thus N is prime.

Exercise 32. (Idempotent ideals)

(i)⇒(ii) As A/a is projective, it is in particular flat. We have the exact sequence

0→ a
i→ A

p→ A/a→ 0 (*)

and sinceA/a is projective, the exact sequence splits A/a

idA/a

��~~
0 // a // A // A/a // 0

i.e. A ' a⊕ A/a as A-modules. So there is a (projection) surjective homomorphism of
A-modules π : A→ a. Thus a is finitely generated (by π(1)).

(ii)⇒(iii) By assumption a is a finite A-module and since a is an ideal, a2 = a · a ⊂ a. Now since
A/a is flat, tensoring the exact (*) with A/a gives the exact sequence

0→ a⊗A/a→ A/a
p⊗id→ A/a⊗A A/a→ 0.

Now using the tensor identity (4) M ⊗ A/a ' M/aM , we get a ⊗A A/a ' a/a2 and
A/a ⊗A A/a ' A/a. Moreover p ⊗ id : A/a ' A ⊗ A/a → A/a ' A/a ⊗ A/a is the
identity a ⊗ p(b) = 1 ⊗ a · p(b) = p(a)p(b) = p(ab) 7→ 1 ⊗ p(ab) = p(ab). In particular
its kernel is 0. But the exactness of the above sequence tells us that a/a2 = ker(p⊗ id);
thus a/a2 = 0 i.e. a = a2.
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(iii)⇒(iv) Since the finite A-module, a satisfies a ·a = a, Nakayama lemma (ii) gives us a b ∈ 1 +a
such that ba = 0. Write b = 1− α with α ∈ a. For any a ∈ a, we have (1− α)a = 0 i.e.
a = αa. Hence a ⊂ (α). But since α ∈ a, (α) ⊂ a i.e. a = (α).
Moreover, we have in particular (since α ∈ a) α = α · α = α2 i.e. α is idempotent.

(iv)⇒(v) We have the inclusion i : a ⊂ A so we only have to define a projection β : A→ a such
that β ◦ i = ida to prove that a is a direct summand. Let us define β : A→ a = (e) by
a 7→ ea. It is obviously a homomorphism of A-modules and p◦i(ea) = p(ea) = e2a = ea.
So β shows that a is a direct summand.

(v)⇒(i) Let us denote β : A → a a projection (i.e. β ◦ i = ida for i : a ↪→ A the natural
inclusion) exhibiting a as direct summand. Then the exact sequence (*) splits: define
α : A/a→ A by a 7→ a− i(β(a)) where for a ∈ A/a, a ∈ A designates any element such
that p(a) = a. It is well-defined: if a,A′ ∈ A satisfy p(a) = p(a′) then a− a′ ∈ a so we
can write a− a′ = i(a− a′); thus

a− a′ − i(β(a− a′)) = a− a′ − i ◦ β ◦ i︸︷︷︸
=ida

(a− a′) = a− a′ − i(a− a′) = 0 ∈ A

i.e. a− i(β(a)) = a′ − i(β(a′)).
It is easy to prove that α is a homomorphism of A-modules. Moreover for a ∈ A/a,
p ◦ α(a) = p(a− i(β(a))︸ ︷︷ ︸

∈a

) = p(a) = a thus p ◦ α = idA/a.

So A ' a⊕A/a as A-modules. Thus A/a is a direct summand of the free module A, as
such it is projective.
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