Solutions for exercises, Algebra I (Commutative Algebra) - Week 6

Exercise 27. (Basic open sets)

Let $\mathfrak{p} \in \operatorname{Spec}\left(A_{a}\right)$, then $a \notin f^{-1}(\mathfrak{p})$ (otherwise, $f(a) \in \mathfrak{p}$ and since, by definition of the localization, $f(a)$ is invertible in A_{a}, we would get $\mathfrak{p}=(1)$; contradiction) i.e. $f^{-1}(\mathfrak{p}) \in D(a)$. So φ factorizes through $i: D(a) \hookrightarrow \operatorname{Spec}(A)$ i.e. $\varphi=i \circ \psi$ for a map $\psi: \operatorname{Spec}\left(A_{a}\right) \rightarrow D(a)$. If $\mathfrak{q} \in D(a)$, then $f(\mathfrak{q})^{e} \in \operatorname{Spec}\left(A_{a}\right)$ and $f^{-1}\left(f(\mathfrak{q})^{e}\right)=\mathfrak{q}$ (i.e. ψ is surjective): indeed if $\frac{b}{a^{k}} \frac{c}{a^{n}} \in f(\mathfrak{q})^{e}$ we can write

$$
\frac{b}{a^{k}} \frac{c}{a^{n}}=\frac{q}{a^{m}} \text { in } A_{a}
$$

for some $q \in \mathfrak{q}$ i.e. $a^{\ell}\left(a^{m} b c-q a^{k+n}\right)=0$ in A for aome $\ell \geq 0$. So we have $a^{\ell+m} b c=a^{\ell+k+n} q \in$ \mathfrak{q}; but since $a \notin \mathfrak{q}$ and \mathfrak{q} is prime, we have $b c \in \mathfrak{q}$. Thus either $b \in \mathfrak{q}$ or $c \in \mathfrak{q}$ i.e. either $\frac{b}{a^{k}} \in f(\mathfrak{q})^{e}$ or $\frac{c}{a^{n}} \in f(\mathfrak{q})^{e}$. Moreover if $\frac{1}{1} \in f(\mathfrak{q})^{e}$ then we can write $\frac{1}{1}=\frac{q}{a^{k}}$ in A_{a} for some $k \geq 0$ and $q \in \mathfrak{q}$ i.e. $a^{k+m}=a^{m} q \in \mathfrak{q}$; but since \mathfrak{q} is prime, we get $a \in \mathfrak{q}$; contradiction. So $\frac{1}{1} \notin f(\mathfrak{q})^{e}$. Thus $f(\mathfrak{q})^{e} \in \operatorname{Spec}\left(A_{a}\right)$.
Now, since $f(\mathfrak{q}) \subset f(\mathfrak{q})^{e}$, we have $\mathfrak{q} \subset f^{-1}\left(f(\mathfrak{q})^{e}\right)$. Conversely if $b \in f^{-1}\left(f(\mathfrak{q})^{e}\right)$ then $f(b) \in f(\mathfrak{q})^{e}$ i.e. $\frac{b}{1}=f(b)=\frac{q}{a^{k}}$ in A_{a}. Thus $a^{k+n} b=a^{n} q \in \mathfrak{q}$ and since \mathfrak{q} is prime and $a \notin \mathfrak{q}, b \in \mathfrak{q}$. So $\mathfrak{q}=f^{-1}\left(f(\mathfrak{q})^{e}\right)$.

For any $\mathfrak{q} \in \operatorname{Spec}\left(A_{a}\right), f\left(f^{-1}(\mathfrak{q})\right)^{e}=\mathfrak{q}$: indeed, we have by definition, $f\left(f^{-1}(\mathfrak{q})\right) \subset \mathfrak{q}$ so that $f\left(f^{-1}(\mathfrak{q})\right)^{e} \subset \mathfrak{q}$. Conversely, take $\frac{p}{a^{k}} \in \mathfrak{q}$, we have $\frac{p}{1}=a^{k} \frac{p}{a^{k}} \in \mathfrak{q}$ i.e. $f(p)=\frac{p}{1} \in \mathfrak{q}$. Thus $p \in f^{-1}(\mathfrak{q})$, consequently $\frac{p}{a^{k}} \in f\left(f^{-1}(\mathfrak{q})\right)^{e}$.
The map ψ is injective: indeed, if $f^{-1}\left(\mathfrak{p}_{1}\right)=f^{-1}\left(\mathfrak{p}_{2}\right)$ for $\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \operatorname{Spec}\left(A_{a}\right)$. Then by the above discussion $\mathfrak{p}_{1}=f\left(f^{-1}\left(\mathfrak{p}_{1}\right)\right)^{e}=f\left(f^{-1}\left(\mathfrak{p}_{2}\right)\right)^{e}=\mathfrak{p}_{2}$. Thus ψ is a bijection.

The open subset $D(a) \stackrel{i}{\subset} \operatorname{Spec}(A)$ is endowed with the induced topology (i.e. the open subsets of $D(a)$ are exactly of the form $i^{-1}(U)$ for an open subset $\left.U\right)$. By Lemma $9.9, \varphi$ is continuous and $\varphi=i \circ \psi$. So for an open subset $V \subset D(a)$, write $V=i^{-1}(U)$ for an open subset U thus $\psi^{-1}(V)=\psi^{-1}\left(i^{-1}(U)\right)=\varphi^{-1}(U)$ is an open set i.e. ψ is continuous.

Now let $D\left(\frac{b}{a^{k}}\right) \subset \operatorname{Spec}\left(A_{a}\right)$ be an open set with $b \in A$ and $k \geq 0$. We have $D\left(\frac{b}{1}\right)=D\left(\frac{b}{a^{k}}\right)$ since a^{k} is invertible.
Then we have $\psi\left(D\left(\frac{b}{1}\right)\right)=D(b) \cap D(a)=D(a b)$: indeed, if $\frac{b}{1} \notin \mathfrak{p}$ then $b \notin f^{-1}(\mathfrak{p})$ so $\psi\left(D\left(\frac{b}{1}\right)\right) \subset D(b)$ and by definition of $\psi, \psi\left(D\left(\frac{b}{1}\right)\right) \subset D(b) \cap D(a)$. Conversely, if $a b \notin \mathfrak{q}$ then if $\frac{a b}{1} \in f(\mathfrak{q})^{e}$, we have $\frac{a b}{1}=\frac{q}{a^{m}}$ for some $q \in \mathfrak{q}$ and $m \geq 0$ i.e. $a^{m+1+n} b=a^{n} q \in \mathfrak{q}$. Since \mathfrak{q} is prime and does not contain a, we get $b \in \mathfrak{q}$; absurb. So $\frac{a b}{1} \notin f(\mathfrak{q})^{e}$. In particular $\frac{b}{1} \notin f(\mathfrak{q})^{e}$. Thus $\psi\left(D\left(\frac{b}{1}\right)\right)=D(b) \cap D(a)$.
As a conclusion ψ is a bijective and open continuous map so it is a homeomorphism.

Exercise 28. (Consecutive localization)
As $A \backslash \mathfrak{p}_{2} \subset A \backslash \mathfrak{p}_{1}$, for any $t \in A \backslash \mathfrak{p}_{2}, \frac{t}{1} \in A_{\mathfrak{p}_{1}}$ is invertible. So let us define $g: A_{\mathfrak{p}_{2}} \rightarrow A_{\mathfrak{p}_{1}}$ by $\frac{a}{t} \mapsto \frac{a}{t}$. It is a well-defined map: indeed if $\frac{a}{t}=\frac{a^{\prime}}{t^{\prime}}$ in $A_{\mathfrak{p}_{2}}$, we have $t^{\prime \prime}\left(a t^{\prime}-a^{\prime} t\right)=0$ in A for

[^0]some $t^{\prime \prime} \in A \backslash \mathfrak{p}_{2}$; but since $t, t^{\prime}, t^{\prime \prime} \in A \backslash \mathfrak{p}_{2} \subset A \backslash \mathfrak{p}_{1}$, the equality $t^{\prime \prime}\left(a t^{\prime}-a^{\prime} t\right)=0$ in A tells us that $\frac{a}{t}=\frac{a^{\prime}}{t^{\prime}}$ in $A_{\mathfrak{p}_{1}}$.
We have $g\left(1_{A_{p_{2}}}\right)=g\left(\frac{1}{1}\right)=\frac{1}{1}=1_{A_{p_{1}}}$ and it is easy to check the rest of properties to show that g is a ring homomorphism.
Moreover given a $\frac{s}{t} \notin \mathfrak{p}_{1} A_{\mathfrak{p}_{2}}$, we can choose a representant such that $s \in A \backslash \mathfrak{p}_{1}$ and $t \in A \backslash \mathfrak{p}_{2}$, then $g\left(\frac{s}{t}\right)=\frac{s}{t}$ is invertible in $A_{\mathfrak{p}_{1}}$ by definition. Thus $g\left(A_{\mathfrak{p}_{2}} \backslash \mathfrak{p}_{1} A_{\mathfrak{p}_{2}}\right) \subset A_{\mathfrak{p}_{1}}^{*}$.
Let us prove that g is in fact the localization $A_{\mathfrak{p}_{2}} \rightarrow\left(A_{\mathfrak{p}_{2}}\right)_{\mathfrak{p}_{1} A_{\mathfrak{p}_{2}}}$. Consider a ring homomorphism $f: A_{\mathfrak{p}_{2}} \rightarrow B(B \neq 0)$ such that $f\left(A_{\mathfrak{p}_{2}} \backslash \mathfrak{p}_{1} A_{\mathfrak{p}_{2}}\right) \subset B^{*}$ i.e. for any $s \in A \backslash \mathfrak{p}_{1}$ and $t \in A \backslash \mathfrak{p}_{2}, f\left(\frac{s}{t}\right) \in B^{*}$. Let us define $\bar{f}: A_{\mathfrak{p}_{1}} \rightarrow B$ by $\frac{a}{t} \mapsto f\left(\frac{a}{1}\right) f\left(\frac{t}{1}\right)^{-1}$. We know that $f\left(\frac{t}{1}\right)$ is invertible for any $\frac{t}{1} \in A_{\mathfrak{p}_{2}} \backslash \mathfrak{p}_{1} A_{\mathfrak{p}_{2}}$ and for $\frac{a}{t}=\frac{a^{\prime}}{t^{\prime}}$ in $A_{\mathfrak{p}_{1}}$ since $t^{\prime \prime}\left(a t^{\prime}-a^{\prime} t\right)=0$ in A for some $t^{\prime \prime} \in A \backslash \mathfrak{p}_{1}$, we get $f\left(\frac{t^{\prime \prime}}{1}\right)\left(f\left(\frac{a}{1}\right) f\left(\frac{t^{\prime}}{1}\right)-f\left(\frac{a^{\prime}}{1}\right) f\left(\frac{t}{1}\right)\right)=0$ in B which, as $f\left(\frac{t^{\prime \prime}}{1}\right)$ is invertible, can be written $f\left(\frac{a}{1}\right) f\left(\frac{t^{\prime}}{1}\right)=f\left(\frac{a^{\prime}}{1}\right) f\left(\frac{t}{1}\right) \in B$ and since $f\left(\frac{t}{1}\right)$ and $f\left(\frac{t^{\prime}}{1}\right)$ are invertible in B, we get $f\left(\frac{a}{1}\right) f\left(\frac{t}{1}\right)^{-1}=f\left(\frac{a^{\prime}}{1}\right) f\left(\frac{t^{\prime}}{1}\right)^{-1}$ in B; so \bar{f} is well-defined. It is not difficult to check that \bar{f} is a ring homomorphism and for $\frac{a}{t} \in A_{\mathfrak{p}_{2}}\left(t \in A \backslash \mathfrak{p}_{2}\right), \bar{f}\left(g\left(\frac{a}{t}\right)\right)=\bar{f}\left(\frac{a}{t}\right)=f\left(\frac{a}{1}\right) f\left(\frac{t}{1}\right)^{-1}$ but since $\frac{t}{1} \in A_{\mathfrak{p}_{2}}$ is invertible we have $1=f\left(\frac{1}{t} \frac{t}{1}\right)=f\left(\frac{1}{t}\right) f\left(\frac{t}{1}\right)$ i.e. $f\left(\frac{1}{t}\right)=f\left(\frac{t}{1}\right)^{-1} \in B$. Thus $\bar{f}\left(g\left(\frac{a}{t}\right)\right)=f\left(\frac{a}{1}\right) f\left(\frac{t}{1}\right)^{-1}=f\left(\frac{a}{t}\right)$ i.e. $f=\bar{f} \circ g$.
Now, if $h: A_{\mathfrak{p}_{1}} \rightarrow B$ is a ring homomorphism such that $h \circ g=f$. Then for $a \in A$, $h\left(\frac{a}{1}\right)=h\left(g\left(\frac{a}{1}\right)\right)=f\left(\frac{a}{1}\right)$ in particular since for $t \in A \backslash \mathfrak{p}_{1}, f\left(\frac{t}{1}\right)$ is invertible, $h\left(\frac{t}{1}\right)=f\left(\frac{t}{1}\right)$ is invertible (and $\frac{t}{1} \in A_{\mathfrak{p}_{1}}$ is invertible, so $\left.h\left(\frac{1}{t}\right)=f\left(\frac{t}{1}\right)^{-1}\right)$. Thus $h\left(\frac{a}{t}\right)=f\left(\frac{a}{1}\right) f\left(\frac{t}{1}\right)^{-1}=\bar{f}\left(\frac{a}{t}\right)$ i.e. f factors uniquely through g.
So $g: A_{\mathfrak{p}_{2}} \rightarrow A_{\mathfrak{p}_{1}}$ satisfies the universal property of the localization $A_{\mathfrak{p}_{2}} \rightarrow\left(A_{\mathfrak{p}_{2}}\right)_{\mathfrak{p}_{1} A_{\mathfrak{p}_{2}}}$; thus it is the localization.

Exercise 29. (Comparing basic open sets)
If $\emptyset \neq D(a) \subset D(b)$ then $\{\mathfrak{p}, a \notin \mathfrak{p}\} \subset\{\mathfrak{p}, b \notin \mathfrak{p}\}$. If $\frac{b}{1} \in A_{a}$ is not a unit, it is contained in a maximal (thus prime) ideal $\mathfrak{m} \subsetneq A_{a}$. Using $D(a) \simeq \operatorname{Spec}\left(A_{a}\right)$ we see that $a \notin \mathfrak{m}$ (or more precisely the contraction of \mathfrak{m} in A) but $b \in \mathfrak{m}$ (or more precisely the contraction of \mathfrak{m} in A), contradicting $D(a) \subset D(b)$. Thus $\frac{b}{1} \in A_{a}$ is a unit.
Conversely, assume $\frac{b}{1} \in A_{a}$ is a unit (and $a \notin \mathfrak{N}$ otherwise $D(a)=\emptyset \subset D(b)$ is trivial). Let $a \notin \mathfrak{p}$ with $\mathfrak{p} \in \operatorname{Spec}(A)$. If $b \in \mathfrak{p}$, we get $\frac{a b}{1} \in \mathfrak{p} A_{a}$. But since $\frac{b}{1} \in A_{a}$ is a unit by assumption and $\frac{a}{1} \in A_{a}$ is a unit by construction of the localization, $\frac{a b}{1} \in \mathfrak{p} A_{a}$ tells that $\mathfrak{p} A_{a}$ is not a prime ideal (and $A_{a} \neq 0$ since $a \notin \mathfrak{N}$), contradicting $\operatorname{Spec}\left(A_{a}\right) \simeq D(a)$. Thus $b \notin \mathfrak{p}$ i.e. $D(a)=\{\mathfrak{p}, a \notin \mathfrak{p}\} \subset D(b)=\{\mathfrak{p}, b \notin \mathfrak{p}\}$.

If $\frac{b}{1} \in A_{a}$ is a unit, define $g: A_{b} \rightarrow A_{a}$ by $\frac{x}{b^{k}} \mapsto \frac{x}{1}\left(\frac{b^{k}}{1}\right)^{-1}$. It is well-defined: if $\frac{x}{b^{k}}=\frac{y}{b^{k}}$ then $b^{n}\left(b^{\ell} x-b^{k} y\right)=0 \in A$. In particular $\frac{b^{n}}{1}\left(\frac{b^{\ell}}{1} \frac{x}{1}-\frac{b^{k}}{1} \frac{y}{1}\right)=0 \in A_{a}$ but since $\frac{b}{1}$ is a unit, $\frac{b^{e}}{1} \frac{x}{1}=\frac{b^{k}}{1} \frac{y}{1} \in A_{a}$. Thus $\frac{x}{1}\left(\frac{b^{k}}{1}\right)^{-1}=\frac{y}{1}\left(\frac{b^{e}}{1}\right)^{-1} \in A_{a}$.
It is a ring homomorphism: $g\left(1_{A_{b}}\right)=g\left(\frac{1}{1}\right)=\frac{1}{1}=1_{A_{a}}$ and check additivity and g respects products.
Moreover $g\left(\frac{a}{1}\right)=\frac{a}{1} \in A_{a}$ is invertible in A_{a}. Denoting $f: A \rightarrow A_{b}$, a direct calculation shows that $g \circ f: A \rightarrow A_{a}$ is given by $x \mapsto \frac{x}{1}$.

If $D(a)=D(b)$ then $\frac{a}{1} \in A_{b}$ is invertible and $\frac{b}{1} \in A_{a}$ is also invertible. Let us prove that g is an isomorphism of rings. g injective: if $\frac{x}{1}\left(\frac{b^{k}}{1}\right)^{-1}=g\left(\frac{x}{b^{k}}\right)=0 \in A_{a}$ then since $\frac{b^{k}}{1}$ is a unit in $A_{a}, \frac{x}{1}=0 \in A_{a}$ i.e. $a^{n} x=0 \in A$ for some $n \geq 0$. Thus $\frac{a^{n} x}{1}=0 \in A_{b}$. But $\frac{a^{n} x}{1}=\left(\frac{a}{1}\right)^{n} \frac{x}{1}$ and $\frac{a}{1}$ is a unit in A_{b}, so $\frac{x}{1}=0 \in A_{b}$. In particular $\frac{x}{b^{k}}=0 \in A_{b}$ i.e. g is injective.
g surjective: since $\frac{a}{1} \in A_{b}$ is invertible, we get $1=g(1)=g\left(\left(\frac{a}{1}\right)^{-1} \frac{a}{1}\right)=g\left(\left(\frac{a}{1}\right)^{-1}\right) g\left(\frac{a}{1}\right)=$ $g\left(\left(\frac{a}{1}\right)^{-1}\right) \frac{a}{1}$ as g is a ring homomorphism. Thus $g\left(\left(\frac{a}{1}\right)^{-1}\right)=g\left(\frac{a}{1}\right)^{-1}=\left(\frac{a}{1}\right)^{-1}=\frac{1}{a} \in A_{a}$. So for $\frac{x}{a^{k}} \in A_{a}$, we have $g\left(\left(\left(\frac{a}{1}\right)^{-1}\right)^{k} \frac{x}{1}\right)=g\left(\left(\frac{a}{1}\right)^{-1}\right)^{k} \frac{x}{1}=\frac{1}{a^{k}} \frac{x}{1}=\frac{x}{a^{k}}$. Thus g is surjective.
[the wording of the exercise should have been more precise: $A_{a} \stackrel{f}{\sim} A_{b}$ with $f\left(\frac{a}{1}\right)=\frac{a}{1}$ and $f^{-1}\left(\frac{b}{1}\right)=\frac{b}{1}$] Now assume that there is such a ring isomorphism $f: A_{a} \rightarrow A_{b}$. We have $\frac{a}{1} f\left(\frac{1}{a}\right)=f\left(\frac{a}{1}\right) f\left(\frac{1}{a}\right)=f\left(\frac{a}{1} \frac{1}{a}\right)=f(1)=1$ thus $\frac{a}{1}$ is a unit in A_{b}. By the first part of the exercise $D(b) \subset D(a)$.
Likewise, $\frac{b}{1} f^{-1}\left(\frac{1}{b}\right)=f^{-1}\left(\frac{b}{1}\right) f^{-1}\left(\frac{1}{b}\right)=f^{-1}\left(\frac{b}{1} \frac{1}{b}\right)=f^{-1}(1)=1$ thus $\frac{b}{1}$ is invertible in A_{a}. Using again the first part of the exercise $D(a) \subset D(b)$.

Exercise 30. (Disconnected $\operatorname{Spec}(A)$ and idempotents)
If $\operatorname{Spec}(A)$ is disconnected, we can write it as disjoint union of two closed subsets $\operatorname{Spec}(A)=$ $V(\mathfrak{a}) \coprod V(\mathfrak{b})$ for $\mathfrak{a}, \mathfrak{b} \subset A$ ideals such that $V(\mathfrak{a}) \neq \emptyset$ and $V(\mathfrak{b}) \neq \emptyset$. So we have $\operatorname{Spec}(A)=$ $V(\mathfrak{a}) \cup V(\mathfrak{b})=V(\mathfrak{a} \cap \mathfrak{b})$ i.e. for any $\mathfrak{p} \in \operatorname{Spec}(A), \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p}$ i.e. $\mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{N}$.
We have $\emptyset=V(\mathfrak{a}) \cap V(\mathfrak{b})=V(\mathfrak{a}+\mathfrak{b})$ i.e. no prime ideal contains $\mathfrak{a}+\mathfrak{b}$; since any proper ideal is contained in a maximal (thus prime) ideal, $\mathfrak{a}+\mathfrak{b}=(1)$. So we can write $1=a+b$, for a $a \in \mathfrak{a}$ and $\mathrm{a} b \in \mathfrak{b}$. We have $a b \in \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{N}$ i.e. $(a b)^{n}=0$ for some $n>0$. Now, $1=(a+b)^{n}=a^{n}+b^{n}+(a b) \underbrace{\sum_{i=1}^{n-1} a^{i-1} b^{n-i-1}}_{=y}$ and as $a b y$ is nilpotent, $1-a b y$ is invertible. Let us denote z its inverse. We have

$$
z a^{n}=\left(z a^{n}\right)(\underbrace{z(1-a b y)}_{=1})=\left(z a^{n}\right)\left(z\left(a^{n}+b^{n}\right)\right)=\left(z a^{n}\right)^{2}+\left(z^{2} a^{n} b^{n}\right)=\left(z a^{n}\right)^{2} .
$$

So $z a^{n}$ is idempotent.
As $a \in \mathfrak{a} \subset \mathfrak{p}$ for at least one prime $\mathfrak{p} \in \operatorname{Spec}(A)(V(\mathfrak{a}) \neq \emptyset)$, $z a^{n} \in \mathfrak{a}$ cannot be a unit (in particular cannot be 1). Moreover if $z a^{n}=0$, as z is invertible $a^{n}=0$; thus $1=b^{n}+(a b) y$ and $a b y$ is nilpotent. So b^{n} (in particular b) is a unit. Thus $\mathfrak{b}=(1)$; contradiction with $V(\mathfrak{b}) \neq \emptyset$. So $z a^{n}$ is an idempotent $\neq 0,1$.

Conversely, if there is a $e \in A \backslash\{0,1\}$ idempotent, then $(1-e)^{2}=1-2 e+e^{2}=1-e$ so $1-e$ is also idempotent. We also have $(1-e) e=e-e^{2}=0$. Let us denote $p: A \rightarrow A /(e)$ the quotient by the principal ideal generated by e. Let us define $s: A /(e) \rightarrow A$ by $\bar{x} \mapsto(1-e) x$ where for $\bar{x} \in A /(e), x \in A$ designates any element such that $p(x)=\bar{x}$. The map s is well-defined: if $p(y)=p(x)=\bar{x}$, we can write $y-x=e z$ for some $z \in A$; then

$$
(1-e) y=(1-e) x+(1-e) e z=(1-e) x+0 \cdot z=(1-e) x
$$

It is not difficult to check that s is a homomorphism of A-modules. Moreover

$$
p \circ s(\bar{x})=p((1-e) x)=p((1-e) x+e x)=p(x)=\bar{x}
$$

as $e x \in \operatorname{ker}(p)$. Thus s is a section of the surjective homomorphism of A-modules p i.e. the exact sequence

$$
0 \rightarrow(e) \rightarrow A \rightarrow A /(e) \rightarrow 0
$$

splits i.e. $A=(e) \oplus A /(e)$ as A-modules. Now, we see that s identifies $A /(e)$ with the principal ideal $(1-e) \subset A$: by definition $\operatorname{im}(s) \subset(1-e)$ and the equality $p \circ s=\operatorname{id}_{A /(e)}$ shows that $p_{\mid(1-e)}:(1-e) \rightarrow A /(e)$ is surjective. If $x \in \operatorname{ker}(p) \cap(1-e)$ then $x=(1-e) y$ for some $y \in A$ and $p(x)=0$ i.e. $x \in(e)$, so let us write $x=e z$ for some $z \in A$. Then

$$
\begin{equation*}
(1-e) x=(1-e) e z=0 \text { and } e x=e(1-e) y=0 \text { thus } x=(1-e) x+e x=0 \tag{*}
\end{equation*}
$$

So $p_{\mid(1-e)}$ is injective i.e. induces an isomorphism of A-modules $(1-e) \simeq A /(e)$. So $A \simeq(e) \oplus$ $(1-e) \simeq(e) \times(1-e)$ as A-modules. But for any $\bar{x}, \bar{y} \in A /(e), s(\overline{x y})=(1-e) x y=(1-e)^{2} x y=$ $(1-e) x \cdot(1-e) y=s(\bar{x}) s(\bar{y})$ and in particular $s(\bar{x})=s(\overline{1 \cdot x})=s(\overline{1}) s(\bar{x})=(1-e) s(\bar{x})$. So s
carries the ring structure of $A /(e)$ to $(1-e)$ with $1-e$ as the unity of $(1-e)$ (associativity and distributivity are inherited from the corresponding properties for $A /(e))$.
The ideal (e) as also a ring structure, e being the unity: for any $x, y \in A$, ex $\cdot e y=e^{2} x y=e x y$ and in particular $e \cdot e x=e^{2} x=e x$ (associativity and distributivity are inherited from the corresponding properties for A).
Moreover, those ring structures are compatible with the ring structure of A :

$$
x y=((1-e) x+e x)((1-e) y+e y)=(1-e)^{2} x y+2 \underbrace{(1-e) e}_{=0} x y+e^{2} x y=(1-e) x y+e x y .
$$

Thus the decomposition $A \simeq(e) \times(1-e)$ is actually a decomposition as rings.
Now looking at $p: A \rightarrow A /(e)$ we have $\operatorname{Spec}(A /(e)) \simeq V(e)$. the projection on (e) is just given by $x \mapsto e x$. Whose kernel is $(1-e)$: if $e x=0$ then $x=(1-e) x+e x=(1-e) x \in(1-e)$. On the other hand for any $y \in A, e(1-e) y=0 \cdot y=0$.
Thus $\operatorname{Spec}((e)) \simeq V((1-e))$. Since by $\left.\|^{*}\right),(e) \cap(1-e)=0 \subset \cap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}$, we get $V(e) \cup$ $V(1-e)=V((e) \cap(1-e))=\operatorname{Spec}(A)$.
Moreover, $V(e) \cap V(1-e)=V((e)+(1-e))$ and $1=e+(1-e) \in(e)+(1-e)$. Thus $(e)+(1-e)=A$ i.e. $V((e)+(1-e))=\emptyset$. As a conclusion: $V(e) \amalg V(1-e)=\operatorname{Spec}(A)$.

Exercise 31. ($\operatorname{Irreducible} \operatorname{Spec}(A)$)
\Leftarrow Since $(D(a))_{a \in A}$ is a basis of the Zariski topology, it is sufficient to see that $D(a) \cap D(b) \neq$ \emptyset for any pair of non-empty $D(a), D(b)$. So let $D(a) \neq \emptyset$ and $D(b) \neq \emptyset$. If $D(a) \cap D(b)=$ \emptyset, we have $D(a b)=\emptyset$ i.e. $a b \in \mathfrak{p}$ for any $\mathfrak{p} \in \operatorname{Spec}(A)$ i.e. $a b \in \cap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}=\mathfrak{N}$. By assumption, either $a \in \mathfrak{N}$ or $b \in \mathfrak{N}$ i.e. either $D(a)=\emptyset$ or $D(b)=\emptyset$. Contradiction. Thus $D(a) \cap D(b) \neq \emptyset$.
\Rightarrow If $a b \in \mathfrak{N}=\cap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}$, then $V(a b)=\operatorname{Spec}(A)$ i.e. $D(a b)=\emptyset$. But $D(a b)=D(a) \cap$ $D(b)$. Since the Zariski topology on $\operatorname{Spec}(A)$ is irreducible, $D(a)=\emptyset$ or $D(b)=\emptyset$ which means $a \in \cap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}=\mathfrak{N}$ or $b \in \cap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}=\mathfrak{N}$. Thus \mathfrak{N} is prime.

Exercise 32. (Idempotent ideals)

$($ i $) \Rightarrow($ ii $)$ As A / \mathfrak{a} is projective, it is in particular flat. We have the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathfrak{a} \xrightarrow{i} A \xrightarrow{p} A / \mathfrak{a} \rightarrow 0 \tag{*}
\end{equation*}
$$

and since A / \mathfrak{a} is projective, the exact sequence splits

i.e. $A \simeq \mathfrak{a} \oplus A / \mathfrak{a}$ as A-modules. So there is a (projection) surjective homomorphism of A-modules $\pi: A \rightarrow \mathfrak{a}$. Thus \mathfrak{a} is finitely generated (by $\pi(1))$.
(ii) \Rightarrow (iii) By assumption \mathfrak{a} is a finite A-module and since \mathfrak{a} is an ideal, $\mathfrak{a}^{2}=\mathfrak{a} \cdot \mathfrak{a} \subset \mathfrak{a}$. Now since A / \mathfrak{a} is flat, tensoring the exact (*) with A / \mathfrak{a} gives the exact sequence

$$
0 \rightarrow \mathfrak{a} \otimes A / \mathfrak{a} \rightarrow A / \mathfrak{a} \xrightarrow{p \otimes \operatorname{id}} A / \mathfrak{a} \otimes_{A} A / \mathfrak{a} \rightarrow 0
$$

Now using the tensor identity (4) $M \otimes A / \mathfrak{a} \simeq M / \mathfrak{a} M$, we get $\mathfrak{a} \otimes_{A} A / \mathfrak{a} \simeq \mathfrak{a} / \mathfrak{a}^{2}$ and $A / \mathfrak{a} \otimes_{A} A / \mathfrak{a} \simeq A / \mathfrak{a}$. Moreover $p \otimes \mathrm{id}: A / \mathfrak{a} \simeq A \otimes A / \mathfrak{a} \rightarrow A / \mathfrak{a} \simeq A / \mathfrak{a} \otimes A / \mathfrak{a}$ is the identity $a \otimes p(b)=1 \otimes a \cdot p(b)=p(a) p(b)=p(a b) \mapsto 1 \otimes p(a b)=p(a b)$. In particular its kernel is 0 . But the exactness of the above sequence tells us that $\mathfrak{a} / \mathfrak{a}^{2}=\operatorname{ker}(p \otimes \mathrm{id})$; thus $\mathfrak{a} / \mathfrak{a}^{2}=0$ i.e. $\mathfrak{a}=\mathfrak{a}^{2}$.
(iii) \Rightarrow (iv) Since the finite A-module, \mathfrak{a} satisfies $\mathfrak{a} \cdot \mathfrak{a}=\mathfrak{a}$, Nakayama lemma (ii) gives us a $b \in 1+\mathfrak{a}$ such that $b \mathfrak{a}=0$. Write $b=1-\alpha$ with $\alpha \in \mathfrak{a}$. For any $a \in \mathfrak{a}$, we have $(1-\alpha) a=0$ i.e. $a=\alpha a$. Hence $\mathfrak{a} \subset(\alpha)$. But since $\alpha \in \mathfrak{a},(\alpha) \subset \mathfrak{a}$ i.e. $\mathfrak{a}=(\alpha)$.
Moreover, we have in particular (since $\alpha \in \mathfrak{a}) \alpha=\alpha \cdot \alpha=\alpha^{2}$ i.e. α is idempotent.
(iv) \Rightarrow (v) We have the inclusion $i: \mathfrak{a} \subset A$ so we only have to define a projection $\beta: A \rightarrow \mathfrak{a}$ such that $\beta \circ i=\operatorname{id}_{\mathfrak{a}}$ to prove that \mathfrak{a} is a direct summand. Let us define $\beta: A \rightarrow \mathfrak{a}=(e)$ by $a \mapsto e a$. It is obviously a homomorphism of A-modules and $p \circ i(e a)=p(e a)=e^{2} a=e a$. So β shows that \mathfrak{a} is a direct summand.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$ Let us denote $\beta: A \rightarrow \mathfrak{a}$ a projection (i.e. $\beta \circ i=\mathrm{id}_{\mathfrak{a}}$ for $i: \mathfrak{a} \hookrightarrow A$ the natural inclusion) exhibiting \mathfrak{a} as direct summand. Then the exact sequence (*) splits: define $\alpha: A / \mathfrak{a} \rightarrow A$ by $\bar{a} \mapsto a-i(\beta(a))$ where for $\bar{a} \in A / \mathfrak{a}, a \in A$ designates any element such that $p(a)=\bar{a}$. It is well-defined: if $a, A^{\prime} \in A$ satisfy $p(a)=p\left(a^{\prime}\right)$ then $a-a^{\prime} \in \mathfrak{a}$ so we can write $a-a^{\prime}=i\left(a-a^{\prime}\right)$; thus

$$
a-a^{\prime}-i\left(\beta\left(a-a^{\prime}\right)\right)=a-a^{\prime}-i \circ \underbrace{\beta \circ i}_{=\operatorname{id}_{\mathfrak{a}}}\left(a-a^{\prime}\right)=a-a^{\prime}-i\left(a-a^{\prime}\right)=0 \in A
$$

i.e. $a-i(\beta(a))=a^{\prime}-i\left(\beta\left(a^{\prime}\right)\right)$.

It is easy to prove that α is a homomorphism of A-modules. Moreover for $\bar{a} \in A / \mathfrak{a}$, $p \circ \alpha(\bar{a})=p(a-\underbrace{i(\beta(a))}_{\in \mathfrak{a}})=p(a)=\bar{a}$ thus $p \circ \alpha=\operatorname{id}_{A / \mathfrak{a}}$.
So $A \simeq \mathfrak{a} \oplus A / \mathfrak{a}$ as A-modules. Thus A / \mathfrak{a} is a direct summand of the free module A, as such it is projective.

[^0]: Solutions to be handed in before Monday May $18,4 \mathrm{pm}$.

