Solutions for exercises, Algebra I (Commutative Algebra) - Week 7

Exercise 33. (Extension under flat ring homomorphisms) (one direction is obvious) Assume $\operatorname{MaxSpec}(A) \subset \operatorname{im}(\varphi)$ and consider a A-module such that $M \otimes B=0$. If $M \neq 0$, take $0 \neq m \in M$. The cyclic submodule $\langle m\rangle \subset M$ generated by m is isomorphic to A / \mathfrak{a} for $\mathfrak{a} \subsetneq A$ (since $0 \neq m$) the annihilator of m (look at $A \rightarrow M, a \mapsto a m$; its kernel is the annihilator of m and it is surjective onto $\langle m\rangle$ by definition). Since B is a flat A-algebra, we have an induced inclusion $A / \mathfrak{a} \otimes B \hookrightarrow M \otimes B ;$ thus $A / \mathfrak{a} \otimes B=0$.
Since B is a flat A-algebra, tensoring the exact sequence

$$
0 \rightarrow \mathfrak{a} \rightarrow A \rightarrow A / \mathfrak{a} \rightarrow 0
$$

with B we get an exact sequence:

$$
0 \rightarrow \mathfrak{a} \otimes B \rightarrow B \rightarrow A / \mathfrak{a} \otimes B \rightarrow 0
$$

With the previous vanishing we get $B \simeq \mathfrak{a} \otimes B$ as B-modules. Looking at the exact sequence, we see that the isomorphism is givien by $a \otimes b \mapsto a \cdot b=f(a) b$; thus $B \simeq \mathfrak{a} \otimes B$ means $B \simeq \mathfrak{a} B=\mathfrak{a}^{e}$ as B-modules.
But since $\mathfrak{a} \subsetneq A$, it is contained in a maximal ideal $\mathfrak{m} \in \operatorname{MaxSpec}(A)$. We get $(1)=\mathfrak{a}^{e} \subset \mathfrak{m}^{e}$. But by assumption, there is a $\mathfrak{p} \in \operatorname{Spec}(B)$ such that $f^{-1}(\mathfrak{p})=\varphi(\mathfrak{p})=\mathfrak{m}$; which yields $\mathfrak{m}^{e} \subset \mathfrak{p} \subsetneq B\left(\right.$ as $f(\mathfrak{m}) \subset \mathfrak{p}$ and \mathfrak{m}^{e} is the smallest ideal containing $\left.f(\mathfrak{m})\right)$. Contradiction. So there is no such $M \ni m \neq 0$ i.e. $M=0$.

For a counterexample, take $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ the natural inclusion. We know that $\mathbb{Q} \simeq \mathbb{Z}_{(0)}$ is a flat \mathbb{Z}-algebra but $\varphi: \operatorname{Spec}(\mathbb{Q})=(0) \rightarrow \operatorname{Spec}(\mathbb{Z})$ is not surjective (as a map from a finite set to an infinite). Then the cyclic \mathbb{Z}-module \mathbb{Z} / \mathbb{Z} is non-zero but $\mathbb{Z} / 24 \mathbb{Z} \otimes \mathbb{Q}=0$ since $\bar{n} \otimes 1=\bar{n} \otimes \frac{24}{24}=\overline{24 n} \otimes \frac{1}{24}=0$.
Exercise 34. (Surjectivity of maps induced by flat ring homomorphisms)

1. Let us define $p: N_{B} \rightarrow N$ by $b \otimes n \mapsto b n$ (the later multiplication uses the B-module structure on N). It is a well-defined homomorphism of A-modules (and B-modules) and $p \circ g(n)=p(1 \otimes n)=n$ for any $n \in N$ i.e. $p \circ g=\mathrm{id}_{N}$. Thus g is injective and presents N as a direct summand of N_{B}.
2. If φ is surjective then given a $\mathfrak{m} \in \operatorname{MaxSpec}(A)$, there is a $\mathfrak{p} \in \operatorname{Spec}(B)$ such that $f^{-1}(\mathfrak{p})=\mathfrak{m}$. Thus $f(\mathfrak{m}) \subset \mathfrak{p}$ and $\mathfrak{m}^{e} \subset \mathfrak{p} \subsetneq B\left(\mathfrak{m}^{e}\right.$ is the smallest ideal containing $\left.f(\mathfrak{m})\right)$. Conversely assume that for any $\mathfrak{m} \in \operatorname{MaxSpec}(A), \mathfrak{m}^{e} \subsetneq(1)$ and take a $\mathfrak{m} \in \operatorname{MaxSpec}(A)$. Since $f(\mathfrak{m}) \subset \mathfrak{m}^{e}$, we have $\mathfrak{m} \subset f^{-1}\left(\mathfrak{m}^{e}\right)$. Now if there is a $x \in f^{-1}\left(\mathfrak{m}^{e}\right) \backslash \mathfrak{m}$, then $\bar{x} \in A / \mathfrak{m}$ is non-zero thus invertible (since A / \mathfrak{m} is a field) i.e. there is a $y \in A$ and a $m \in \mathfrak{m}$, such that $x y=1+m$. Applying f, we get $f(x) f(y)=1+f(m)$; but $f(m) \in f(\mathfrak{m}) \subset \mathfrak{m}^{e}$ and $f(x) \in \mathfrak{m}^{e}$ by assumption, hence $1=f(x) f(y)-f(m) \in \mathfrak{m}^{e}$. Contradiction. So $f^{-1}\left(\mathfrak{m}^{e}\right)=\mathfrak{m}$. Then by Corollary 9.15, we have $\mathfrak{m} \in \operatorname{im}(\varphi)$. As a consequence $\operatorname{MaxSpec}(A) \subset \operatorname{im}(\varphi)$.
Now let $\mathfrak{p} \in \operatorname{Spec}(A)$. By Corollary 9.15 , it is sufficient to prove that $f^{-1}\left(\mathfrak{p}^{e}\right)=\mathfrak{p}$ to have $\mathfrak{p} \in \operatorname{im}(\varphi)$.
By definition $\mathfrak{p} \subset f^{-1}\left(\mathfrak{p}^{e}\right)$ so let us consider the A-module $M=f^{-1}\left(\mathfrak{p}^{e}\right) / \mathfrak{p}$. Since B is a flat A-algebra, tensoring

$$
0 \rightarrow f^{-1}\left(\mathfrak{p}^{e}\right) \rightarrow A \rightarrow A / f^{-1}\left(\mathfrak{p}^{e}\right) A \rightarrow 0
$$

[^0]with B, we get an exact sequence of B-modules:
$$
0 \rightarrow f^{-1}\left(\mathfrak{p}^{e}\right) \otimes B \rightarrow B \rightarrow A / f^{-1}\left(\mathfrak{p}^{e}\right) A \otimes B \rightarrow 0
$$

But $A / f^{-1}\left(\mathfrak{p}^{e}\right) A \otimes B \simeq B / f^{-1}\left(\mathfrak{p}^{e}\right)^{e} B$ and (check it) $f^{-1}\left(\mathfrak{p}^{e}\right)^{e}=\mathfrak{p}^{e}$ so $A / f^{-1}\left(\mathfrak{p}^{e}\right) A \otimes B \simeq$ $B / \mathfrak{p}^{e} B$. Thus the exactness of the above sequence means that $f^{-1}\left(\mathfrak{p}^{e}\right) \otimes B \simeq \mathfrak{p}^{e}$ (by $a \otimes b \mapsto a b)$ as B-modules.
Likewise, using flatness of B, we have an exact sequence of B-modules:

$$
0 \rightarrow \mathfrak{p} \otimes B \rightarrow B \rightarrow A / \mathfrak{p} \otimes B \rightarrow 0
$$

Again $A / \mathfrak{p} \otimes B \simeq B / \mathfrak{p}^{e} B$ (by $a \otimes b \mapsto a b$) so that the exactness of the above sequence means $\mathfrak{p} \otimes B \simeq \mathfrak{p}^{e}$.
Now by definition, we have an exact sequence

$$
0 \rightarrow \mathfrak{p} \rightarrow f^{-1}\left(\mathfrak{p}^{e}\right) \rightarrow M \rightarrow 0
$$

and since B is flat, we get an exact sequence of B-modules

$$
0 \rightarrow \mathfrak{p} \otimes B \rightarrow f^{-1}\left(\mathfrak{p}^{e}\right) \otimes B \rightarrow M \otimes B \rightarrow 0
$$

By what we have seen the two first terms are both isomorphic to \mathfrak{p}^{e} and the isomorphisms are compatible with the natural inclusion. Thus the first map of the exact sequence is an isomorphism; which means $M \otimes B=0$. By the previous exercise, we get $M=0$ i.e. $\mathfrak{p}=f^{-1}\left(\mathfrak{p}^{e}\right)$. Now, Corollary 9.15 tells us that $\mathfrak{p} \in \operatorname{im}(\varphi)$. Hence φ is surjective.
3. We can use the previous question to solve this one. Remember that the ring $A_{\mathfrak{p}}$ is local i.e. only one maximal ideal which is $\mathfrak{p}_{\mathfrak{p}}$. Suppose $\mathfrak{p}_{\mathfrak{p}}^{e}=(1)$. Then we can find $p \in \mathfrak{p}, s \in A \backslash \mathfrak{p}, t \in B \backslash \mathfrak{q}$ and $b \in B$ such that $\frac{1}{1}=\frac{b f(p)}{f(s) t} \in B_{\mathfrak{q}}$; which means that $t^{\prime} t f(s)=t^{\prime} b f(p)$ in B for some $t^{\prime} \in B \backslash \mathfrak{q}$. But on one hand $f(p) \in \mathfrak{p}^{e} \subset \mathfrak{q}$ which yields $t^{\prime} f b(p) \in \mathfrak{q}$ and on the other, $t^{\prime} t \in B \backslash \mathfrak{q}$ and $s \in A \backslash \mathfrak{p}=A \backslash f^{-1}(\mathfrak{q})$ i.e. $f(s) \in B \backslash \mathfrak{q}$, contradicting the fact that \mathfrak{q} is prime. So $\mathfrak{p}_{\mathfrak{p}}^{e} \subsetneq(1)$. It remains to prove that $f_{\mathfrak{p}}: A_{\mathfrak{p}} \rightarrow B_{\mathfrak{q}}$ is flat. By Corollary $8.28, B_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$-module. Set $S=f(A \backslash \mathfrak{p})=f\left(A \backslash f^{-1}(\mathfrak{q})\right) \subset B$ and $S^{\prime}=B \backslash \mathfrak{q}$. We have $\operatorname{ker}(f)=f^{-1}(0) \subset f^{-1}(\mathfrak{q})=\mathfrak{p}$ so S is a multiplicative subset of B and $S \subset S^{\prime}$. Moreover by definition of the A-module structure on $B, S^{-1} B \simeq B_{\mathfrak{p}}$; let us denote $h: B \rightarrow S^{-1} B$ the localization. Let us prove that $B_{\mathfrak{q}}$ is the localization of $B_{\mathfrak{p}}$ with respect to $h\left(S^{\prime}\right)$.
Let us define $g: S^{-1} B \rightarrow S^{\prime-1} B$ by $\frac{b}{f(s)} \mapsto \frac{b}{f(s)}$. It is well-defined since $S \subset S^{\prime}$: if $\frac{b}{f(s)}=$ $\frac{b^{\prime}}{f\left(s^{\prime}\right)} \in S^{-1} B$ then $f(t) f\left(s^{\prime}\right) b=f(t) b^{\prime} f(s)$ in B; but since $f(t) f\left(s^{\prime}\right), f(t) f(s) \in S \subset S^{\prime}$ this tells us that $\frac{b}{f(s)}=\frac{b^{\prime}}{f\left(s^{\prime}\right)} \in S^{\prime-1} B$. It is easy to see that it is a ring homomorphism. Moreover for $\frac{t}{f(s)} \in h\left(S^{\prime}\right)$, we have $g\left(\frac{t}{f(s)}\right)=\frac{t}{f(s)} \in S^{\prime-1} B$ is invertible.
Now given a ring homomorphism $q: S^{-1} B \rightarrow C$ such that $q\left(h\left(S^{\prime}\right)\right) \subset C^{*}$, define $\bar{q}: S^{\prime-1} B \rightarrow C$ by $\frac{b}{s} \mapsto q\left(\frac{b}{1}\right) q\left(\frac{s}{1}\right)^{-1}$. It is a well defined map: for $\frac{b}{s}=\frac{b^{\prime}}{s^{\prime}} \in S^{\prime-1} B$ we have $t s^{\prime} b=t s b$ in B for a $t \in S^{\prime}$; which yields $q\left(\frac{t}{1}\right)\left(q\left(\frac{s^{\prime}}{1}\right) q\left(\frac{b}{1}\right)-q\left(\frac{s}{1}\right) q\left(\frac{b^{\prime}}{1}\right)\right)=0$ in C. But $q\left(\frac{t}{1}\right) \in C^{*}$ by assumption; so $q\left(\frac{s^{\prime}}{1}\right) q\left(\frac{b}{1}\right)=q\left(\frac{s}{1}\right) q\left(\frac{b^{\prime}}{1}\right.$ in C. Again $q\left(\frac{s^{\prime}}{1}\right), q\left(\frac{s}{1}\right) \in C^{*}$ by assumption; thus $q\left(\frac{b^{\prime}}{1}\right) q\left(\frac{s^{\prime}}{1}\right)^{-1}=q\left(\frac{b}{1}\right) q\left(\frac{s}{1}\right)^{-1}$.
It is a ring homomorphism (left to check) and for any $b \in B, \bar{q}\left(g\left(\frac{b}{1}\right)\right)=\bar{q}\left(\frac{b}{1}\right)=q\left(\frac{b}{1}\right)$. Since for $f(s) \in S \subset S^{\prime}, \frac{f(s)}{1} \in S^{-1} B$ is invertible, we get $q\left(\frac{1}{f(s)}\right)=q\left(\frac{f(s)}{1}\right)^{-1}$ in C; likewise $\bar{q}\left(\frac{1}{f(s)}\right)=q\left(\frac{f(s)}{1}\right)^{-1}$. So for $\frac{b}{f(s)} \in S^{-1} B$,

$$
\bar{q}\left(g\left(\frac{b}{f(s)}\right)\right)=\bar{q}\left(g\left(\frac{b}{1}\right) g\left(\frac{1}{f(s)}\right)\right)=\bar{q}\left(g\left(\frac{b}{1}\right)\right) \bar{q}\left(g\left(\frac{1}{f(s)}\right)\right)=q\left(g\left(\frac{b}{1}\right)\right) q\left(\frac{f(s)}{1}\right)^{-1}=q\left(\frac{b}{f(s)}\right)
$$

Thus $q=\bar{q} \circ g$. Uniqueness of the factorization through g is checked likewise (looking first at $\frac{b}{1}$ and then taking the inverses). So $g: S^{-1} B \rightarrow S^{\prime-1} B$ is the localization of
$S^{-1} B$ with respect to $h\left(s^{\prime}\right)$. But $S^{\prime-1} B \simeq B_{\mathfrak{q}}$ by definition. Thus $B_{\mathfrak{q}}$ is a flat $B_{\mathfrak{p}}$-algebra and the later is a flat $A_{\mathfrak{p}}$-algebra, as a result $B_{\mathfrak{q}}$ is a flat $A_{\mathfrak{p}}$-algebra. And we can apply the previous question.

Exercise 35. (Algebras of invariants)
Notice that B^{G} is indeed an A-algebra: denoting $f: A \rightarrow B$ the ring homomorphism giving the structure of A-algebra, we have, for $a \in A$ and $g_{i} \in G$, we have $g(f(a))=f(a) g(1)=$ $f(a) \cdot 1=f(a)$ since g_{i} is a homomorphism of A-algebras (i.e. an A-linear ring homomorphism) i.e. $f(A) \subset B^{G}$. Moreover for $b, b^{\prime} \in B^{G}, g\left(b+b^{\prime}\right)=g(b)+g\left(b^{\prime}\right)=b+b^{\prime}$ and $g\left(b b^{\prime}\right)=g(b) g\left(b^{\prime}\right)=$ $b b^{\prime}$.
We have $f(A) \subset B^{G} \subset B$ with B of finite type over A, the later being Noetherian. So if we knew that B was a finite B^{G}-module, Proposition 11.24 would tell us that B^{G} is Noetherian. So Let us prove that B is a finite B^{G}-module.
Since $f(A) \subset B^{G}$ and B is of finte type over A, we get that B is a finite type over B^{G}. Thus by Corollary 11.11, it is sufficient to prove that B is integral over B^{G} to get that B is a finite B^{G}-module.
Now let $b \in B$. It is annihilated by $(x-b) \in B[x]$ thus it is also annihilated by the monic polynomial $P=\Pi_{g \in G}(x-g(b)) \in B[x]$. Let us prove that $P \in B^{G}[x]$ actually: the usual expansion (B commutative) of P gives $P=\sum_{i=0}^{|G|} \sigma_{|G|-i}\left((g(b))_{g \in G}\right) x^{i}$ where $\sigma_{k}\left(\right.$ set $\left.\sigma_{0}=1\right)$ designates the $k^{t h}$ elementary symmetric function on $|G|$-variables $\sigma_{k}:\left(X_{1}, \ldots, X_{|G|}\right) \mapsto$ $\sum_{1 \leq i_{1}<i_{2} \cdots<i_{k} \leq|G|} \Pi_{j=1}^{k} X_{i_{j}}$. But since the $g_{i} \in G$ are A-algebras homomorphisms (respect sums and products) and for any $g \in G, G \rightarrow G, g^{\prime} \mapsto g g^{\prime}$ is a bijection (G is a finite group; injectivity is clear and conclude by cardinal), for any $g \in G\left(\right.$ set $\left.g_{0}=\operatorname{id}_{B}\right)$ and k,

$$
\begin{aligned}
g\left(\sigma_{k}\left(b, g_{1}(b), \ldots, g_{|G|-1}(b)\right)\right)=\sum_{1 \leq i_{1}<i_{2} \cdots<i_{k} \leq|G|} \Pi_{j=1}^{k} g\left(g_{i_{j}}(b)\right) & =\sum_{1 \leq i_{1}^{\prime}<i_{2}^{\prime} \cdots<i_{k}^{\prime} \leq|G|} \Pi_{j=1}^{k} g_{i_{j}^{\prime}}(b) \\
& =\sigma_{k}\left(b, g_{1}(b), \ldots, g_{|G|-1}(b)\right)
\end{aligned}
$$

proving that $\sigma_{k}\left(b, g_{1}(b), \ldots, g_{|G|-1}(b)\right) \in B^{G}$ for any k i.e. $P \in B^{G}[x]$ and is monic. So b is integral over B^{G} and since b was arbitrary B is integral over B^{G} which allows us to use Corollary 11.11 and Proposition 11.24 to conclude.

Exercise 36. (Localization of integral ring homomorphisms)
Notice first that $k[x]$ is indeed integral over over $k\left[x^{2}-1\right]: x$ is annihilated by the monic polynomial $X^{2}-\left(x^{2}-1\right)+1 \in k\left[x^{2}-1\right][X]$ so it is integral over $k\left[x^{2}-1\right]$. Hence $k\left[x^{2}-\right.$ $1][x]=k[x]$ is a finite $k\left[x^{2}-1\right]$-module by Proposition 11.6 and the same proposition gives us integrality of any element in $k[x]$.
Since $x-1$ is irreducible $(x-1)$ is a prime ideal and $(x-1)^{c}=(x-1) \cap k\left[x^{2}-1\right]$. If $f \in k\left[x^{2}-1\right]$ it can be written $f=a_{0}+\sum_{i \geq 1} a_{i}\left(x^{2}-1\right)^{i}$ with $a_{i} \in k$. If f is in $(x-1)^{c}$, it vanishes at 1 thus $a_{0}=0$. Conversely since $x^{2}-1=(x-1)(x+1)$ any $f \in k\left[x^{2}-1\right]$ which has no constant term is in $(x-1)$. Thus $(x-1)^{c}=(x-1) \cap k\left[x^{2}-1\right]=\left(x^{2}-1\right)$.
Since $\operatorname{char}(k) \neq 2$, we have $1 \neq-1$; as a consequence $x+1 \notin(x-1)$ (because any polynomial in the principal ideal vanishes at 1 and $x+1$ does not). Thus $\frac{1}{x+1} \in k[x]_{(x-1)}$. Assume $\frac{1}{x+1}$ is integral over $k\left[x^{2}-1\right]_{\left(x^{2}-1\right)}$. Then we have $\frac{1}{(x+1)^{n}}+\sum_{i \leq n-1} \frac{f_{i}}{g_{i}} \frac{1}{(x+1)^{2}}=0 \in k[x]_{(x-1)}$ for some $\frac{f_{i}}{g_{i}} \in k\left[x^{2}-1\right]_{\left(x^{2}-1\right)}$. We have

$$
0=\frac{1}{(x+1)^{n}}+\sum_{i \leq n-1} \frac{f_{i}}{g_{i}} \frac{1}{(x+1)^{i}}=\frac{\left(\Pi_{k} g_{k}\right)+\sum_{i \leq n} \Pi_{k \neq i} g_{k} f_{i}(x+1)^{n-i}}{\Pi_{k} g_{k}(x+1)^{n}}
$$

which means $g\left(\left(\Pi_{k} g_{k}\right)+\sum_{i \leq n-1} \Pi_{k \neq i} g_{k} f_{i}(x+1)^{n-i}\right)=0$ in $k[x]$ for some $g \notin(x-1)$. In particular $g \neq 0$, thus ($k[x]$ integral domain) $\left(\Pi_{k} g_{k}\right)+\sum_{i \leq n-1} \Pi_{k \neq i} g_{k} f_{i}(x+1)^{n-i}=0$ in $k[x]$. Now $(x+1) \mid \Pi_{k \neq i} g_{k} f_{i}(x+1)^{n-i}$ for $i \leq n-1$, thus $(x+1) \mid \Pi_{k} g_{k}$. But $g_{k} \notin\left(x^{2}-1\right)$ for any k which contradicts the fact that $(x+1)$ is a prime ideal. So $\frac{1}{x+1}$ is not integral over $k\left[x^{2}-1\right]_{\left(x^{2}-1\right)}$.

Exercise 37. (Noetherian topological spaces)

1. Assume A is Noetherian. Let $V_{1} \supset V_{2} \supset V_{3} \cdots \supset V_{n} \supset \cdots$ be a descending chain of closed subsets of $\operatorname{Spec}(A)$. By definition of Zariski topology, we can find ideals $\left(\mathfrak{a}_{i}\right)_{i \in \mathbb{N}}$ of A such that $V_{i}=V\left(\mathfrak{a}_{i}\right)$ for any $i \in \mathbb{N}$. Now the inclusion $V\left(\mathfrak{a}_{i+1}\right) \subset V\left(\mathfrak{a}_{i}\right)$ is equivalent to $\sqrt{\mathfrak{a}_{i}} \subset \sqrt{\mathfrak{a}_{i+1}}$ for any i. Thus the descending chain of closed subsets gives rise to an ascending chain of ideals of A :

$$
\sqrt{\mathfrak{a}_{1}} \subset \sqrt{\mathfrak{a}_{2}} \subset \cdots \subset \sqrt{\mathfrak{a}_{n}} \subset \cdots
$$

which, since A is Noetherian, becomes stationary i.e. there is a $n \in \mathbb{N}$, such that $\sqrt{\mathfrak{a}_{m}}=\sqrt{\mathfrak{a}_{n}}$ for any $m \geq n$, which means $V_{m}=V\left(\mathfrak{a}_{m}\right)=V\left(\mathfrak{a}_{n}\right)=V_{n}$ for any $m \geq m$ i.e. the descending chain of closed subsets becomes stationary. Hence $\operatorname{Spec}(A)$ is a Noetherian topological space.
The typical example of a non-Noetherian ring is the polynomial ring in infinitely many variables $A=k\left[\left(x_{i}\right)_{i \in \mathbb{N}>0}\right]$ but its spectrum is not easy to describe. But let us consider $B=A /\left(x_{1}, x_{2}^{2}, x_{3}^{3}, \ldots, x_{n}^{n}, \ldots\right)$. We have $\operatorname{Spec}(B)=V\left(\left(x_{1}, x_{2}^{2}, x_{3}^{3}, \ldots, x_{n}^{n}, \ldots\right)\right) \subset$ $\operatorname{Spec}(A)$ and $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right) \subset \mathfrak{N}_{B}$. Since for any $\mathfrak{p} \in \operatorname{Spec}(B), \mathfrak{N}_{B} \subset \mathfrak{p}$, we get $\operatorname{Spec}(B)=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right)\right\} \quad\left(\right.$ since $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right) \in \operatorname{Spec}(A)$ is maximal) so $\operatorname{Spec}(B)$ is a Noetherian topological space. But

$$
\left(\overline{x_{2}}\right) \subset\left(\overline{x_{2}}, \overline{x_{3}}\right) \subset\left(\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}\right) \subset \cdots\left(\overline{x_{2}}, \overline{x_{3}}, \ldots \overline{x_{n}}\right) \subset \cdots
$$

is ascending chain of ideals which is not stationary.
2. Let $\mathfrak{p} \in \operatorname{im}(\varphi) \subset \operatorname{Spec}(A)$ then $\varphi^{-1}(\mathfrak{p})=\left\{\mathfrak{q} \in \operatorname{Spec}(B), f^{-1}(\mathfrak{q})=\mathfrak{p}\right\}$. Now $f^{-1}(\mathfrak{q})=\mathfrak{p}$ is equivalent to $f(\mathfrak{p})=\operatorname{im}(f) \cap \mathfrak{q}$ and $\operatorname{ker}(f) \subset \mathfrak{p}$: indeed if $f^{-1}(\mathfrak{q})=\mathfrak{p}$ then $f(\mathfrak{p}) \subset \mathfrak{q} \cap \operatorname{im}(f)$ and if $y \in \mathfrak{q} \cap \operatorname{im}(f)$ then there is a $x \in A \mathfrak{q} \ni y=f(x)$ but this means $x \in f^{-1}(\mathfrak{q})=\mathfrak{p}$; thus $y=f(\mathfrak{p})$ i.e. $f(\mathfrak{p})=\operatorname{im}(f) \cap \mathfrak{q}$. Moreover $\operatorname{ker}(f)=f^{-1}(0) \subset f^{-1}(\mathfrak{q})=\mathfrak{p}$. Conversely, if $f(\mathfrak{p})=\operatorname{im}(f) \cap \mathfrak{q}$ and $\operatorname{ker}(f) \subset \mathfrak{p}$ then $\mathfrak{p} \subset f^{-1}(\mathfrak{q})$ and if $x \in f^{-1}(\mathfrak{q})$, we have $f(x) \in \mathfrak{q} \cap \operatorname{im}(f)=f(\mathfrak{p})$ i.e. there is a $x^{\prime} \in \mathfrak{p}$ such that $f(x)=f\left(x^{\prime}\right)$; then $x=x^{\prime}+\left(x-x^{\prime}\right) \in \mathfrak{p}+\operatorname{ker}(f)=\mathfrak{p}$.
Next, $f(\mathfrak{p})=\operatorname{im}(f) \cap \mathfrak{q}$ and $\operatorname{ker}(f) \subset \mathfrak{p}$ if and only if $\mathfrak{q} \cap f(A \backslash \mathfrak{p})=\emptyset$ and $f(\mathfrak{p}) \subset \mathfrak{q}$: indeed if $f(\mathfrak{p})=\operatorname{im}(f) \cap \mathfrak{q}$ (then obviously $f(\mathfrak{p}) \subset \mathfrak{q})$ and $\operatorname{ker}(f) \subset \mathfrak{p}$, then if $y \in \mathfrak{q} \cap f(A \backslash \mathfrak{p}) \subset$ $\mathfrak{q} \cap \operatorname{im}(f)$ then we can write $y=f(x)$ with $x \in A \backslash \mathfrak{p}$ and $y=f\left(x^{\prime}\right)$ with $x^{\prime} \in \mathfrak{p}$. So $x-x^{\prime} \in \operatorname{ker}(f) \subset \mathfrak{p}$; thus $x \in \mathfrak{p}$ contradiction. Conversely, if $\mathfrak{q} \cap f(A \backslash \mathfrak{p})=\emptyset$ and $f(\mathfrak{p}) \subset \mathfrak{q}$, since $f(\operatorname{ker}(f))=\{0\} \subset \mathfrak{q}$ we get $\operatorname{ker}(f) \subset \mathfrak{p}$. We have $\operatorname{im}(f) \backslash f(\mathfrak{p}) \subset f(A \backslash \mathfrak{p})$ and if $y \in f(A \backslash \mathfrak{p})$ then we can write $y=f(x)$ for $x \in A \backslash \mathfrak{p}$. If $y \in f(\mathfrak{p})$, we can also write $y=f\left(x^{\prime}\right)$ with $x^{\prime} \in \mathfrak{p}$; then $x=x^{\prime}+\left(x-x^{\prime}\right) \in \mathfrak{p}+\operatorname{ker}(f) \subset \mathfrak{p}$; contradiction. So $\operatorname{im}(f) \backslash f(\mathfrak{p})=f(A \backslash \mathfrak{p})$. Thus $\mathfrak{q} \cap f(A \backslash \mathfrak{p})=\emptyset$ means $\mathfrak{q} \cap \operatorname{im}(f) \subset f(\mathfrak{p})$. But as we have $f(\mathfrak{p}) \subset \mathfrak{q}$, we get $\mathfrak{q} \cap \operatorname{im}(f)=f(\mathfrak{p})$.

As a consequence,
$\left\{\mathfrak{q} \in \operatorname{Spec}(B), f^{-1}(\mathfrak{q})=\mathfrak{p}\right\}=\{\mathfrak{q} \in \operatorname{Spec}(B), \mathfrak{q} \cap f(A \backslash \mathfrak{p})=\emptyset$ and $f(\mathfrak{p}) \subset \mathfrak{q}\}=\left\{\mathfrak{q} \in \operatorname{Spec}\left(B_{\mathfrak{p}}\right), f(\mathfrak{p}) \subset \mathfrak{q}\right\}$
since by Proposition 9.14 $\operatorname{Spec}\left(B_{\mathfrak{p}}\right) \simeq\{\mathfrak{q} \in \operatorname{Spec}(B), \mathfrak{q} \cap f(A \backslash \mathfrak{p})=\emptyset\}$. Now, since \mathfrak{q} is $\mathfrak{q n}$ ideal, $f(\mathfrak{p}) \subset \mathfrak{q}$ means $\mathfrak{p}^{e} \subset \mathfrak{q}$ thus
$\left\{\mathfrak{q} \in \operatorname{Spec}\left(B_{\mathfrak{p}}\right), f(\mathfrak{p}) \subset \mathfrak{q}\right\}=\left\{\mathfrak{q} \in \operatorname{Spec}\left(B_{\mathfrak{p}}\right), \mathfrak{p}^{e} \subset \mathfrak{q}\right\}=V\left(\mathfrak{p}^{e}\right)=\operatorname{Spec}\left(B_{\mathfrak{p}} / \mathfrak{p}^{e} B_{\mathfrak{p}}\right)=\operatorname{Spec}\left(B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}}\right)$.
But $B_{\mathfrak{p}} / \mathfrak{p} B_{\mathfrak{p}} \simeq B_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}} / \mathfrak{p} \simeq B \otimes_{A} A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} Q(A / \mathfrak{p}) \simeq B \otimes_{A} Q(A / \mathfrak{p})$. Thus

$$
\left\{\mathfrak{q} \in \operatorname{Spec}(B), f^{-1}(\mathfrak{q})=\mathfrak{p}\right\}=\operatorname{Spec}\left(B \otimes_{A} A_{\mathfrak{p}} / \mathfrak{p}\right)
$$

Now let us choose a surjective homomorphism of A-algebra $g: A\left[x_{1}, \ldots, x_{n}\right] \rightarrow B$; tensoring with $Q(A / \mathfrak{p})$ we get a surjective $Q(A / \mathfrak{p})\left[x_{1}, \ldots, x_{n}\right] \rightarrow B \otimes_{A} Q(A / \mathfrak{p})$. The field $Q(A / \mathfrak{p})$ is Noetherian so $B \otimes_{A} Q(A / \mathfrak{p})$ is Noetherian. Hence according to the first question, $\left\{\mathfrak{q} \in \operatorname{Spec}(B), f^{-1}(\mathfrak{q})=\mathfrak{p}\right\}=\operatorname{Spec}\left(B \otimes_{A} A_{\mathfrak{p}} / \mathfrak{p}\right)$ is Noehterian.

[^0]: Solutions to be handed in before Monday May $25,4 \mathrm{pm}$.

