
Solutions for exercises, Algebra I (Commutative Algebra) – Week 7

Exercise 33. (Extension under flat ring homomorphisms)
(one direction is obvious) Assume MaxSpec(A) ⊂ im(ϕ) and consider a A-module such that
M ⊗ B = 0. If M 6= 0, take 0 6= m ∈ M . The cyclic submodule 〈m〉 ⊂ M generated by m is
isomorphic to A/a for a ( A (since 0 6= m) the annihilator of m (look at A → M , a 7→ am;
its kernel is the annihilator of m and it is surjective onto 〈m〉 by definition). Since B is a flat
A-algebra, we have an induced inclusion A/a⊗B ↪→M ⊗B; thus A/a⊗B = 0.
Since B is a flat A-algebra, tensoring the exact sequence

0→ a→ A→ A/a→ 0

with B we get an exact sequence:

0→ a⊗B → B → A/a⊗B → 0.

With the previous vanishing we get B ' a⊗B as B-modules . Looking at the exact sequence,
we see that the isomorphism is givien by a ⊗ b 7→ a · b = f(a)b; thus B ' a ⊗ B means
B ' aB = ae as B-modules.
But since a ( A, it is contained in a maximal ideal m ∈ MaxSpec(A). We get (1) = ae ⊂ me.
But by assumption, there is a p ∈ Spec(B) such that f−1(p) = ϕ(p) = m; which yields
me ⊂ p ( B (as f(m) ⊂ p and me is the smallest ideal containing f(m)). Contradiction. So
there is no such M 3 m 6= 0 i.e. M = 0.

For a counterexample, take f : Z ↪→ Q the natural inclusion. We know that Q ' Z(0) is a
flat Z-algebra but ϕ : Spec(Q) = (0) → Spec(Z) is not surjective (as a map from a finite
set to an infinite). Then the cyclic Z-module Z/Z is non-zero but Z/24Z ⊗ Q = 0 since
n⊗ 1 = n⊗ 24

24 = 24n⊗ 1
24 = 0.

Exercise 34. (Surjectivity of maps induced by flat ring homomorphisms)

1. Let us define p : NB → N by b ⊗ n 7→ bn (the later multiplication uses the B-module
structure on N). It is a well-defined homomorphism of A-modules (and B-modules) and
p ◦ g(n) = p(1⊗ n) = n for any n ∈ N i.e. p ◦ g = idN . Thus g is injective and presents
N as a direct summand of NB.

2. If ϕ is surjective then given a m ∈ MaxSpec(A), there is a p ∈ Spec(B) such that
f−1(p) = m. Thus f(m) ⊂ p and me ⊂ p ( B (me is the smallest ideal containing f(m)).
Conversely assume that for any m ∈ MaxSpec(A), me ( (1) and take a m ∈ MaxSpec(A).
Since f(m) ⊂ me, we have m ⊂ f−1(me). Now if there is a x ∈ f−1(me)\m, then
x ∈ A/m is non-zero thus invertible (since A/m is a field) i.e. there is a y ∈ A and
a m ∈ m, such that xy = 1 + m. Applying f , we get f(x)f(y) = 1 + f(m); but
f(m) ∈ f(m) ⊂ me and f(x) ∈ me by assumption, hence 1 = f(x)f(y) − f(m) ∈ me.
Contradiction. So f−1(me) = m. Then by Corollary 9.15, we have m ∈ im(ϕ). As a
consequence MaxSpec(A) ⊂ im(ϕ).
Now let p ∈ Spec(A). By Corollary 9.15, it is sufficient to prove that f−1(pe) = p to
have p ∈ im(ϕ).
By definition p ⊂ f−1(pe) so let us consider the A-module M = f−1(pe)/p. Since B is
a flat A-algebra, tensoring

0→ f−1(pe)→ A→ A/f−1(pe)A→ 0
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with B, we get an exact sequence of B-modules:

0→ f−1(pe)⊗B → B → A/f−1(pe)A⊗B → 0.

But A/f−1(pe)A⊗B ' B/f−1(pe)eB and (check it) f−1(pe)e = pe so A/f−1(pe)A⊗B '
B/peB. Thus the exactness of the above sequence means that f−1(pe) ⊗ B ' pe (by
a⊗ b 7→ ab) as B-modules.
Likewise, using flatness of B, we have an exact sequence of B-modules:

0→ p⊗B → B → A/p⊗B → 0.

Again A/p⊗B ' B/peB (by a⊗ b 7→ ab) so that the exactness of the above sequence
means p⊗B ' pe.
Now by definition, we have an exact sequence

0→ p→ f−1(pe)→M → 0

and since B is flat, we get an exact sequence of B-modules

0→ p⊗B → f−1(pe)⊗B →M ⊗B → 0.

By what we have seen the two first terms are both isomorphic to pe and the isomor-
phisms are compatible with the natural inclusion. Thus the first map of the exact
sequence is an isomorphism; which means M ⊗ B = 0. By the previous exercise, we
get M = 0 i.e. p = f−1(pe). Now, Corollary 9.15 tells us that p ∈ im(ϕ). Hence ϕ is
surjective.

3. We can use the previous question to solve this one. Remember that the ring Ap is
local i.e. only one maximal ideal which is pp. Suppose pep = (1). Then we can find

p ∈ p, s ∈ A\p, t ∈ B\q and b ∈ B such that 1
1 = bf(p)

f(s)t ∈ Bq.; which means that

t′tf(s) = t′bf(p) in B for some t′ ∈ B\q. But on one hand f(p) ∈ pe ⊂ q which
yields t′fb(p) ∈ q and on the other, t′t ∈ B\q and s ∈ A\p = A\f−1(q) i.e. f(s) ∈ B\q,
contradicting the fact that q is prime. So pep ( (1). It remains to prove that fp : Ap → Bq

is flat. By Corollary 8.28, Bp is a flat Ap-module. Set S = f(A\p) = f(A\f−1(q)) ⊂ B
and S′ = B\q. We have ker(f) = f−1(0) ⊂ f−1(q) = p so S is a multiplicative subset
of B and S ⊂ S′. Moreover by definition of the A-module structure on B, S−1B ' Bp;
let us denote h : B → S−1B the localization. Let us prove that Bq is the localization of
Bp with respect to h(S′).

Let us define g : S−1B → S′−1B by b
f(s) 7→

b
f(s) . It is well-defined since S ⊂ S′: if b

f(s) =
b′

f(s′) ∈ S
−1B then f(t)f(s′)b = f(t)b′f(s) in B; but since f(t)f(s′), f(t)f(s) ∈ S ⊂ S′

this tells us that b
f(s) = b′

f(s′) ∈ S
′−1B. It is easy to see that it is a ring homomorphism.

Moreover for t
f(s) ∈ h(S′), we have g( t

f(s)) = t
f(s) ∈ S

′−1B is invertible.

Now given a ring homomorphism q : S−1B → C such that q(h(S′)) ⊂ C∗, define

q : S′−1B → C by b
s 7→ q( b

1)q( s1)−1. It is a well defined map: for b
s = b′

s′ ∈ S
′−1B we

have ts′b = tsb in B for a t ∈ S′; which yields q( t
1)(q( s

′

1 )q( b
1) − q( s1)q( b

′

1 )) = 0 in C.

But q( t
1) ∈ C∗ by assumption; so q( s

′

1 )q( b
1) = q( s1)q( b

′

1 in C. Again q( s
′

1 ), q( s1) ∈ C∗ by

assumption; thus q( b
′

1 )q( s
′

1 )−1 = q( b
1)q( s1)−1.

It is a ring homomorphism (left to check) and for any b ∈ B, q(g( b
1)) = q( b

1) = q( b
1).

Since for f(s) ∈ S ⊂ S′, f(s)
1 ∈ S−1B is invertible, we get q( 1

f(s)) = q(f(s)1 )−1 in C;

likewise q( 1
f(s)) = q(f(s)1 )−1. So for b

f(s) ∈ S
−1B,

q(g(
b

f(s)
)) = q(g(

b

1
)g(

1

f(s)
)) = q(g(

b

1
))q(g(

1

f(s)
)) = q(g(

b

1
))q(

f(s)

1
)−1 = q(

b

f(s)
).

Thus q = q ◦ g. Uniqueness of the factorization through g is checked likewise (looking
first at b

1 and then taking the inverses). So g : S−1B → S′−1B is the localization of
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S−1B with respect to h(s′). But S′−1B ' Bq by definition. Thus Bq is a flat Bp-algebra
and the later is a flat Ap-algebra, as a result Bq is a flat Ap-algebra. And we can apply
the previous question.

Exercise 35. (Algebras of invariants)
Notice that BG is indeed an A-algebra: denoting f : A → B the ring homomorphism giving
the structure of A-algebra, we have, for a ∈ A and gi ∈ G, we have g(f(a)) = f(a)g(1) =
f(a)·1 = f(a) since gi is a homomorphism of A-algebras (i.e. an A-linear ring homomorphism)
i.e. f(A) ⊂ BG. Moreover for b, b′ ∈ BG, g(b+b′) = g(b)+g(b′) = b+b′ and g(bb′) = g(b)g(b′) =
bb′.
We have f(A) ⊂ BG ⊂ B with B of finite type over A, the later being Noetherian. So if we
knew that B was a finite BG-module, Proposition 11.24 would tell us that BG is Noetherian.
So Let us prove that B is a finite BG-module.
Since f(A) ⊂ BG and B is of finte type over A, we get that B is a finite type over BG. Thus
by Corollary 11.11, it is sufficient to prove that B is integral over BG to get that B is a finite
BG-module.
Now let b ∈ B. It is annihilated by (x − b) ∈ B[x] thus it is also annihilated by the monic
polynomial P = Πg∈G(x − g(b)) ∈ B[x]. Let us prove that P ∈ BG[x] actually: the usual

expansion (B commutative) of P gives P =
∑|G|

i=0 σ|G|−i((g(b))g∈G)xi where σk (set σ0 = 1)

designates the kth elementary symmetric function on |G|-variables σk : (X1, . . . , X|G|) 7→∑
1≤i1<i2···<ik≤|G|

Πk
j=1Xij . But since the gi ∈ G are A-algebras homomorphisms (respect sums

and products) and for any g ∈ G, G → G, g′ 7→ gg′ is a bijection (G is a finite group;
injectivity is clear and conclude by cardinal), for any g ∈ G (set g0 = idB) and k,

g(σk(b, g1(b), . . . , g|G|−1(b))) =
∑

1≤i1<i2···<ik≤|G|

Πk
j=1g(gij (b)) =

∑
1≤i′1<i′2···<i′k≤|G|

Πk
j=1gi′j (b)

= σk(b, g1(b), . . . , g|G|−1(b))

proving that σk(b, g1(b), . . . , g|G|−1(b)) ∈ BG for any k i.e. P ∈ BG[x] and is monic. So b

is integral over BG and since b was arbitrary B is integral over BG which allows us to use
Corollary 11.11 and Proposition 11.24 to conclude.

Exercise 36. (Localization of integral ring homomorphisms)
Notice first that k[x] is indeed integral over over k[x2 − 1]: x is annihilated by the monic
polynomial X2 − (x2 − 1) + 1 ∈ k[x2 − 1][X] so it is integral over k[x2 − 1]. Hence k[x2 −
1][x] = k[x] is a finite k[x2 − 1]-module by Proposition 11.6 and the same proposition gives
us integrality of any element in k[x].
Since x − 1 is irreducible (x − 1) is a prime ideal and (x − 1)c = (x − 1) ∩ k[x2 − 1]. If
f ∈ k[x2 − 1] it can be written f = a0 +

∑
i≥1 ai(x

2 − 1)i with ai ∈ k. Iff is in (x − 1)c, it

vanishes at 1 thus a0 = 0. Conversely since x2 − 1 = (x− 1)(x+ 1) any f ∈ k[x2 − 1] which
has no constant term is in (x− 1). Thus (x− 1)c = (x− 1) ∩ k[x2 − 1] = (x2 − 1).
Since char(k) 6= 2, we have 1 6= −1; as a consequence x+1 /∈ (x−1) (because any polynomial
in the principal ideal vanishes at 1 and x + 1 does not). Thus 1

x+1 ∈ k[x](x−1). Assume 1
x+1

is integral over k[x2 − 1](x2−1). Then we have 1
(x+1)n +

∑
i≤n−1

fi
gi

1
(x+1)i

= 0 ∈ k[x](x−1) for

some fi
gi
∈ k[x2 − 1](x2−1). We have

0 =
1

(x+ 1)n
+

∑
i≤n−1

fi
gi

1

(x+ 1)i
=

(Πkgk) +
∑

i≤n Πk 6=igkfi(x+ 1)n−i

Πkgk(x+ 1)n

which means g((Πkgk) +
∑

i≤n−1 Πk 6=igkfi(x + 1)n−i) = 0 in k[x] for some g /∈ (x − 1). In

particular g 6= 0, thus (k[x] integral domain) (Πkgk) +
∑

i≤n−1 Πk 6=igkfi(x + 1)n−i = 0 in

k[x]. Now (x+ 1)|Πk 6=igkfi(x+ 1)n−i for i ≤ n− 1, thus (x+ 1)|Πkgk. But gk /∈ (x2 − 1) for

any k which contradicts the fact that (x + 1) is a prime ideal. So 1
x+1 is not integral over

k[x2 − 1](x2−1).
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Exercise 37. (Noetherian topological spaces)

1. Assume A is Noetherian. Let V1 ⊃ V2 ⊃ V3 · · · ⊃ Vn ⊃ · · · be a descending chain of
closed subsets of Spec(A). By definition of Zariski topology, we can find ideals (ai)i∈N of
A such that Vi = V (ai) for any i ∈ N. Now the inclusion V (ai+1) ⊂ V (ai) is equivalent
to
√
ai ⊂

√
ai+1 for any i. Thus the descending chain of closed subsets gives rise to an

ascending chain of ideals of A:

√
a1 ⊂

√
a2 ⊂ · · · ⊂

√
an ⊂ · · ·

which, since A is Noetherian, becomes stationary i.e. there is a n ∈ N, such that√
am =

√
an for any m ≥ n, which means Vm = V (am) = V (an) = Vn for any m ≥ m

i.e. the descending chain of closed subsets becomes stationary. Hence Spec(A) is a
Noetherian topological space.
The typical example of a non-Noetherian ring is the polynomial ring in infinitely many
variables A = k[(xi)i∈N>0 ] but its spectrum is not easy to describe. But let us consi-
der B = A/(x1, x

2
2, x

3
3, . . . , x

n
n, . . . ). We have Spec(B) = V ((x1, x

2
2, x

3
3, . . . , x

n
n, . . . )) ⊂

Spec(A) and (x1, x2, x3, . . . , xn, . . . ) ⊂ NB. Since for any p ∈ Spec(B), NB ⊂ p, we get
Spec(B) = {(x1, x2, x3, . . . , xn, . . . )} (since (x1, x2, x3, . . . , xn, . . . ) ∈ Spec(A) is maxi-
mal) so Spec(B) is a Noetherian topological space. But

(x2) ⊂ (x2, x3) ⊂ (x2, x3, x4) ⊂ · · · (x2, x3, . . . xn) ⊂ · · ·

is ascending chain of ideals which is not stationary.

2. Let p ∈ im(ϕ) ⊂ Spec(A) then ϕ−1(p) = {q ∈ Spec(B), f−1(q) = p}. Now f−1(q) = p is
equivalent to f(p) = im(f)∩q and ker(f) ⊂ p: indeed if f−1(q) = p then f(p) ⊂ q∩im(f)
and if y ∈ q∩ im(f) then there is a x ∈ A q 3 y = f(x) but this means x ∈ f−1(q) = p;
thus y = f(p) i.e. f(p) = im(f) ∩ q. Moreover ker(f) = f−1(0) ⊂ f−1(q) = p. Con-
versely, if f(p) = im(f) ∩ q and ker(f) ⊂ p then p ⊂ f−1(q) and if x ∈ f−1(q), we
have f(x) ∈ q ∩ im(f) = f(p) i.e. there is a x′ ∈ p such that f(x) = f(x′); then
x = x′ + (x− x′) ∈ p + ker(f) = p.
Next, f(p) = im(f)∩q and ker(f) ⊂ p if and only if q∩f(A\p) = ∅ and f(p) ⊂ q: indeed
if f(p) = im(f) ∩ q (then obviously f(p) ⊂ q) and ker(f) ⊂ p, then if y ∈ q ∩ f(A\p) ⊂
q ∩ im(f) then we can write y = f(x) with x ∈ A\p and y = f(x′) with x′ ∈ p. So
x − x′ ∈ ker(f) ⊂ p; thus x ∈ p contradiction. Conversely, if q ∩ f(A\p) = ∅ and
f(p) ⊂ q, since f(ker(f)) = {0} ⊂ q we get ker(f) ⊂ p. We have im(f)\f(p) ⊂ f(A\p)
and if y ∈ f(A\p) then we can write y = f(x) for x ∈ A\p. If y ∈ f(p), we can also
write y = f(x′) with x′ ∈ p; then x = x′ + (x− x′) ∈ p + ker(f) ⊂ p; contradiction. So
im(f)\f(p) = f(A\p). Thus q ∩ f(A\p) = ∅ means q ∩ im(f) ⊂ f(p). But as we have
f(p) ⊂ q, we get q ∩ im(f) = f(p).

As a consequence,

{q ∈ Spec(B), f−1(q) = p} = {q ∈ Spec(B), q∩f(A\p) = ∅ and f(p) ⊂ q} = {q ∈ Spec(Bp), f(p) ⊂ q}

since by Proposition 9.14 Spec(Bp) ' {q ∈ Spec(B), q ∩ f(A\p) = ∅}. Now, since q is
qn ideal, f(p) ⊂ q means pe ⊂ q thus

{q ∈ Spec(Bp), f(p) ⊂ q} = {q ∈ Spec(Bp), p
e ⊂ q} = V (pe) = Spec(Bp/p

eBp) = Spec(Bp/pBp).

But Bp/pBp ' Bp ⊗Ap Ap/p ' B ⊗A Ap ⊗Ap Q(A/p) ' B ⊗A Q(A/p). Thus

{q ∈ Spec(B), f−1(q) = p} = Spec(B ⊗A Ap/p).

Now let us choose a surjective homomorphism of A-algebra g : A[x1, . . . , xn] � B;
tensoring with Q(A/p) we get a surjective Q(A/p)[x1, . . . , xn] � B ⊗A Q(A/p). The
field Q(A/p) is Noetherian so B⊗AQ(A/p) is Noetherian. Hence according to the first
question, {q ∈ Spec(B), f−1(q) = p} = Spec(B ⊗A Ap/p) is Noehterian.
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