Solutions for exercises, Algebra I (Commutative Algebra) – Week 7

Exercise 33. (Extension under flat ring homomorphisms)

(one direction is obvious) Assume MaxSpec $(A) \subset \operatorname{im}(\varphi)$ and consider a A-module such that $M \otimes B = 0$. If $M \neq 0$, take $0 \neq m \in M$. The cyclic submodule $\langle m \rangle \subset M$ generated by m is isomorphic to A/\mathfrak{a} for $\mathfrak{a} \subsetneq A$ (since $0 \neq m$) the annihilator of m (look at $A \to M$, $a \mapsto am$; its kernel is the annihilator of m and it is surjective onto $\langle m \rangle$ by definition). Since B is a flat A-algebra, we have an induced inclusion $A/\mathfrak{a} \otimes B \hookrightarrow M \otimes B$; thus $A/\mathfrak{a} \otimes B = 0$. Since B is a flat A-algebra, tensoring the exact sequence

$$0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$$

with B we get an exact sequence:

$$0 \to \mathfrak{a} \otimes B \to B \to A/\mathfrak{a} \otimes B \to 0.$$

With the previous vanishing we get $B \simeq \mathfrak{a} \otimes B$ as *B*-modules. Looking at the exact sequence, we see that the isomorphism is given by $a \otimes b \mapsto a \cdot b = f(a)b$; thus $B \simeq \mathfrak{a} \otimes B$ means $B \simeq \mathfrak{a} B = \mathfrak{a}^e$ as *B*-modules.

But since $\mathfrak{a} \subsetneq A$, it is contained in a maximal ideal $\mathfrak{m} \in \operatorname{MaxSpec}(A)$. We get $(1) = \mathfrak{a}^e \subset \mathfrak{m}^e$. But by assumption, there is a $\mathfrak{p} \in \operatorname{Spec}(B)$ such that $f^{-1}(\mathfrak{p}) = \varphi(\mathfrak{p}) = \mathfrak{m}$; which yields $\mathfrak{m}^e \subset \mathfrak{p} \subsetneq B$ (as $f(\mathfrak{m}) \subset \mathfrak{p}$ and \mathfrak{m}^e is the smallest ideal containing $f(\mathfrak{m})$). Contradiction. So there is no such $M \ni m \neq 0$ i.e. M = 0.

For a counterexample, take $f : \mathbb{Z} \hookrightarrow \mathbb{Q}$ the natural inclusion. We know that $\mathbb{Q} \simeq \mathbb{Z}_{(0)}$ is a flat \mathbb{Z} -algebra but $\varphi : \operatorname{Spec}(\mathbb{Q}) = (0) \to \operatorname{Spec}(\mathbb{Z})$ is not surjective (as a map from a finite set to an infinite). Then the cyclic \mathbb{Z} -module \mathbb{Z}/\mathbb{Z} is non-zero but $\mathbb{Z}/24\mathbb{Z} \otimes \mathbb{Q} = 0$ since $\overline{n} \otimes 1 = \overline{n} \otimes \frac{24}{24} = \overline{24n} \otimes \frac{1}{24} = 0$.

Exercise 34. (Surjectivity of maps induced by flat ring homomorphisms)

- 1. Let us define $p: N_B \to N$ by $b \otimes n \mapsto bn$ (the later multiplication uses the *B*-module structure on *N*). It is a well-defined homomorphism of *A*-modules (and *B*-modules) and $p \circ g(n) = p(1 \otimes n) = n$ for any $n \in N$ i.e. $p \circ g = id_N$. Thus g is injective and presents N as a direct summand of N_B .
- 2. If φ is surjective then given a m ∈ MaxSpec(A), there is a p ∈ Spec(B) such that f⁻¹(p) = m. Thus f(m) ⊂ p and m^e ⊂ p ⊆ B (m^e is the smallest ideal containing f(m)). Conversely assume that for any m ∈ MaxSpec(A), m^e ⊆ (1) and take a m ∈ MaxSpec(A). Since f(m) ⊂ m^e, we have m ⊂ f⁻¹(m^e). Now if there is a x ∈ f⁻¹(m^e)\m, then x ∈ A/m is non-zero thus invertible (since A/m is a field) i.e. there is a y ∈ A and a m ∈ m, such that xy = 1 + m. Applying f, we get f(x)f(y) = 1 + f(m); but f(m) ∈ f(m) ⊂ m^e and f(x) ∈ m^e by assumption, hence 1 = f(x)f(y) f(m) ∈ m^e. Contradiction. So f⁻¹(m^e) = m. Then by Corollary 9.15, we have m ∈ im(φ). As a consequence MaxSpec(A) ⊂ im(φ).

Now let $\mathfrak{p} \in \text{Spec}(A)$. By Corollary 9.15, it is sufficient to prove that $f^{-1}(\mathfrak{p}^e) = \mathfrak{p}$ to have $\mathfrak{p} \in \text{im}(\varphi)$.

By definition $\mathfrak{p} \subset f^{-1}(\mathfrak{p}^e)$ so let us consider the A-module $M = f^{-1}(\mathfrak{p}^e)/\mathfrak{p}$. Since B is a flat A-algebra, tensoring

$$0 \to f^{-1}(\mathfrak{p}^e) \to A \to A/f^{-1}(\mathfrak{p}^e)A \to 0$$

Solutions to be handed in before Monday May 25, 4pm.

with B, we get an exact sequence of B-modules:

$$0 \to f^{-1}(\mathfrak{p}^e) \otimes B \to B \to A/f^{-1}(\mathfrak{p}^e)A \otimes B \to 0.$$

But $A/f^{-1}(\mathfrak{p}^e)A\otimes B \simeq B/f^{-1}(\mathfrak{p}^e)^e B$ and (check it) $f^{-1}(\mathfrak{p}^e)^e = \mathfrak{p}^e$ so $A/f^{-1}(\mathfrak{p}^e)A\otimes B \simeq B/\mathfrak{p}^e B$. Thus the exactness of the above sequence means that $f^{-1}(\mathfrak{p}^e)\otimes B \simeq \mathfrak{p}^e$ (by $a \otimes b \mapsto ab$) as *B*-modules.

Likewise, using flatness of B, we have an exact sequence of B-modules:

$$0 \to \mathfrak{p} \otimes B \to B \to A/\mathfrak{p} \otimes B \to 0.$$

Again $A/\mathfrak{p} \otimes B \simeq B/\mathfrak{p}^e B$ (by $a \otimes b \mapsto ab$) so that the exactness of the above sequence means $\mathfrak{p} \otimes B \simeq \mathfrak{p}^e$.

Now by definition, we have an exact sequence

$$0 \to \mathfrak{p} \to f^{-1}(\mathfrak{p}^e) \to M \to 0$$

and since B is flat, we get an exact sequence of B-modules

$$0 \to \mathfrak{p} \otimes B \to f^{-1}(\mathfrak{p}^e) \otimes B \to M \otimes B \to 0.$$

By what we have seen the two first terms are both isomorphic to \mathfrak{p}^e and the isomorphisms are compatible with the natural inclusion. Thus the first map of the exact sequence is an isomorphism; which means $M \otimes B = 0$. By the previous exercise, we get M = 0 i.e. $\mathfrak{p} = f^{-1}(\mathfrak{p}^e)$. Now, Corollary 9.15 tells us that $\mathfrak{p} \in \operatorname{im}(\varphi)$. Hence φ is surjective.

3. We can use the previous question to solve this one. Remember that the ring $A_{\mathfrak{p}}$ is local i.e. only one maximal ideal which is $\mathfrak{p}_{\mathfrak{p}}$. Suppose $\mathfrak{p}_{\mathfrak{p}}^e = (1)$. Then we can find $p \in \mathfrak{p}, s \in A \setminus \mathfrak{p}, t \in B \setminus \mathfrak{q}$ and $b \in B$ such that $\frac{1}{1} = \frac{bf(p)}{f(s)t} \in B_{\mathfrak{q}}$; which means that t'tf(s) = t'bf(p) in B for some $t' \in B \setminus \mathfrak{q}$. But on one hand $f(p) \in \mathfrak{p}^e \subset \mathfrak{q}$ which yields $t'fb(p) \in \mathfrak{q}$ and on the other, $t't \in B \setminus \mathfrak{q}$ and $s \in A \setminus \mathfrak{p} = A \setminus f^{-1}(\mathfrak{q})$ i.e. $f(s) \in B \setminus \mathfrak{q}$, contradicting the fact that \mathfrak{q} is prime. So $\mathfrak{p}_{\mathfrak{p}}^e \subsetneq (1)$. It remains to prove that $f_{\mathfrak{p}} : A_{\mathfrak{p}} \to B_{\mathfrak{q}}$ is flat. By Corollary 8.28, $B_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$ -module. Set $S = f(A \setminus \mathfrak{p}) = f(A \setminus f^{-1}(\mathfrak{q})) \subset B$ and $S' = B \setminus \mathfrak{q}$. We have ker $(f) = f^{-1}(0) \subset f^{-1}(\mathfrak{q}) = \mathfrak{p}$ so S is a multiplicative subset of B and $S \subset S'$. Moreover by definition of the A-module structure on B, $S^{-1}B \simeq B_{\mathfrak{p}}$; let us denote $h: B \to S^{-1}B$ the localization. Let us prove that $B_{\mathfrak{q}}$ is the localization of $B_{\mathfrak{p}}$ with respect to h(S').

Let us define $g: S^{-1}B \to S'^{-1}B$ by $\frac{b}{f(s)} \mapsto \frac{b}{f(s)}$. It is well-defined since $S \subset S'$: if $\frac{b}{f(s)} = \frac{b'}{f(s')} \in S^{-1}B$ then f(t)f(s')b = f(t)b'f(s) in B; but since f(t)f(s'), $f(t)f(s) \in S \subset S'$ this tells us that $\frac{b}{f(s)} = \frac{b'}{f(s')} \in S'^{-1}B$. It is easy to see that it is a ring homomorphism. Moreover for $\frac{t}{f(s)} \in h(S')$, we have $g(\frac{t}{f(s)}) = \frac{t}{f(s)} \in S'^{-1}B$ is invertible.

Moreover for $\frac{t}{f(s)} \in h(S')$, we have $g(\frac{t}{f(s)}) = \frac{t}{f(s)} \in S'^{-1}B$ is invertible. Now given a ring homomorphism $q: S^{-1}B \to C$ such that $q(h(S')) \subset C^*$, define $\overline{q}: S'^{-1}B \to C$ by $\frac{b}{s} \mapsto q(\frac{b}{1})q(\frac{s}{1})^{-1}$. It is a well defined map: for $\frac{b}{s} = \frac{b'}{s'} \in S'^{-1}B$ we have ts'b = tsb in B for a $t \in S'$; which yields $q(\frac{t}{1})(q(\frac{s'}{1})q(\frac{b}{1}) - q(\frac{s}{1})q(\frac{b'}{1})) = 0$ in C. But $q(\frac{t}{1}) \in C^*$ by assumption; so $q(\frac{s'}{1})q(\frac{b}{1}) = q(\frac{s}{1})q(\frac{b'}{1}$ in C. Again $q(\frac{s'}{1}), q(\frac{s}{1}) \in C^*$ by assumption; thus $q(\frac{b'}{1})q(\frac{s}{1})^{-1} = q(\frac{b}{1})q(\frac{s}{1})^{-1}$.

It is a ring homomorphism (left to check) and for any $b \in B$, $\overline{q}(g(\frac{b}{1})) = \overline{q}(\frac{b}{1}) = q(\frac{b}{1})$. Since for $f(s) \in S \subset S'$, $\frac{f(s)}{1} \in S^{-1}B$ is invertible, we get $q(\frac{1}{f(s)}) = q(\frac{f(s)}{1})^{-1}$ in C; likewise $\overline{q}(\frac{1}{f(s)}) = q(\frac{f(s)}{1})^{-1}$. So for $\frac{b}{f(s)} \in S^{-1}B$,

$$\overline{q}(g(\frac{b}{f(s)})) = \overline{q}(g(\frac{b}{1})g(\frac{1}{f(s)})) = \overline{q}(g(\frac{b}{1}))\overline{q}(g(\frac{1}{f(s)})) = q(g(\frac{b}{1}))q(\frac{f(s)}{1})^{-1} = q(\frac{b}{f(s)}).$$

Thus $q = \overline{q} \circ g$. Uniqueness of the factorization through g is checked likewise (looking first at $\frac{b}{1}$ and then taking the inverses). So $g : S^{-1}B \to S'^{-1}B$ is the localization of

 $S^{-1}B$ with respect to h(s'). But $S'^{-1}B \simeq B_{\mathfrak{q}}$ by definition. Thus $B_{\mathfrak{q}}$ is a flat $B_{\mathfrak{p}}$ -algebra and the later is a flat $A_{\mathfrak{p}}$ -algebra, as a result $B_{\mathfrak{q}}$ is a flat $A_{\mathfrak{p}}$ -algebra. And we can apply the previous question.

Exercise 35. (Algebras of invariants)

Notice that B^G is indeed an A-algebra: denoting $f : A \to B$ the ring homomorphism giving the structure of A-algebra, we have, for $a \in A$ and $g_i \in G$, we have $g(f(a)) = f(a)g(1) = f(a) \cdot 1 = f(a)$ since g_i is a homomorphism of A-algebras (i.e. an A-linear ring homomorphism) i.e. $f(A) \subset B^G$. Moreover for $b, b' \in B^G$, g(b+b') = g(b)+g(b') = b+b' and g(bb') = g(b)g(b') = bb'.

We have $f(A) \subset B^G \subset B$ with B of finite type over A, the later being Noetherian. So if we knew that B was a finite B^G -module, Proposition 11.24 would tell us that B^G is Noetherian. So Let us prove that B is a finite B^G -module.

Since $f(A) \subset B^G$ and B is of finite type over A, we get that B is a finite type over B^G . Thus by Corollary 11.11, it is sufficient to prove that B is integral over B^G to get that B is a finite B^G -module.

Now let $b \in B$. It is annihilated by $(x - b) \in B[x]$ thus it is also annihilated by the monic polynomial $P = \prod_{g \in G} (x - g(b)) \in B[x]$. Let us prove that $P \in B^G[x]$ actually: the usual expansion (*B* commutative) of *P* gives $P = \sum_{i=0}^{|G|} \sigma_{|G|-i}((g(b))_{g \in G})x^i$ where σ_k (set $\sigma_0 = 1$) designates the k^{th} elementary symmetric function on |G|-variables $\sigma_k : (X_1, \ldots, X_{|G|}) \mapsto$

 $\sum_{1 \le i_1 < i_2 \cdots < i_k \le |G|} \prod_{j=1}^k X_{i_j}.$ But since the $g_i \in G$ are A-algebras homomorphisms (respect sums

and products) and for any $g \in G$, $G \to G$, $g' \mapsto gg'$ is a bijection (G is a finite group; injectivity is clear and conclude by cardinal), for any $g \in G$ (set $g_0 = id_B$) and k,

$$g(\sigma_k(b, g_1(b), \dots, g_{|G|-1}(b))) = \sum_{1 \le i_1 < i_2 \dots < i_k \le |G|} \prod_{j=1}^k g(g_{i_j}(b)) = \sum_{1 \le i'_1 < i'_2 \dots < i'_k \le |G|} \prod_{j=1}^k g_{i'_j}(b)$$
$$= \sigma_k(b, g_1(b), \dots, g_{|G|-1}(b))$$

proving that $\sigma_k(b, g_1(b), \ldots, g_{|G|-1}(b)) \in B^G$ for any k i.e. $P \in B^G[x]$ and is monic. So b is integral over B^G and since b was arbitrary B is integral over B^G which allows us to use Corollary 11.11 and Proposition 11.24 to conclude.

Exercise 36. (Localization of integral ring homomorphisms)

Notice first that k[x] is indeed integral over over $k[x^2 - 1]$: x is annihilated by the monic polynomial $X^2 - (x^2 - 1) + 1 \in k[x^2 - 1][X]$ so it is integral over $k[x^2 - 1]$. Hence $k[x^2 - 1][x] = k[x]$ is a finite $k[x^2 - 1]$ -module by Proposition 11.6 and the same proposition gives us integrality of any element in k[x].

Since x - 1 is irreducible (x - 1) is a prime ideal and $(x - 1)^c = (x - 1) \cap k[x^2 - 1]$. If $f \in k[x^2 - 1]$ it can be written $f = a_0 + \sum_{i \ge 1} a_i(x^2 - 1)^i$ with $a_i \in k$. If f is in $(x - 1)^c$, it vanishes at 1 thus $a_0 = 0$. Conversely since $x^2 - 1 = (x - 1)(x + 1)$ any $f \in k[x^2 - 1]$ which has no constant term is in (x - 1). Thus $(x - 1)^c = (x - 1) \cap k[x^2 - 1] = (x^2 - 1)$.

Since $char(k) \neq 2$, we have $1 \neq -1$; as a consequence $x + 1 \notin (x-1)$ (because any polynomial in the principal ideal vanishes at 1 and x + 1 does not). Thus $\frac{1}{x+1} \in k[x]_{(x-1)}$. Assume $\frac{1}{x+1}$ is integral over $k[x^2 - 1]_{(x^2-1)}$. Then we have $\frac{1}{(x+1)^n} + \sum_{i \leq n-1} \frac{f_i}{g_i} \frac{1}{(x+1)^i} = 0 \in k[x]_{(x-1)}$ for some $\frac{f_i}{g_i} \in k[x^2 - 1]_{(x^2-1)}$. We have

$$0 = \frac{1}{(x+1)^n} + \sum_{i \le n-1} \frac{f_i}{g_i} \frac{1}{(x+1)^i} = \frac{(\Pi_k g_k) + \sum_{i \le n} \Pi_{k \ne i} g_k f_i (x+1)^{n-i}}{\Pi_k g_k (x+1)^n}$$

which means $g((\Pi_k g_k) + \sum_{i \leq n-1} \Pi_{k \neq i} g_k f_i(x+1)^{n-i}) = 0$ in k[x] for some $g \notin (x-1)$. In particular $g \neq 0$, thus (k[x] integral domain) $(\Pi_k g_k) + \sum_{i \leq n-1} \Pi_{k \neq i} g_k f_i(x+1)^{n-i} = 0$ in k[x]. Now $(x+1)|\Pi_{k \neq i} g_k f_i(x+1)^{n-i}$ for $i \leq n-1$, thus $(x+1)|\Pi_k g_k$. But $g_k \notin (x^2-1)$ for any k which contradicts the fact that (x+1) is a prime ideal. So $\frac{1}{x+1}$ is not integral over $k[x^2-1]_{(x^2-1)}$.

Exercise 37. (Noetherian topological spaces)

1. Assume A is Noetherian. Let $V_1 \supset V_2 \supset V_3 \cdots \supset V_n \supset \cdots$ be a descending chain of closed subsets of Spec(A). By definition of Zariski topology, we can find ideals $(\mathfrak{a}_i)_{i\in\mathbb{N}}$ of A such that $V_i = V(\mathfrak{a}_i)$ for any $i \in \mathbb{N}$. Now the inclusion $V(\mathfrak{a}_{i+1}) \subset V(\mathfrak{a}_i)$ is equivalent to $\sqrt{\mathfrak{a}_i} \subset \sqrt{\mathfrak{a}_{i+1}}$ for any i. Thus the descending chain of closed subsets gives rise to an ascending chain of ideals of A:

$$\sqrt{\mathfrak{a}_1} \subset \sqrt{\mathfrak{a}_2} \subset \cdots \subset \sqrt{\mathfrak{a}_n} \subset \cdots$$

which, since A is Noetherian, becomes stationary i.e. there is a $n \in \mathbb{N}$, such that $\sqrt{\mathfrak{a}_m} = \sqrt{\mathfrak{a}_n}$ for any $m \ge n$, which means $V_m = V(\mathfrak{a}_m) = V(\mathfrak{a}_n) = V_n$ for any $m \ge m$ i.e. the descending chain of closed subsets becomes stationary. Hence $\operatorname{Spec}(A)$ is a Noetherian topological space.

The typical example of a non-Noetherian ring is the polynomial ring in infinitely many variables $A = k[(x_i)_{i \in \mathbb{N}_{>0}}]$ but its spectrum is not easy to describe. But let us consider $B = A/(x_1, x_2^2, x_3^3, \ldots, x_n^n, \ldots)$. We have $\operatorname{Spec}(B) = V((x_1, x_2^2, x_3^3, \ldots, x_n^n, \ldots)) \subset \operatorname{Spec}(A)$ and $(x_1, x_2, x_3, \ldots, x_n, \ldots) \subset \mathfrak{N}_B$. Since for any $\mathfrak{p} \in \operatorname{Spec}(B)$, $\mathfrak{N}_B \subset \mathfrak{p}$, we get $\operatorname{Spec}(B) = \{(x_1, x_2, x_3, \ldots, x_n, \ldots)\}$ (since $(x_1, x_2, x_3, \ldots, x_n, \ldots) \in \operatorname{Spec}(A)$ is maximal) so $\operatorname{Spec}(B)$ is a Noetherian topological space. But

$$(\overline{x_2}) \subset (\overline{x_2}, \overline{x_3}) \subset (\overline{x_2}, \overline{x_3}, \overline{x_4}) \subset \cdots (\overline{x_2}, \overline{x_3}, \dots, \overline{x_n}) \subset \cdots$$

is ascending chain of ideals which is not stationary.

2. Let p ∈ im(φ) ⊂ Spec(A) then φ⁻¹(p) = {q ∈ Spec(B), f⁻¹(q) = p}. Now f⁻¹(q) = p is equivalent to f(p) = im(f) ∩ q and ker(f) ⊂ p: indeed if f⁻¹(q) = p then f(p) ⊂ q ∩ im(f) and if y ∈ q ∩ im(f) then there is a x ∈ A q ∋ y = f(x) but this means x ∈ f⁻¹(q) = p; thus y = f(p) i.e. f(p) = im(f) ∩ q. Moreover ker(f) = f⁻¹(0) ⊂ f⁻¹(q) = p. Conversely, if f(p) = im(f) ∩ q and ker(f) ⊂ p then p ⊂ f⁻¹(q) and if x ∈ f⁻¹(q), we have f(x) ∈ q ∩ im(f) = f(p) i.e. there is a x' ∈ p such that f(x) = f(x'); then x = x' + (x - x') ∈ p + ker(f) = p. Next, f(p) = im(f) ∩ q and ker(f) ⊂ p if and only if q ∩ f(A\p) = ∅ and f(p) ⊂ q: indeed

Next, $f(\mathfrak{p}) = \operatorname{im}(f) \cap \mathfrak{q}$ and $\operatorname{ker}(f) \subset \mathfrak{p}$ if and only if $\mathfrak{q} \cap f(A \setminus \mathfrak{p}) = \emptyset$ and $f(\mathfrak{p}) \subset \mathfrak{q}$: indeed if $f(\mathfrak{p}) = \operatorname{im}(f) \cap \mathfrak{q}$ (then obviously $f(\mathfrak{p}) \subset \mathfrak{q}$) and $\operatorname{ker}(f) \subset \mathfrak{p}$, then if $y \in \mathfrak{q} \cap f(A \setminus \mathfrak{p}) \subset \mathfrak{q} \cap \operatorname{im}(f)$ then we can write y = f(x) with $x \in A \setminus \mathfrak{p}$ and y = f(x') with $x' \in \mathfrak{p}$. So $x - x' \in \operatorname{ker}(f) \subset \mathfrak{p}$; thus $x \in \mathfrak{p}$ contradiction. Conversely, if $\mathfrak{q} \cap f(A \setminus \mathfrak{p}) = \emptyset$ and $f(\mathfrak{p}) \subset \mathfrak{q}$, since $f(\operatorname{ker}(f)) = \{0\} \subset \mathfrak{q}$ we get $\operatorname{ker}(f) \subset \mathfrak{p}$. We have $\operatorname{im}(f) \setminus f(\mathfrak{p}) \subset f(A \setminus \mathfrak{p})$ and if $y \in f(A \setminus \mathfrak{p})$ then we can write y = f(x) for $x \in A \setminus \mathfrak{p}$. If $y \in f(\mathfrak{p})$, we can also write y = f(x') with $x' \in \mathfrak{p}$; then $x = x' + (x - x') \in \mathfrak{p} + \operatorname{ker}(f) \subset \mathfrak{p}$; contradiction. So $\operatorname{im}(f) \setminus f(\mathfrak{p}) = f(A \setminus \mathfrak{p})$. Thus $\mathfrak{q} \cap f(A \setminus \mathfrak{p}) = \emptyset$ means $\mathfrak{q} \cap \operatorname{im}(f) \subset f(\mathfrak{p})$. But as we have $f(\mathfrak{p}) \subset \mathfrak{q}$, we get $\mathfrak{q} \cap \operatorname{im}(f) = f(\mathfrak{p})$.

As a consequence,

 $\{\mathfrak{q}\in \operatorname{Spec}(B),\ f^{-1}(\mathfrak{q})=\mathfrak{p}\}=\{\mathfrak{q}\in \operatorname{Spec}(B),\ \mathfrak{q}\cap f(A\backslash\mathfrak{p})=\emptyset \text{ and } f(\mathfrak{p})\subset\mathfrak{q}\}=\{\mathfrak{q}\in \operatorname{Spec}(B_{\mathfrak{p}}),\ f(\mathfrak{p})\subset\mathfrak{q}\}$

since by Proposition 9.14 Spec $(B_{\mathfrak{p}}) \simeq \{\mathfrak{q} \in \operatorname{Spec}(B), \ \mathfrak{q} \cap f(A \setminus \mathfrak{p}) = \emptyset\}$. Now, since \mathfrak{q} is qn ideal, $f(\mathfrak{p}) \subset \mathfrak{q}$ means $\mathfrak{p}^e \subset \mathfrak{q}$ thus

 $\{\mathfrak{q} \in \operatorname{Spec}(B_{\mathfrak{p}}), f(\mathfrak{p}) \subset \mathfrak{q}\} = \{\mathfrak{q} \in \operatorname{Spec}(B_{\mathfrak{p}}), \mathfrak{p}^{e} \subset \mathfrak{q}\} = V(\mathfrak{p}^{e}) = \operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}^{e}B_{\mathfrak{p}}) = \operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}).$ But $B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} \simeq B_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}}/\mathfrak{p} \simeq B \otimes_{A} A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} Q(A/\mathfrak{p}) \simeq B \otimes_{A} Q(A/\mathfrak{p}).$ Thus

$$\{\mathfrak{q} \in \operatorname{Spec}(B), f^{-1}(\mathfrak{q}) = \mathfrak{p}\} = \operatorname{Spec}(B \otimes_A A_\mathfrak{p}/\mathfrak{p}).$$

Now let us choose a surjective homomorphism of A-algebra $g : A[x_1, \ldots, x_n] \twoheadrightarrow B$; tensoring with $Q(A/\mathfrak{p})$ we get a surjective $Q(A/\mathfrak{p})[x_1, \ldots, x_n] \twoheadrightarrow B \otimes_A Q(A/\mathfrak{p})$. The field $Q(A/\mathfrak{p})$ is Noetherian so $B \otimes_A Q(A/\mathfrak{p})$ is Noetherian. Hence according to the first question, $\{\mathfrak{q} \in \operatorname{Spec}(B), f^{-1}(\mathfrak{q}) = \mathfrak{p}\} = \operatorname{Spec}(B \otimes_A A_\mathfrak{p}/\mathfrak{p})$ is Noetherian.