Exercises, Algebra I (Commutative Algebra) - Week 8

Exercise 38. (Going-up property, 3 points)
Let us begin by proving that for a prime ideal $\mathfrak{p} \in A$ the closure $\overline{\{\mathfrak{p}\}}$ of the point $\mathfrak{p} \in \operatorname{Spec}(A)$ is $V(\mathfrak{p})$:
By definition, we have $\overline{\{\mathfrak{p}\}}=\underset{\substack{\{\mathfrak{p}\} \subset C}}{\cap} C$. In Zariski topology, we get $\overline{\{\mathfrak{p}\}}=\underset{\mathfrak{a} \subset \mathfrak{p}}{\cap} V(\mathfrak{a})$.
For any $\mathfrak{a} \subset \mathfrak{p}$, if $\mathfrak{q} \in V(\mathfrak{p})$ i.e. $\mathfrak{p} \subset \mathfrak{q}$, we have in particular $\mathfrak{a} \subset \mathfrak{q}$ hence $V(\mathfrak{p}) \subset V(\mathfrak{a})$. Thus $V(\mathfrak{p}) \subset \cap_{\mathfrak{a} \subset \mathfrak{p}} V(\mathfrak{a})$. Obviously $\mathfrak{p} \in V(\mathfrak{p})$ and $V(\mathfrak{p})$ is closed, so $\underset{\mathfrak{a} \subset \mathfrak{p}}{\cap} V(\mathfrak{a}) \subset V(\mathfrak{p})$ i.e. $V(\mathfrak{p})=\bigcap_{\mathfrak{a} \subset \mathfrak{p}} V(\mathfrak{a})=\overline{\{\mathfrak{p}\}}$.
(\Leftarrow) Assume φ is closed. Let $\mathfrak{q} \in \operatorname{Spec}(B)$ and set $\mathfrak{p}=\mathfrak{q}^{c}=\varphi(\mathfrak{q})$. Then $\varphi(V(\mathfrak{q}))$ is a closed subset of $\operatorname{Spec}(A)$ containing \mathfrak{p}. Thus $V(\mathfrak{p})=\overline{\{\mathfrak{p}\}} \subset \varphi(V(\mathfrak{q}))$. In particular, for any $\mathfrak{p} \subset \mathfrak{p}^{\prime} \in \operatorname{Spec}(A)$, the inclusion of ideals translates into $\mathfrak{p}^{\prime} \in V(\mathfrak{p})$, which yields $\mathfrak{p}^{\prime} \in \varphi(V(\mathfrak{q}))$ i.e. there exists a $\mathfrak{q} \subset \mathfrak{q}^{\prime} \in V(\mathfrak{q})$ such that $\mathfrak{q}^{\prime c}=\mathfrak{p}^{\prime}$.
(\Rightarrow) We want to prove that $\varphi(V(\mathfrak{b}))$ is a closed subset for any ideal $\mathfrak{b} \subset B$. First, if $\mathfrak{b}=\mathfrak{q}$ is a prime ideal, then setting $\mathfrak{p}=\varphi(\mathfrak{q})=\mathfrak{q}^{c}$, we have the easy inclusion $\varphi(V(\mathfrak{q})) \subset V(\mathfrak{p})$. For a $\mathfrak{p}^{\prime} \in V(\mathfrak{p})$ (i.e. $\left.\mathfrak{p} \subset \mathfrak{p}^{\prime}\right)$, by the going-up property, we can find a $\mathfrak{q}^{\prime} \in V(\mathfrak{q})$ such that $\mathfrak{p}^{\prime}=\varphi\left(\mathfrak{q}^{\prime}\right)$. So $V(\mathfrak{p}) \subset \varphi(V(\mathfrak{q}))$ i.e. $\varphi(V(\mathfrak{q}))=V(\mathfrak{p})$. Thus $\varphi(V(\mathfrak{q}))$ is a closed subset of $\operatorname{Spec}(A)$.

Let us prove that any Noetherian topological space can be written as a finite union of irreducible closed subsets: Let X be a Noetherian topological space. Let us denote S the set of closed subset of X not satisfying the property. If $S \neq \emptyset$, we can find a $V \in S$ which is minimal in S : indeed start with a V_{1} not satisfying the property. If it is not minimal, we can find a closed subset $V_{2} \subset V_{1}$ not satisfying the property and if V_{2} is not minimal, we can repeat the procedure to get a descending chain of closed subsets $\cdots V_{n} \subset \cdots \subset V_{2} \subset V_{1}$. Since X is Noetherian, the chain becomes stationary $V_{n}=V_{k}$ for any $k \geq n$. Then V_{n} is minimal.
Since V cannot be written as a finite union of irreducible closed subset, it is itself not irreducible so write it as $V=C_{1} \cup C_{2}$ for two closed subsets satisfying $C_{i} \subsetneq V, i=1,2$. As V is minimal, $C_{i} \notin S, i=1,2$ so we can write $C_{i}=\cup_{k=1}^{n_{i}} W_{i, k}$ where $W_{i, k} \subset C_{i}$ are closed irreducible subsets. But then $V=\cup_{k=1}^{n_{1}} W_{1, k} \cup \cup_{k=1}^{n_{2}} W_{2, k}$, contradicting $V \in S$. Thus $S=\emptyset$.

In $\operatorname{Spec}(A)$ (for any ring A), $V(\mathfrak{a})$ is an irreducible closed subset if and only if $\sqrt{\mathfrak{a}}$ is a prime ideal.
If $\sqrt{\mathfrak{a}}$ is a prime ideal, let $\mathfrak{a}_{1}, \mathfrak{a}_{2}$ be ideals such that $=V(\sqrt{a a})=V(\mathfrak{a})=V\left(\mathfrak{a}_{1}\right) \cup V\left(\mathfrak{a}_{2}\right)=$ $V\left(\mathfrak{a}_{1} \cap \mathfrak{a}_{2}\right)$. Then we have $\mathfrak{a}_{1} \cap \mathfrak{a}_{2} \subset \sqrt{\mathfrak{a}_{1} \cap \mathfrak{a}_{2}}=\sqrt{\mathfrak{a}}$. If $\mathfrak{a}_{1} \backslash \sqrt{\mathfrak{a}} \neq \emptyset$ and $\mathfrak{a}_{2} \backslash \sqrt{\mathfrak{a}} \neq \emptyset$ then take $a_{1} \in \mathfrak{a}_{1} \backslash \sqrt{\mathfrak{a}} \neq \emptyset$ and $a_{2} \in \mathfrak{a}_{2} \backslash \sqrt{\mathfrak{a}} \neq \emptyset ;$ we have $a_{1} a_{2} \in \mathfrak{a}_{1} \cap \mathfrak{a}_{2} \subset \sqrt{\mathfrak{a}}$; contradicting $\sqrt{\mathfrak{a}}$ prime. Thus either $\mathfrak{a}_{1} \subset \sqrt{\mathfrak{a}}$ (which yields $\sqrt{\mathfrak{a}_{1}} \subset \sqrt{\mathfrak{a}}$) or $\mathfrak{a}_{2} \subset \sqrt{\mathfrak{a}}$ (which yields $\sqrt{\mathfrak{a}_{1}} \subset \sqrt{\mathfrak{a}}$). Together with $V\left(\mathfrak{a}_{i}\right) \subset V(\mathfrak{a})$ (by assumption), we get $\sqrt{\mathfrak{a}}=\sqrt{\mathfrak{a}_{1}}$ or $\sqrt{\mathfrak{a}}=\sqrt{\mathfrak{a}_{2}}$ i.e. $V(\mathfrak{a})=V\left(\mathfrak{a}_{1}\right)$ or $V(\mathfrak{a})=V\left(\mathfrak{a}_{2}\right)$.
Conversely, if $\sqrt{\mathfrak{a}}$ is not prime, take $a, b \notin \sqrt{\mathfrak{a}}$ such that $a b \in \sqrt{\mathfrak{a}}$. As $a \notin \sqrt{\mathfrak{a}}=\cap_{\mathfrak{a} \subset \mathfrak{p}}$, prime \mathfrak{p} there is a prime ideal $\mathfrak{a} \subset \mathfrak{p}_{a}$ not containing a. Thus $(a)+\mathfrak{a} \subsetneq \mathfrak{p}_{a}$, in particular $V((a)+\mathfrak{a}) \subsetneq$ $V(\mathfrak{a})$. Likewise, $V((b)+\mathfrak{a}) \subsetneq V(\mathfrak{a})$. But $V((a)+\mathfrak{a}) \cup V((b)+\mathfrak{a})=V(((a)+\mathfrak{a}) \cdot((b)+\mathfrak{a}))=$ $V((a b)+\mathfrak{a})=V(\mathfrak{a})$. So $V(\mathfrak{a})$ is not irreducible.

Putting things together, let $V(\mathfrak{b}) \subset \operatorname{Spec}(B)$ be closed subset. As B is Noetherian, B / \mathfrak{b} is also Noetherian. So $V(\mathfrak{b}) \simeq \operatorname{Spec}(B / \mathfrak{b})$ is a Noehterian topological space and as such can be written as a finite union of irreducible closed subsets, which, by the discussion above, are of the form $V(\mathfrak{q})$ for some prime ideal $\mathfrak{b} \subset \mathfrak{q}$. So we can find prime ideals $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}$ containing \mathfrak{b} such that $V(\mathfrak{b})=\cup_{i=1}^{n} V\left(\mathfrak{q}_{i}\right)$. Then $\varphi(V(\mathfrak{b}))=\varphi\left(\cup_{i=1}^{n} V\left(\mathfrak{q}_{i}\right)\right)=\cup_{i=1}^{n} \varphi\left(V\left(\mathfrak{q}_{i}\right)\right)$ which is closed as finite union of closed subsets (by the first point) $V\left(\mathfrak{q}_{i}^{c}\right)$.

Exercise 39. (Cusp, 4 points)
First $y^{2}-x^{3}$ is irreducible in $k(x)[y]$: indeed assume we can write $y^{2}-x^{3}=(y-p(x))(y-q(x))$; then $p(x)+q(x)=0$ and $p(x) q(x)=-x^{3}$ i.e. $p(x)=-q(x)$ and $q(x)^{2}=x^{3} \in k(x)$; but x^{3} is not a square in $k(x)$. So $y^{2}-x^{3}$ is irreducible in $k(x)[y]$, a fortiori in $k[x, y]$. Thus $A=k[x, y] /\left(y^{2}-x^{3}\right)$ is integral.
Since $x \notin\left(y^{2}-x^{3}\right)$ (for degree reasons), $\bar{x} \neq 0$ in A thus $\frac{\bar{y}}{\bar{x}} \in Q(A)$. A direct calculation shows that $\frac{\bar{y}^{2}}{\bar{x}}-\bar{x}=\frac{\bar{y}^{2}-\bar{x}^{3}}{\bar{x}^{2}}=0$ so $T^{2}-x \in A[T]$ annihilates $\frac{\bar{y}}{\bar{x}}$ i.e. $\frac{\bar{y}}{\bar{x}}$ is integral over A. Assume $\frac{\bar{y}}{\bar{x}} \in A$; then there is a $p \in k[x, y]$ such that $\bar{p} \in A$ satisfies $\bar{p}^{2}-\bar{x}=0$ i.e.there is a $q \in k[x, y]$ such that $p^{2}-x=\left(y^{2}-x^{3}\right) q$. Looking at $(0,0)$, we see that p has zero constant term.
Let us define, now $f: k[x, y] \rightarrow k[t]$, by $x \mapsto t^{2}, y \mapsto t^{3}$ (extend by k-algebra rules). By direct calculation $\left(y^{2}-x^{3}\right) \subset \operatorname{ker}(f)$. So that $f(p)^{2}-t^{2}=0$ in $k[t] ;$ which gives $f(p)=t$. But $\operatorname{im}(f)$ contains no element of degree 1 . So there is no such p i.e. $\frac{\bar{y}}{\bar{x}} \notin A$. Thus A is not normal. In particular, we cannot have $A \simeq k[t]$ as rings.

Now, let $p \in \operatorname{ker}(f)$, and let us write the division of p by $y^{2}-x^{3}$ (in fact in $k(x)[y]$ and use that $y^{2}-x^{3}$ is monic), $p=\left(y^{2}-x^{3}\right) q+r$ in $k[x, y]$, with $\operatorname{deg}_{y}(r) \leq 1$. So we can write $r=r_{1}(x) y+r_{2}(x)$. Taking the image by f, we get $0=f(p)=f(r)=r_{1}\left(t^{2}\right) t^{3}+r_{2}\left(t^{2}\right)$; but any monomial of $r_{1}\left(t^{2}\right) t^{3}$ has odd degree and any monomial in $r_{2}\left(t^{2}\right)$ has even degree. Thus $r_{2}\left(t^{2}\right)=0$ and $r_{1}\left(t^{2}\right)=0$ so (writing down the coefficients) $r_{1}=0=r_{2}$ i.e. $\operatorname{ker}(f)=\left(y^{2}-x^{3}\right)$. Thus there is an induced injection $\bar{f}: A \hookrightarrow k[t]$.
We get from that and the universal property of localization (look at the composition $A \hookrightarrow$ $k[t] \hookrightarrow k(t)$), a field extension (by abuse of notations, let us denote it the same way) $\bar{f}: Q(A) \hookrightarrow k(t)$. In $k[t] \hookrightarrow k(t)$, we have $t=\frac{\bar{f}(\bar{y})}{\bar{f}(\bar{x})}=\bar{f}\left(\frac{\bar{y}}{\bar{x}}\right)$. Thus $t^{2}-\bar{f}(\bar{x})=0$ in $k(t)$ i.e. t is algebraic over $Q(A)$. But since $T^{2}-f(x) \in f(A)[T]$, the identity says that t is integral over $A \simeq f(A)$, so $A \hookrightarrow k[t]$ is integral (Prop 11.6).

We get a map $\varphi: \mathbb{A}_{k}^{1} \rightarrow \operatorname{Spec}(A)=V\left(y^{2}-x^{3}\right) \subset \operatorname{MaxSpec}(k[x, y])$.
Assume from now on, that k is algebraically closed.
For $\lambda \in k, x-\lambda^{2}, y-\lambda^{3} \in f^{-1}((t-\lambda))$ since $t^{2}-\lambda^{2}=(t-\lambda)(t+\lambda)$ and $t^{2}-\lambda^{3}=$ $(t-\lambda)\left(t^{2}-\lambda t+\lambda^{2}\right)$. Thus $\left(x-\lambda^{2}, y-\lambda^{3}\right) \subset f^{-1}((t-\lambda))$. But $\left(x-\lambda^{2}, y-\lambda^{3}\right)$ is a maximal ideal in $k[x, y]$ so $\left(x-\lambda^{2}, y-\lambda^{3}\right)=f^{-1}((t-\lambda))$. Thus the restriction of φ to the MaxSpec is given by $\varphi^{\prime}: \operatorname{MaxSpec}(k[t]) \rightarrow \operatorname{MaxSpec}(k[x, y]), \lambda \mapsto\left(\lambda^{2}, \lambda^{3}\right)$. It is easy to see that the fibers of φ^{\prime} (once $\left(\lambda^{2}, \lambda^{3}\right)$ given, $\lambda=\lambda^{3} / \lambda^{2}$) consist of one point when they are not empty. So we get a bijection $\varphi^{\prime}: \operatorname{MaxSpec}(k[t]) \simeq \operatorname{MaxSpec}(A)$ but as we have seen by the failure of A to be normal A is not isomorphic to $k[t]$.

Exercise 40. (Ring of invariants, 3 points)

1. It was part of the solution of Exercise 35 . Let us quickly repeat the argument (see last week's solutions): for $a \in A$, set $f=\Pi_{g \in G}(x-g(a)) \in A[x]$ and is monic; it is a degree $|G|$ polynomial and $f(a)=a$ (as one of the $g \in G$ is the identity). As A is commutative, the coefficients of f are the evaluation of elementary symmetric functions in $|G|$-variables at $(g(a))_{g \in G}$. For a $g_{0} \in G, t_{g_{0}}: G \rightarrow G, g \mapsto g_{0} \cdot g$ is a bijection because injective (G is a group) self-map of a finite set (thus surjective by cardinality). Since g_{0} is a ring homomorphism (and as such respects sums and products), the coefficients of f are left invariant by g_{0}; and it is so, for any $g_{0} \in G$ so the coefficients of f are, in fact, in A^{G}, which means $f \in A^{G}[x]$. Thus a is integral over A^{G}.
2. Let us first prove (by induction) the result stated as (corrected) hint: the case of one prime is obvious. Let $k \geq 1$, such that for any $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}$ prime ideals and an ideal \mathfrak{a}, $\mathfrak{a} \not \subset \mathfrak{p}_{i}, \forall i$ implies $\mathfrak{a} \not \subset \cup_{i=1}^{k} \mathfrak{p}_{i}$. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k+1}$ be prime ideals (none being contained in another otherwise the induction hypothesis gives the result) and \mathfrak{a} an ideal such that $\mathfrak{a} \not \subset \mathfrak{p}_{i}$ for any i. By induction hypothesis, there is a $x \in \mathfrak{a} \backslash \cup_{i=1}^{k} \mathfrak{p}_{i}$. We claim that there is a $y \in\left(\mathfrak{a} \cdot \Pi_{i=1}^{n} \mathfrak{p}_{i}\right) \backslash \mathfrak{p}_{k+1}$; otherwise $\mathfrak{a} \cdot \Pi_{i=1}^{n} \mathfrak{p}_{i} \subset \mathfrak{p}_{k+1}$ but since no \mathfrak{p}_{i} is contained in \mathfrak{p}_{k+1} for any $i \leq k$, we can find $p_{i} \in \mathfrak{p}_{i} \backslash \mathfrak{p}_{k+1}$; then for any $a \in \mathfrak{a}, a \cdot p_{1} \cdots p_{k} \in \mathfrak{p}_{k+1}$ thus $a \in \mathfrak{p}_{k+1}$ i.e. $\mathfrak{a} \subset \mathfrak{p}_{k+1}$ contradiction.
So we can choose $y \in \mathfrak{a} \cdot \Pi_{i=1}^{n} \mathfrak{p}_{i} \backslash \mathfrak{p}_{k+1}$. Then $x+y \in \mathfrak{a}$ and if for some $i \leq k, x+y \in \mathfrak{p}_{i}$, then $x \in \mathfrak{p}_{i}$ contradiction. Thus $x, x+y \in \mathfrak{a} \backslash \cup_{i=1}^{k} \mathfrak{p}_{i}$. If $x \notin \mathfrak{p}_{k+1}$ then we have found an $x \in \mathfrak{a} \backslash \cup_{i=1}^{k+1} \mathfrak{p}_{i}$; otherwise $x \in \mathfrak{p}_{k+1}$ but then $x+y \notin \mathfrak{p}_{k+1}$ (otherwise $y \in \mathfrak{p}_{k+1}$; contradiction) i.e. we have found $x+y \in \mathfrak{a} \backslash \cup_{i=1}^{k+1} \mathfrak{p}_{i}$.

Now let $\mathfrak{q}_{1}, \mathfrak{q}_{2} \in \varphi^{-1}(\mathfrak{p})$. For a $a \in \mathfrak{q}_{1}$, set $b=\Pi_{g \in G} g(a)$; as $\operatorname{id}_{A} \in G, b \in \mathfrak{q}_{1}$ and for any $g \in G, g(b)=\Pi_{h \in G} g \circ h(a)=\Pi_{h^{\prime} \in G} h^{\prime}(a)=b$ so $b \in A^{G}$ i.e. $b \in \mathfrak{q}_{1} \cap A^{G}=\mathfrak{q}_{1}^{c}=$ $\varphi\left(\mathfrak{q}_{1}\right)=\mathfrak{p}$. But we also have $\mathfrak{p}=\varphi\left(\mathfrak{q}_{2}\right)=\mathfrak{q}_{2} \cap A^{G}$ thus $b=\Pi_{g \in G} g(a) \in \mathfrak{q}_{2}$ i.e. $\left(\mathfrak{q}_{2}\right.$ prime) $g_{a}(a) \in \mathfrak{p}_{2}$ for some $g_{a} \in G$. Thus $\mathfrak{q}_{1} \subset \cup_{g \in G} g^{-1}\left(\mathfrak{q}_{2}\right)$. The $g^{-1}\left(\mathfrak{q}_{2}\right)$ are prime ideals so by the above discussion, there is a g such that $\mathfrak{q}_{1} \subset g^{-1}\left(\mathfrak{q}_{2}\right)$. But we have $\mathfrak{q}_{1} \cap A^{G}=\mathfrak{p}=\mathfrak{q}_{2} \cap A^{G}=g^{-1}\left(\mathfrak{q}_{2}\right) \cap A^{G}$ so that by the $5^{\text {th }}$ step of the proof of the Goingup theorem (Thm 11.33), we get $\mathfrak{q}_{1}=g^{-1}\left(\mathfrak{q}_{2}\right)$, proving transitivity of G on $\varphi^{-1}(\mathfrak{p})$. So we have a surjective map $G \rightarrow \varphi^{-1}(\mathfrak{p})$, proving that $\varphi^{-1}(\mathfrak{p})$ is finite.

Exercise 41. (Circle as a spectrum, 4 points)
When $k=\mathbb{C}$. We can define the ring automorphism $\mathbb{C}[x, y] \rightarrow \mathbb{C}[x, y]$ given by $x \mapsto x-i y$, $y \mapsto x+i y$ (the inverse being defined by $x \mapsto(x+y) / 2, y \mapsto(x-y) / 2 i)$ by which we can see that we can take $x^{\prime}=x+i y$ and $y^{\prime}=x-i y$ as indeterminates (i.e. $\mathbb{C}\left[x^{\prime}, y^{\prime}\right] \simeq \mathbb{C}[x, y]$). Under this change of variable, we have $x^{2}+y^{2}-1=(x+i y)(x-i y)-1=x^{\prime} y^{\prime}-1$ so $A \simeq \mathbb{C}\left[x^{\prime}, y^{\prime}\right] /\left(x^{\prime} y^{\prime}-1\right)$.
Let us define $g: \mathbb{C}\left[x^{\prime}\right] \rightarrow C\left[x^{\prime}, y^{\prime}\right] /\left(x^{\prime} y^{\prime}-1\right)$ the composition of the natural ring homomorphisms. Then $g\left(x^{\prime}\right)$ is invertible since $g\left(x^{\prime}\right) \bar{y}^{\prime}=1$. Now for a $f: \mathbb{C}\left[x^{\prime}\right] \rightarrow B$ a ring homomorphism such that $f\left(x^{\prime}\right) \in B^{*}$, define $\bar{f}: \mathbb{C}\left[x^{\prime}, y^{\prime}\right] /\left(x^{\prime} y^{\prime}-1\right) \rightarrow B$ by $x^{\prime} \mapsto f\left(x^{\prime}\right)$ and $y^{\prime} \mapsto f\left(x^{\prime}\right)^{-1}$ (extend by ring rules). It is well defined because it is induced by the corresponding map $f^{\prime}: \mathbb{C}\left[x^{\prime}, y^{\prime}\right] \rightarrow B$ for which we see that $\left(x^{\prime} y^{\prime}-1\right) \subset \operatorname{ker}\left(f^{\prime}\right)$. It is easy to check that it is a ring homomorphism through which f factorizes $/(f=\bar{f} \circ g)$. Moreover if $h: \mathbb{C}\left[x^{\prime}, y^{\prime}\right] /\left(x^{\prime} y^{\prime}-1\right) \rightarrow B$ is another ring homomorphism such that $f=h \circ g$, we have $h\left(x^{\prime}\right)=h\left(g\left(x^{\prime}\right)\right)=f\left(x^{\prime}\right)=\bar{f}\left(x^{\prime}\right)$. Since $x^{\prime} \in \mathbb{C}\left[x^{\prime}, y^{\prime}\right] /\left(x^{\prime} y^{\prime}-1\right)$ is invertible (y^{\prime} being its inverse), we have $h\left(y^{\prime}\right)=h\left(x^{\prime-1}\right)=h\left(x^{\prime}\right)^{-1}=f\left(x^{\prime}\right)^{-1}={\overline{f\left(x^{\prime}\right)}}^{-1}=\bar{f}\left(x^{\prime-1}\right)=\bar{f}\left(y^{\prime}\right)$. Thus $h=\bar{f}$ proving uniqueness of the factorization of f through g. As a conclusion $g: \mathbb{C}\left[x^{\prime}\right] \rightarrow$ $C\left[x^{\prime}, y^{\prime}\right] /\left(x^{\prime} y^{\prime}-1\right)$ is the localization of $\mathbb{C}\left[x^{\prime}\right]$ with respect to $\left\{x^{\prime k}, k \geq 0\right\}$.
So we have a ring isomorphism $A \simeq \mathbb{C}\left[x^{\prime}\right]_{x^{\prime}}$. But $\mathbb{C}\left[x^{\prime}\right]$ is factorial and the localization of a factorial ring is factorial.

When $k=\mathbb{R}$. One idea is to use again a polynomial ring with one variable. Euclidean division by the monic polynomial $x^{2}+y^{2}-1$ yields that for any $f \in \mathbb{R}[x][y](\subset \mathbb{R}(x)[y])$ there is a unique $\left(f_{1}, f_{2}\right) \in \mathbb{R}[x]^{2}$ such that $f=f_{1}(x) y+f_{2}(x) \bmod \left(x^{2}+y^{2}-1\right)$. Define $N: A \rightarrow \mathbb{R}[x]$ by $\bar{f} \mapsto\left(x^{2}-1\right) f_{1}(x)^{2}+f_{2}(x)^{2}$. By the above uniqueness it is a well-defined map (not a ring
homomorphism at all). Moreover

$$
\begin{aligned}
N\left(\left(f_{1}(x) y+f_{2}(x)\right)\left(g_{1}(x) y+g_{2}(x)\right)\right) & =N\left(f_{1} g_{1} y^{2}+\left(f_{1} g_{2}+f_{2} g_{1}\right) y+f_{2} g_{2}\right) \\
& =N\left(f_{1} g_{1}\left(y^{2}+x^{2}-1-x^{2}+1\right)+\left(f_{1} g_{2}+f_{2} g_{1}\right) y+f_{2} g_{2}\right) \\
& =N\left(\left(f_{1} g_{2}+f_{2} g_{1}\right) y+\left(1-x^{2}\right) f_{1} g_{1}+f_{2} g_{2}\right) \\
& =\left(x^{2}-1\right)\left(f_{1} g_{2}+f_{2} g_{1}\right)^{2}+\left(\left(1-x^{2}\right) f_{1} g_{1}+f_{2} g_{2}\right)^{2} \\
& =\left(x^{2}-1\right)\left(\left(f_{1} g_{2}\right)^{2}+\left(f_{2} g_{1}\right)^{2}+2 f_{1} f_{2} g_{1} g_{2}+\left(f_{1} g_{1}\right)^{2}\left(x^{2}-1\right)\right. \\
& \left.-2 f_{1} f_{2} g_{1} g_{2}\right)+\left(f_{2} g_{2}\right)^{2} \\
& =N\left(f_{1}(x) y+f_{2}(x)\right) N\left(g_{1}(x) y+g_{2}(x)\right)
\end{aligned}
$$

So N is multiplicative.
We have in $A, y^{2}=1-x^{2}=(1-x)(1+x)$. If $y \mid(1-x)$ in A, then as N is multiplicative $x^{2}-1=N(y) \mid N(1-x)=(1-x)^{2}$ in $\mathbb{R}[x]$ which is not true so $y \nmid(1-x)$. Likewise $y \nmid(1+x)$, $(1-x) \nmid y$ and $(1+x) \nmid y$.
Let us prove moreover that $y \in A$ is irreducible: assume $y=f g$, then $x^{2}-1=N(f) N(g)$ in $\mathbb{R}[x]$. If $\operatorname{deg}(N(f))=2$ then $N(g) \in \mathbb{R}^{*}$ i.e. there is a $a \in \mathbb{R}^{*}$ such that $g=a$ in A i.e. g is invertible. Likewise if $\operatorname{deg}(N(g))=2, f$ is invertible. If $\operatorname{deg}(N(f))=1=\operatorname{deg}(N(g))$, then $(\mathbb{R}[x]$ is factorial) $N(f), N(g) \in\{x-1, x+1\}$. Assume $N(f)=x+1$ and write $f=f_{1} y+f_{2}$; we have $\left(x^{2}-1\right) f_{1}^{2}+f_{2}^{2}=N(f)=x+1$ in $\mathbb{R}[x]$; thus $x+1 \mid f_{2}^{2}$ i.e. $x+1 \mid f_{2}$ (since $x+1$ is irreducible) so either $\operatorname{deg}\left(f_{2}^{2}\right) \geq 4$ and its leading coefficient is positive or $f_{2}=0$. But the leading coefficient of $\left(x^{2}-1\right) f_{1}^{2}$ is also positive. But the sum $\left(x^{2}-1\right) f_{1}^{2}+f_{2}^{2}$ has degree $1=\operatorname{deg}(x+1)$ which is not possible. Using similar arguments for the case $N(f)=x-1$, we get that y is irreducible.

Thus $y^{2}=(1-x)(x+1)$ gives two distinct (with distinct irreducible elements) decompositions of y^{2}; in particular A is not factorial.

Exercise 42. (Extending ring homomorphisms into fields, 3 points)
Since $(0) \in \operatorname{Spec}(K)$, the ideal $\mathfrak{p}:=\operatorname{ker}(f)=f^{-1}(0)$ is prime; thus A / \mathfrak{p} is integral, $\bar{f}: A / \mathfrak{p} \rightarrow K$ is injective and f factorizes through \bar{f}.
Since $A \hookrightarrow B$ is integral, by the Going-up theorem (Thm 11.33), $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is surjective so that there is a $\mathfrak{q} \in \operatorname{Spec}(B)$ such that $\mathfrak{q} \cap A=\mathfrak{p}$. Now the kernel of the composition $A \hookrightarrow B \rightarrow B / \mathfrak{q}$ is $\mathfrak{q} \cap A=\mathfrak{p}$ so there is an induced injective ring homomorphism $A / \mathfrak{p} \hookrightarrow B / \mathfrak{q}$ which, by the first step of the proof of the Going-up theorem, is integral.
Of course, B / \mathfrak{q} is integral so we can look at the natural injection $B / \mathfrak{q} \hookrightarrow Q(B / \mathfrak{q})$. We have an induced injection $A / \mathfrak{p} \hookrightarrow B / \mathfrak{q} \hookrightarrow Q(B / \mathfrak{q})$ which, by the universal property of the localization (or of the fraction field) factorizes through $A / \mathfrak{p} \hookrightarrow Q(A / \mathfrak{p})$. Let us prove that the field extension $Q(B / \mathfrak{q}) / Q(A / \mathfrak{p})$ is algebraic: Let $\frac{b}{d} \in Q(B / \mathfrak{q})$ then as B / \mathfrak{q} is integral over $A / \mathfrak{p}, A / \mathfrak{p}[d]$ is a finite A / \mathfrak{p}-module, hence $Q(A / \mathfrak{p})[d] \subset Q(B / \mathfrak{q})$ is a finite dimensional vector space. So $d \in Q(B / \mathfrak{q})$ is algebraic over $Q(A / \mathfrak{p})$; thus $d^{-1} \in Q(A / \mathfrak{p})[d]$ (mimic the proof of step 3 of the proof of the Going-up theorem). Thus $\frac{b}{d} \in Q(A / \mathfrak{p})[b, d]=Q(A / \mathfrak{p})[d][b] \subset Q(B / \mathfrak{q})$ but since b is integral over A / \mathfrak{p} it is in particular algebraic over $Q(A / \mathfrak{p})$, hence integral over $Q(A / \mathfrak{p})[d]$ i.e. $Q(A / \mathfrak{p})[d][b]$ is a finite $Q(A / \mathfrak{p})[d][b]$-module hence $Q(A / \mathfrak{p})[b, d]$ is a finite dimensional $Q(A / \mathfrak{p})$-vector space. As a consequence $\frac{b}{d} \in Q(A / \mathfrak{p})[b, d]$ is algebraic.

Now by the universal property of localization, the injective ring homomorphism $\bar{f}: A / \mathfrak{p} \hookrightarrow K$ factorizes through $A / \mathfrak{p} \hookrightarrow Q(A / \mathfrak{p})$ so we get a field extension $\overline{\bar{f}}: Q(A / \mathfrak{p}) \hookrightarrow K$. Since K is algebraically closed and $Q(B / \mathfrak{q}) / Q(A / \mathfrak{p})$ is algebraic, by a classical result on field extension, there is a filed extension $g: Q(B / \mathfrak{q}) \hookrightarrow K$ extending $\overline{\bar{f}}$.

Thus we have a commutative diagram:

(where the the composition of the map in the first line is equal to f) which gives us the extension.

