## Exercises, Algebra I (Commutative Algebra) – Week 8

**Exercise 38.** (Going-up property, 3 points)

Let us begin by proving that for a prime ideal  $\mathfrak{p} \in A$  the closure  $\overline{\{\mathfrak{p}\}}$  of the point  $\mathfrak{p} \in \operatorname{Spec}(A)$  is  $V(\mathfrak{p})$ :

By definition, we have  $\overline{\{\mathfrak{p}\}} = \bigcap_{\substack{\{\mathfrak{p}\} \subset C, \\ C \subset \operatorname{Spec}(A) \text{ closed}}} C$ . In Zariski topology, we get  $\overline{\{\mathfrak{p}\}} = \bigcap_{\mathfrak{a} \subset \mathfrak{p}} V(\mathfrak{a})$ .

For any  $\mathfrak{a} \subset \mathfrak{p}$ , if  $\mathfrak{q} \in V(\mathfrak{p})$  i.e.  $\mathfrak{p} \subset \mathfrak{q}$ , we have in particular  $\mathfrak{a} \subset \mathfrak{q}$  hence  $V(\mathfrak{p}) \subset V(\mathfrak{a})$ . Thus  $V(\mathfrak{p}) \subset \bigcap_{\mathfrak{a} \subset \mathfrak{p}} V(\mathfrak{a})$ . Obviously  $\mathfrak{p} \in V(\mathfrak{p})$  and  $V(\mathfrak{p})$  is closed, so  $\bigcap_{\mathfrak{a} \subset \mathfrak{p}} V(\mathfrak{a}) \subset V(\mathfrak{p})$  i.e.  $V(\mathfrak{p}) = \bigcap_{\mathfrak{a} \subset \mathfrak{p}} V(\mathfrak{a}) = \overline{\{\mathfrak{p}\}}.$ 

( $\Leftarrow$ ) Assume  $\varphi$  is closed. Let  $\mathfrak{q} \in \operatorname{Spec}(B)$  and set  $\mathfrak{p} = \mathfrak{q}^c = \varphi(\mathfrak{q})$ . Then  $\varphi(V(\mathfrak{q}))$  is a closed subset of  $\operatorname{Spec}(A)$  containing  $\mathfrak{p}$ . Thus  $V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}} \subset \varphi(V(\mathfrak{q}))$ . In particular, for any  $\mathfrak{p} \subset \mathfrak{p}' \in \operatorname{Spec}(A)$ , the inclusion of ideals translates into  $\mathfrak{p}' \in V(\mathfrak{p})$ , which yields  $\mathfrak{p}' \in \varphi(V(\mathfrak{q}))$  i.e. there exists a  $\mathfrak{q} \subset \mathfrak{q}' \in V(\mathfrak{q})$  such that  $\mathfrak{q}'^c = \mathfrak{p}'$ .

(⇒) We want to prove that  $\varphi(V(\mathfrak{b}))$  is a closed subset for any ideal  $\mathfrak{b} \subset B$ . First, if  $\mathfrak{b} = \mathfrak{q}$  is a prime ideal, then setting  $\mathfrak{p} = \varphi(\mathfrak{q}) = \mathfrak{q}^c$ , we have the easy inclusion  $\varphi(V(\mathfrak{q})) \subset V(\mathfrak{p})$ . For a  $\mathfrak{p}' \in V(\mathfrak{p})$  (i.e.  $\mathfrak{p} \subset \mathfrak{p}'$ ), by the going-up property, we can find a  $\mathfrak{q}' \in V(\mathfrak{q})$  such that  $\mathfrak{p}' = \varphi(\mathfrak{q}')$ . So  $V(\mathfrak{p}) \subset \varphi(V(\mathfrak{q}))$  i.e.  $\varphi(V(\mathfrak{q})) = V(\mathfrak{p})$ . Thus  $\varphi(V(\mathfrak{q}))$  is a closed subset of Spec(A).

Let us prove that any Noetherian topological space can be written as a finite union of irreducible closed subsets: Let X be a Noetherian topological space. Let us denote S the set of closed subset of X not satisfying the property. If  $S \neq \emptyset$ , we can find a  $V \in S$  which is minimal in S: indeed start with a  $V_1$  not satisfying the property. If it is not minimal, we can find a closed subset  $V_2 \subset V_1$  not satisfying the property and if  $V_2$  is not minimal, we can repeat the procedure to get a descending chain of closed subsets  $\cdots V_n \subset \cdots \subset V_2 \subset V_1$ . Since X is Noetherian, the chain becomes stationary  $V_n = V_k$  for any  $k \ge n$ . Then  $V_n$  is minimal.

Since V cannot be written as a finite union of irreducible closed subset, it is itself not irreducible so write it as  $V = C_1 \cup C_2$  for two closed subsets satisfying  $C_i \subsetneq V$ , i = 1, 2. As V is minimal,  $C_i \notin S$ , i = 1, 2 so we can write  $C_i = \bigcup_{k=1}^{n_i} W_{i,k}$  where  $W_{i,k} \subset C_i$  are closed irreducible subsets. But then  $V = \bigcup_{k=1}^{n_1} W_{1,k} \cup \bigcup_{k=1}^{n_2} W_{2,k}$ , contradicting  $V \in S$ . Thus  $S = \emptyset$ .

In Spec(A) (for any ring A),  $V(\mathfrak{a})$  is an irreducible closed subset if and only if  $\sqrt{\mathfrak{a}}$  is a prime ideal.

If  $\sqrt{\mathfrak{a}}$  is a prime ideal, let  $\mathfrak{a}_1, \mathfrak{a}_2$  be ideals such that  $= V(\sqrt{aa}) = V(\mathfrak{a}) = V(\mathfrak{a}_1) \cup V(\mathfrak{a}_2) = V(\mathfrak{a}_1 \cap \mathfrak{a}_2)$ . Then we have  $\mathfrak{a}_1 \cap \mathfrak{a}_2 \subset \sqrt{\mathfrak{a}_1 \cap \mathfrak{a}_2} = \sqrt{\mathfrak{a}}$ . If  $\mathfrak{a}_1 \setminus \sqrt{\mathfrak{a}} \neq \emptyset$  and  $\mathfrak{a}_2 \setminus \sqrt{\mathfrak{a}} \neq \emptyset$  then take  $a_1 \in \mathfrak{a}_1 \setminus \sqrt{\mathfrak{a}} \neq \emptyset$  and  $a_2 \in \mathfrak{a}_2 \setminus \sqrt{\mathfrak{a}} \neq \emptyset$ ; we have  $a_1 a_2 \in \mathfrak{a}_1 \cap \mathfrak{a}_2 \subset \sqrt{\mathfrak{a}}$ ; contradicting  $\sqrt{\mathfrak{a}}$  prime. Thus either  $\mathfrak{a}_1 \subset \sqrt{\mathfrak{a}}$  (which yields  $\sqrt{\mathfrak{a}_1} \subset \sqrt{\mathfrak{a}}$ ) or  $\mathfrak{a}_2 \subset \sqrt{\mathfrak{a}}$  (which yields  $\sqrt{\mathfrak{a}_1} \subset \sqrt{\mathfrak{a}}$ ). Together with  $V(\mathfrak{a}_i) \subset V(\mathfrak{a})$  (by assumption), we get  $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{a}_1}$  or  $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{a}_2}$  i.e.  $V(\mathfrak{a}) = V(\mathfrak{a}_1)$  or  $V(\mathfrak{a}) = V(\mathfrak{a}_2)$ .

Conversely, if  $\sqrt{\mathfrak{a}}$  is not prime, take  $a, b \notin \sqrt{\mathfrak{a}}$  such that  $ab \in \sqrt{\mathfrak{a}}$ . As  $a \notin \sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{a} \subset \mathfrak{p}, \text{ prime}} \mathfrak{p}$  there is a prime ideal  $\mathfrak{a} \subset \mathfrak{p}_a$  not containing a. Thus  $(a) + \mathfrak{a} \subsetneq \mathfrak{p}_a$ , in particular  $V((a) + \mathfrak{a}) \subsetneq V(\mathfrak{a})$ . Likewise,  $V((b) + \mathfrak{a}) \subsetneq V(\mathfrak{a})$ . But  $V((a) + \mathfrak{a}) \cup V((b) + \mathfrak{a}) = V(((a) + \mathfrak{a}) \cdot ((b) + \mathfrak{a})) = V((ab) + \mathfrak{a}) = V(\mathfrak{a})$ . So  $V(\mathfrak{a})$  is not irreducible.

Solutions to be handed in before Tuesday June 2, 4pm.

Putting things together, let  $V(\mathfrak{b}) \subset \operatorname{Spec}(B)$  be closed subset. As B is Noetherian,  $B/\mathfrak{b}$  is also Noetherian. So  $V(\mathfrak{b}) \simeq \operatorname{Spec}(B/\mathfrak{b})$  is a Noehterian topological space and as such can be written as a finite union of irreducible closed subsets, which, by the discussion above, are of the form  $V(\mathfrak{q})$  for some prime ideal  $\mathfrak{b} \subset \mathfrak{q}$ . So we can find prime ideals  $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$  containing  $\mathfrak{b}$ such that  $V(\mathfrak{b}) = \bigcup_{i=1}^{n} V(\mathfrak{q}_i)$ . Then  $\varphi(V(\mathfrak{b})) = \varphi(\bigcup_{i=1}^{n} V(\mathfrak{q}_i)) = \bigcup_{i=1}^{n} \varphi(V(\mathfrak{q}_i))$  which is closed as finite union of closed subsets (by the first point)  $V(\mathfrak{q}_i^c)$ .

## **Exercise 39.** (Cusp, 4 points)

First  $y^2 - x^3$  is irreducible in k(x)[y]: indeed assume we can write  $y^2 - x^3 = (y - p(x))(y - q(x))$ ; then p(x) + q(x) = 0 and  $p(x)q(x) = -x^3$  i.e. p(x) = -q(x) and  $q(x)^2 = x^3 \in k(x)$ ; but  $x^3$  is not a square in k(x). So  $y^2 - x^3$  is irreducible in k(x)[y], a fortiori in k[x,y]. Thus

 $x^3$  is not a square in  $\kappa(x)$ . So  $y = x^3$  is interaction in  $\kappa(x)[y]$ , a formula [1, y],  $A = k[x, y]/(y^2 - x^3)$  is integral. Since  $x \notin (y^2 - x^3)$  (for degree reasons),  $\overline{x} \neq 0$  in A thus  $\frac{\overline{y}}{\overline{x}} \in Q(A)$ . A direct calculation shows that  $\frac{\overline{y}}{\overline{x}}^2 - \overline{x} = \frac{\overline{y}^2 - \overline{x}^3}{\overline{x}^2} = 0$  so  $T^2 - x \in A[T]$  annihilates  $\frac{\overline{y}}{\overline{x}}$  i.e.  $\frac{\overline{y}}{\overline{x}}$  is integral over A. Assume  $\frac{\overline{y}}{\overline{x}} \in A$ ; then there is a  $p \in k[x, y]$  such that  $\overline{p} \in A$  satisfies  $\overline{p}^2 - \overline{x} = 0$  i.e. there is a  $q \in k[x, y]$  such that  $p^2 - x = (y^2 - x^3)q$ . Looking at (0, 0), we see that p has zero constant transformed. term.

Let us define, now  $f: k[x, y] \to k[t]$ , by  $x \mapsto t^2$ ,  $y \mapsto t^3$  (extend by k-algebra rules). By direct calculation  $(y^2 - x^3) \subset \ker(f)$ . So that  $f(p)^2 - t^2 = 0$  in k[t]; which gives f(p) = t. But  $\operatorname{im}(f)$ contains no element of degree 1. So there is no such p i.e.  $\frac{\overline{y}}{\overline{r}} \notin A$ . Thus A is not normal. In particular, we cannot have  $A \simeq k[t]$  as rings.

Now, let  $p \in \text{ker}(f)$ , and let us write the division of p by  $y^2 - x^3$  (in fact in k(x)[y] and use that  $y^2 - x^3$  is monic),  $p = (y^2 - x^3)q + r$  in k[x, y], with  $\text{deg}_y(r) \leq 1$ . So we can write  $r = r_1(x)y + r_2(x)$ . Taking the image by f, we get  $0 = f(p) = f(r) = r_1(t^2)t^3 + r_2(t^2)$ ; but any monomial of  $r_1(t^2)t^3$  has odd degree and any monomial in  $r_2(t^2)$  has even degree. Thus  $r_2(t^2) = 0$  and  $r_1(t^2) = 0$  so (writing down the coefficients)  $r_1 = 0 = r_2$  i.e. ker $(f) = (y^2 - x^3)$ . Thus there is an induced injection  $\overline{f}: A \hookrightarrow k[t]$ .

We get from that and the universal property of localization (look at the composition  $A \hookrightarrow$  $k[t] \hookrightarrow k(t)$ , a field extension (by abuse of notations, let us denote it the same way)  $\overline{f}: Q(A) \hookrightarrow k(t)$ . In  $k[t] \hookrightarrow k(t)$ , we have  $t = \frac{\overline{f}(\overline{y})}{\overline{f}(\overline{x})} = \overline{f}(\frac{\overline{y}}{\overline{x}})$ . Thus  $t^2 - \overline{f}(\overline{x}) = 0$  in k(t) i.e. t is algebraic over Q(A). But since  $T^2 - f(x) \in f(A)[T]$ , the identity says that t is integral over  $A \simeq f(A)$ , so  $A \hookrightarrow k[t]$  is integral (Prop 11.6).

We get a map  $\varphi : \mathbb{A}^1_k \to Spec(A) = V(y^2 - x^3) \subset \operatorname{MaxSpec}(k[x, y]).$ Assume from now on, that k is algebraically closed. For  $\lambda \in k, \ x - \lambda^2, y - \lambda^3 \in f^{-1}((t - \lambda))$  since  $t^2 - \lambda^2 = (t - \lambda)(t + \lambda)$  and  $t^2 - \lambda^3 = (t - \lambda)(t^2 - \lambda t + \lambda^2)$ . Thus  $(x - \lambda^2, y - \lambda^3) \subset f^{-1}((t - \lambda))$ . But  $(x - \lambda^2, y - \lambda^3)$  is a maximal ideal in k[x, y] so  $(x - \lambda^2, y - \lambda^3) = f^{-1}((t - \lambda))$ . Thus the restriction of  $\varphi$  to the MaxSpec is given by  $\varphi'$ : MaxSpec $(k[t]) \to \operatorname{MaxSpec}(k[x, y]), \ \lambda \mapsto (\lambda^2, \lambda^3)$ . It is easy to see that the fibers of  $\varphi'$  (once  $(\lambda^2, \lambda^3)$  given,  $\lambda = \lambda^3/\lambda^2$ ) consist of one point when they are not empty. So we get a bijection  $\varphi'$ : MaxSpec $(k[t]) \simeq \operatorname{MaxSpec}(A)$  but as we have seen by the failure of So we get a bijection  $\varphi'$ : MaxSpec $(k[t]) \simeq$  MaxSpec(A) but as we have seen by the failure of A to be normal A is not isomorphic to k[t].

**Exercise 40.** (Ring of invariants, 3 points)

1. It was part of the solution of Exercise 35. Let us quickly repeat the argument (see last week's solutions): for  $a \in A$ , set  $f = \prod_{q \in G} (x - g(a)) \in A[x]$  and is monic; it is a degree |G| polynomial and f(a) = a (as one of the  $g \in G$  is the identity). As A is commutative, the coefficients of f are the evaluation of elementary symmetric functions in |G|-variables at  $(g(a))_{g\in G}$ . For a  $g_0 \in G$ ,  $t_{g_0} : G \to G$ ,  $g \mapsto g_0 \cdot g$  is a bijection because injective (G is a group) self-map of a finite set (thus surjective by cardinality). Since  $g_0$  is a ring homomorphism (and as such respects sums and products), the coefficients of f are left invariant by  $g_0$ ; and it is so, for any  $g_0 \in G$  so the coefficients of f are, in fact, in  $A^G$ , which means  $f \in A^G[x]$ . Thus a is integral over  $A^G$ .

2. Let us first prove (by induction) the result stated as (corrected) hint: the case of one prime is obvious. Let  $k \ge 1$ , such that for any  $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$  prime ideals and an ideal  $\mathfrak{a}$ ,  $\mathfrak{a} \not\subset \mathfrak{p}_i$ ,  $\forall i$  implies  $\mathfrak{a} \not\subset \cup_{i=1}^k \mathfrak{p}_i$ . Let  $\mathfrak{p}_1, \ldots, \mathfrak{p}_{k+1}$  be prime ideals (none being contained in another otherwise the induction hypothesis gives the result) and  $\mathfrak{a}$  an ideal such that  $\mathfrak{a} \not\subset \mathfrak{p}_i$  for any *i*. By induction hypothesis, there is a  $x \in \mathfrak{a} \setminus \bigcup_{i=1}^k \mathfrak{p}_i$ . We claim that there is a  $y \in (\mathfrak{a} \cdot \prod_{i=1}^{n} \mathfrak{p}_i) \setminus \mathfrak{p}_{k+1}$ ; otherwise  $\mathfrak{a} \cdot \prod_{i=1}^{n} \mathfrak{p}_i \subset \mathfrak{p}_{k+1}$  but since no  $\mathfrak{p}_i$  is contained in  $\mathfrak{p}_{k+1}$  for any  $i \leq k$ , we can find  $p_i \in \mathfrak{p}_i \setminus \mathfrak{p}_{k+1}$ ; then for any  $a \in \mathfrak{a}, a \cdot p_1 \cdots p_k \in \mathfrak{p}_{k+1}$  thus  $a \in \mathfrak{p}_{k+1}$  i.e.  $\mathfrak{a} \subset \mathfrak{p}_{k+1}$  contradiction.

So we can choose  $y \in \mathfrak{a} \cdot \prod_{i=1}^{n} \mathfrak{p}_i \setminus \mathfrak{p}_{k+1}$ . Then  $x + y \in \mathfrak{a}$  and if for some  $i \leq k, x + y \in \mathfrak{p}_i$ , then  $x \in \mathfrak{p}_i$  contradiction. Thus  $x, x + y \in \mathfrak{a} \setminus \bigcup_{i=1}^{k} \mathfrak{p}_i$ . If  $x \notin \mathfrak{p}_{k+1}$  then we have found an  $x \in \mathfrak{a} \setminus \bigcup_{i=1}^{k+1} \mathfrak{p}_i$ ; otherwise  $x \in \mathfrak{p}_{k+1}$  but then  $x + y \notin \mathfrak{p}_{k+1}$  (otherwise  $y \in \mathfrak{p}_{k+1}$ ; contradiction) i.e. we have found  $x + y \in \mathfrak{a} \setminus \bigcup_{i=1}^{k+1} \mathfrak{p}_i$ .

Now let  $\mathfrak{q}_1, \mathfrak{q}_2 \in \varphi^{-1}(\mathfrak{p})$ . For a  $a \in \mathfrak{q}_1$ , set  $b = \prod_{g \in G} g(a)$ ; as  $\mathrm{id}_A \in G$ ,  $b \in \mathfrak{q}_1$  and for any  $g \in G$ ,  $g(b) = \prod_{h \in G} g \circ h(a) = \prod_{h' \in G} h'(a) = b$  so  $b \in A^G$  i.e.  $b \in \mathfrak{q}_1 \cap A^G = \mathfrak{q}_1^c = \varphi(\mathfrak{q}_1) = \mathfrak{p}$ . But we also have  $\mathfrak{p} = \varphi(\mathfrak{q}_2) = \mathfrak{q}_2 \cap A^G$  thus  $b = \prod_{g \in G} g(a) \in \mathfrak{q}_2$  i.e.  $(\mathfrak{q}_2)$  prime)  $g_a(a) \in \mathfrak{p}_2$  for some  $g_a \in G$ . Thus  $\mathfrak{q}_1 \subset \bigcup_{g \in G} g^{-1}(\mathfrak{q}_2)$ . The  $g^{-1}(\mathfrak{q}_2)$  are prime ideals so by the above discussion, there is a g such that  $\mathfrak{q}_1 \subset \mathfrak{G}_{g\in G}\mathfrak{g}^{-1}(\mathfrak{q}_2)$ . Find  $\mathfrak{g}^{-1}(\mathfrak{q}_2)$  are prime ideals so by the above discussion, there is a g such that  $\mathfrak{q}_1 \subset g^{-1}(\mathfrak{q}_2)$ . But we have  $\mathfrak{q}_1 \cap A^G = \mathfrak{p} = \mathfrak{q}_2 \cap A^G = g^{-1}(\mathfrak{q}_2) \cap A^G$  so that by the 5<sup>th</sup> step of the proof of the Going-up theorem (Thm 11.33), we get  $\mathfrak{q}_1 = g^{-1}(\mathfrak{q}_2)$ , proving transitivity of G on  $\varphi^{-1}(\mathfrak{p})$ . So we have a surjective map  $G \twoheadrightarrow \varphi^{-1}(\mathfrak{p})$ , proving that  $\varphi^{-1}(\mathfrak{p})$  is finite.

## **Exercise 41.** (Circle as a spectrum, 4 points)

When  $k = \mathbb{C}$ . We can define the ring automorphism  $\mathbb{C}[x, y] \to \mathbb{C}[x, y]$  given by  $x \mapsto x - iy$ ,  $y \mapsto x + iy$  (the inverse being defined by  $x \mapsto (x + y)/2$ ,  $y \mapsto (x - y)/2i$ ) by which we can see that we can take x' = x + iy and y' = x - iy as indeterminates (i.e.  $\mathbb{C}[x', y'] \simeq \mathbb{C}[x, y]$ ). Under this change of variable, we have  $x^2 + y^2 - 1 = (x + iy)(x - iy) - 1 = x'y' - 1$  so  $A \simeq \mathbb{C}[x', y']/(x'y' - 1).$ 

Let us define  $g: \mathbb{C}[x'] \to C[x',y']/(x'y'-1)$  the composition of the natural ring homomorphisms. Then g(x') is invertible since  $g(x')\overline{y}' = 1$ . Now for a  $f : \mathbb{C}[x'] \to B$  a ring homomorphism such that  $f(x') \in B^*$ , define  $\overline{f} : \mathbb{C}[x', y']/(x'y'-1) \to B$  by  $x' \mapsto f(x')$  and  $y' \mapsto f(x')^{-1}$  (extend by ring rules). It is well defined because it is induced by the corresponding map  $f': \mathbb{C}[x',y'] \to B$  for which we see that  $(x'y'-1) \subset \ker(f')$ . It is easy to check that it is a ring homomorphism through which f factorizes  $/(f = \overline{f} \circ g)$ . Moreover if  $h: \mathbb{C}[x',y']/(x'y'-1) \to B$  is another ring homomorphism such that  $f = h \circ g$ , we have  $h(x') = h(g(x')) = f(x') = \overline{f}(x')$ . Since  $x' \in \mathbb{C}[x',y']/(x'y'-1)$  is invertible (y') being its inverse), we have  $h(y') = h(x'^{-1}) = h(x')^{-1} = f(x')^{-1} = \overline{f}(x')^{-1} = \overline{f}(x'^{-1}) = \overline{f}(y')$ . Thus  $h = \overline{f}$  proving uniqueness of the factorization of f through g. As a conclusion  $g : \mathbb{C}[x'] \to f(x')$ C[x',y']/(x'y'-1) is the localization of  $\mathbb{C}[x']$  with respect to  $\{x'^k, k \ge 0\}$ . So we have a ring isomorphism  $A \simeq \mathbb{C}[x']_{x'}$ . But  $\mathbb{C}[x']$  is factorial and the localization of a

factorial ring is factorial.

When  $k = \mathbb{R}$ . One idea is to use again a polynomial ring with one variable. Euclidean division by the monic polynomial  $x^2 + y^2 - 1$  yields that for any  $f \in \mathbb{R}[x][y]$  ( $\subset \mathbb{R}(x)[y]$ ) there is a unique  $(f_1, f_2) \in \mathbb{R}[x]^2$  such that  $f = f_1(x)y + f_2(x) \mod(x^2 + y^2 - 1)$ . Define  $N : A \to \mathbb{R}[x]$  by  $\overline{f} \mapsto (x^2 - 1)f_1(x)^2 + f_2(x)^2$ . By the above uniqueness it is a well-defined map (not a ring homomorphism at all). Moreover

$$\begin{split} N((f_1(x)y + f_2(x))(g_1(x)y + g_2(x))) &= N(f_1g_1y^2 + (f_1g_2 + f_2g_1)y + f_2g_2) \\ &= N(f_1g_1(y^2 + x^2 - 1 - x^2 + 1) + (f_1g_2 + f_2g_1)y + f_2g_2) \\ &= N((f_1g_2 + f_2g_1)y + (1 - x^2)f_1g_1 + f_2g_2) \\ &= (x^2 - 1)(f_1g_2 + f_2g_1)^2 + ((1 - x^2)f_1g_1 + f_2g_2)^2 \\ &= (x^2 - 1)((f_1g_2)^2 + (f_2g_1)^2 + 2f_1f_2g_1g_2 + (f_1g_1)^2(x^2 - 1)) \\ &- 2f_1f_2g_1g_2) + (f_2g_2)^2 \\ &= N(f_1(x)y + f_2(x))N(g_1(x)y + g_2(x)) \end{split}$$

So N is multiplicative.

We have in A,  $y^2 = 1 - x^2 = (1 - x)(1 + x)$ . If y|(1 - x) in A, then as N is multiplicative  $x^2 - 1 = N(y)|N(1-x) = (1-x)^2$  in  $\mathbb{R}[x]$  which is not true so  $y \nmid (1-x)$ . Likewise  $y \nmid (1+x)$ ,  $(1-x) \nmid y$  and  $(1+x) \nmid y$ .

Let us prove moreover that  $y \in A$  is irreducible: assume y = fg, then  $x^2 - 1 = N(f)N(g)$  in  $\mathbb{R}[x]$ . If  $\deg(N(f)) = 2$  then  $N(g) \in \mathbb{R}^*$  i.e. there is a  $a \in \mathbb{R}^*$  such that g = a in A i.e. g is invertible. Likewise if  $\deg(N(g)) = 2$ , f is invertible. If  $\deg(N(f)) = 1 = \deg(N(g))$ , then  $(\mathbb{R}[x]$  is factorial)  $N(f), N(g) \in \{x-1, x+1\}$ . Assume N(f) = x+1 and write  $f = f_1y+f_2$ ; we have  $(x^2-1)f_1^2 + f_2^2 = N(f) = x+1$  in  $\mathbb{R}[x]$ ; thus  $x+1|f_2^2$  i.e.  $x+1|f_2$  (since x+1 is irreducible) so either  $\deg(f_2^2) \ge 4$  and its leading coefficient is positive or  $f_2 = 0$ . But the leading coefficient of  $(x^2 - 1)f_1^2$  is also positive. But the sum  $(x^2 - 1)f_1^2 + f_2^2$  has degree  $1 = \deg(x+1)$  which is not possible. Using similar arguments for the case N(f) = x-1, we get that y is irreducible.

Thus  $y^2 = (1-x)(x+1)$  gives two distinct (with distinct irreducible elements) decompositions of  $y^2$ ; in particular A is not factorial.

**Exercise 42.** (Extending ring homomorphisms into fields, 3 points)

Since  $(0) \in \operatorname{Spec}(K)$ , the ideal  $\mathfrak{p} := ker(f) = f^{-1}(0)$  is prime; thus  $A/\mathfrak{p}$  is integral,  $\overline{f}: A/\mathfrak{p} \to K$  is injective and f factorizes through  $\overline{f}$ .

Since  $A \hookrightarrow B$  is integral, by the Going-up theorem (Thm 11.33),  $\operatorname{Spec}(B) \twoheadrightarrow \operatorname{Spec}(A)$  is surjective so that there is a  $\mathfrak{q} \in \operatorname{Spec}(B)$  such that  $\mathfrak{q} \cap A = \mathfrak{p}$ . Now the kernel of the composition  $A \hookrightarrow B \to B/\mathfrak{q}$  is  $\mathfrak{q} \cap A = \mathfrak{p}$  so there is an induced injective ring homomorphism  $A/\mathfrak{p} \hookrightarrow B/\mathfrak{q}$  which, by the first step of the proof of the Going-up theorem, is integral.

Of course,  $B/\mathfrak{q}$  is integral so we can look at the natural injection  $B/\mathfrak{q} \hookrightarrow Q(B/\mathfrak{q})$ . We have an induced injection  $A/\mathfrak{p} \hookrightarrow B/\mathfrak{q} \hookrightarrow Q(B/\mathfrak{q})$  which, by the universal property of the localization (or of the fraction field) factorizes through  $A/\mathfrak{p} \hookrightarrow Q(A/\mathfrak{p})$ . Let us prove that the field extension  $Q(B/\mathfrak{q})/Q(A/\mathfrak{p})$  is algebraic: Let  $\frac{b}{d} \in Q(B/\mathfrak{q})$  then as  $B/\mathfrak{q}$  is integral over  $A/\mathfrak{p}$ ,  $A/\mathfrak{p}[d]$  is a finite  $A/\mathfrak{p}$ -module, hence  $Q(A/\mathfrak{p})[d] \subset Q(B/\mathfrak{q})$  is a finite dimensional vector space. So  $d \in Q(B/\mathfrak{q})$  is algebraic over  $Q(A/\mathfrak{p})[d] \subset Q(B/\mathfrak{q})$  is a finite the proof of step 3 of the proof of the Going-up theorem). Thus  $\frac{b}{d} \in Q(A/\mathfrak{p})[b,d] = Q(A/\mathfrak{p})[d][b] \subset Q(B/\mathfrak{q})$  but since b is integral over  $A/\mathfrak{p}$  it is in particular algebraic over  $Q(A/\mathfrak{p})[d][b] \subset Q(B/\mathfrak{q})$  is a finite dimensional  $Q(A/\mathfrak{p})[d][b]$  is a finite  $Q(A/\mathfrak{p})[d][b]$ -module hence  $Q(A/\mathfrak{p})[b,d]$  is a finite dimensional  $Q(A/\mathfrak{p})[d][b]$  is a finite  $Q(A/\mathfrak{p})[d][b]$ -module hence  $Q(A/\mathfrak{p})[b,d]$  is a finite dimensional  $Q(A/\mathfrak{p})[d][b]$  is a finite  $Q(A/\mathfrak{p})[d][b]$ -module hence  $Q(A/\mathfrak{p})[b,d]$  is a finite dimensional  $Q(A/\mathfrak{p})[d][b]$  is a finite  $Q(A/\mathfrak{p})[d][b]$ -module hence  $Q(A/\mathfrak{p})[b,d]$  is a finite dimensional  $Q(A/\mathfrak{p})[d][b]$  is a finite  $Q(A/\mathfrak{p})[d][b]$ -module hence  $Q(A/\mathfrak{p})[b,d]$  is a finite dimensional  $Q(A/\mathfrak{p})[d][b]$  is a finite  $Q(A/\mathfrak{p})[d][b]$ -module hence  $Q(A/\mathfrak{p})[b,d]$  is a finite dimensional  $Q(A/\mathfrak{p})[b,d]$  is a finite dimensional consequence  $\frac{b}{d} \in Q(A/\mathfrak{p})[b,d]$  is a finite dimensional consequence  $\frac{b}{d} \in Q(A/\mathfrak{p})[b,$ 

Now by the universal property of localization, the injective ring homomorphism  $\overline{f} : A/\mathfrak{p} \hookrightarrow K$ factorizes through  $A/\mathfrak{p} \hookrightarrow Q(A/\mathfrak{p})$  so we get a field extension  $\overline{\overline{f}} : Q(A/\mathfrak{p}) \hookrightarrow K$ . Since K is algebraically closed and  $Q(B/\mathfrak{q})/Q(A/\mathfrak{p})$  is algebraic, by a classical result on field extension, there is a filed extension  $q : Q(B/\mathfrak{q}) \hookrightarrow K$  extending  $\overline{\overline{f}}$ . Thus we have a commutative diagram:



(where the the composition of the map in the first line is equal to f) which gives us the extension.