Solutions for exercises, Algebra I (Commutative Algebra) - Week 9

Exercise 43. (Noether normalization over rings, 3 points)
Notice that A, being a subring of an integral domain, is a integral domain.
By assumption there is a surjective homomorphism of A-algebras: $f: A\left[x_{1}, \ldots, x_{n}\right] \rightarrow B$. We can localize f with respect to the multiplicative set $S=A \backslash\{0\}$ (i.e. tensor with $Q(A)$) to get a surjective homomorphism of $Q(A)$ algebras: $S^{-1}(f): Q(A)\left[x_{1}, \ldots, x_{n}\right] \rightarrow S^{-1} B$. In particular, $S^{-1} B$ is a $Q(A)$-algebra of finite type. Thus by Noether normalization theorem there are $b_{1}, \ldots, b_{k} \in S^{-1} B$ such that the homomorphism of $Q(A)$-algebras $g: Q(A)\left[X_{1}, \ldots, X_{k}\right] \rightarrow$ $S^{-1} B, X_{i} \mapsto \frac{b_{i}}{a_{i}}$ gives an isomorphism $Q(A)\left[X_{1}, \ldots, X_{k}\right] \simeq Q(A)\left[\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{k}}{a_{k}}\right]$ and $S^{-1} B$ is a finite $Q(A)\left[\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{k}}{a_{k}}\right]$-module. In particular $S^{-1} B$ is integral over $Q(A)\left[\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{k}}{a_{k}}\right]$.
Set $c_{i}=f\left(x_{i}\right)$ for $i=1, \ldots, n$. As $S^{-1} B$ is integral over $Q(A)\left[\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{k}}{a_{k}}\right]$, for any $i, \frac{c_{i}}{1} \in S^{-1} B$ is annihilated by a (monic) polynomial $P_{c_{i}} \in Q(A)\left[\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{k}}{a_{k}}\right][x]$. If $0 \neq a \in A$ is the product of $\left(a_{1} \cdots a_{k}\right)^{d}$ (where $d=\max _{i}\left(\operatorname{deg}\left(P_{c_{i}}\right)\right)$) by the product of all the denominators of the coefficients of the P_{i} 's, we have that $0 \neq a P_{c_{i}} \in A\left[b_{1}, \ldots, b_{k}\right][x]$ and $a P_{c_{i}}\left(c_{i}\right)=0$. Then $P_{c_{i}} \in A_{a}\left[b_{1}, \ldots, b_{k}\right][x]$ for any i i.e. c_{i} is integral over $A_{a}\left[b_{1}, \ldots, b_{k}\right]$ for any i i.e. $A_{a}\left[b_{1}, \ldots, b_{k}\right]\left[c_{1}, \ldots, c_{n}\right]$ is a finite $A_{a}\left[b_{1}, \ldots, b_{k}\right]$-module. Tensoring f with A_{a}, we see that $A_{a}\left[c_{1}, \ldots, c_{n}\right]=B \otimes_{A} A_{a} \simeq B_{a}$; a fortiori $A_{a}\left[b_{1}, \ldots, b_{k}\right]\left[c_{1}, \ldots, c_{n}\right] \simeq B_{a}$. Thus B_{a} is integral over $A_{a}\left[b_{1}, \ldots, b_{k}\right]$ and since $\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{k}}{a_{k}}$ were algebraically independent over $Q(A)$, b_{1}, \ldots, b_{k} are algebraically independent over A (indeed, because A is an integral domain, $\left.\operatorname{ker}\left(A\left[X_{1}, \ldots, X_{k}\right] \rightarrow A\left[b_{1}, \ldots, b_{k}\right]\right) \hookrightarrow \operatorname{ker}\left(Q(A)\left[X_{1}, \ldots, X_{k}\right] \rightarrow Q(A)\left[\frac{b_{1}}{a_{1}}, \ldots, \frac{b_{k}}{a_{k}}\right]\right)=\{0\}\right)$.

Exercise 44. (Finite type \mathbb{Z}-algebras are Jacobson, 3 points)
Notice first that the quotient of a Jacobson ring is Jacobson: indeed the ideals of A / \mathfrak{a} correspond exactly to the ideals of A containing \mathfrak{a}. So if $\mathfrak{q} \in \operatorname{Spec}(A / \mathfrak{a})$ then $\mathfrak{p}=\mathfrak{q}^{c} \in V(\mathfrak{a})$ can be written $\mathfrak{p}=\cap_{\mathfrak{p} \subseteq \mathfrak{m} \in \operatorname{MaxSpec}(A)} \mathfrak{m}$; thus passing to the quotient we get $\mathfrak{q}=\cap_{\mathfrak{q} \subsetneq \mathfrak{m} \in \operatorname{MaxSpec}(A)} \mathfrak{m}$ (since $A / \mathfrak{a} / \mathfrak{m} / \mathfrak{a} \simeq A / \mathfrak{m}$ a field) .

Assume first that B is integral over A and (A Jacobson). By the above observation, we can assume that $A \subset B$ with A Jacobson and B integral over A. Let $\mathfrak{q} \in \operatorname{Spec}(B)$ (not maximal) and $\operatorname{Spec}(A) \ni \mathfrak{p}=\mathfrak{q}^{c}=A \cap \mathfrak{q}$ (not maximal neither by the $4^{t h}$ step of the proof of the Going-up theorem). By hypothesis $\mathfrak{p}=\cap_{\mathfrak{p} \subsetneq \mathfrak{m} \in \operatorname{MaxSpec}(A)} \mathfrak{m}$. Since B is integral over A, by the Going-up theorem, for any $\mathfrak{p} \subset \mathfrak{m}$ there is a $\mathfrak{q} \subset \mathfrak{n} \in \operatorname{Spec}(B)$ such that $\mathfrak{n} \cap A=\mathfrak{m}$. By the first step of the proof the Going-up theorem, B / \mathfrak{n} is integral over A / \mathfrak{m}; and by the third step of the same proof, since A / \mathfrak{m} is a field, B / \mathfrak{n} is also a field i.e. such a \mathfrak{n} is maximal. Set $\mathfrak{b}=\cap_{\mathfrak{n} \in \operatorname{MaxSpec}(B), \mathfrak{q} \subseteq \mathfrak{n} \text { and } \mathfrak{p} \subset \mathfrak{n} \cap A \in \operatorname{MaxSpec}(A)} \mathfrak{n}=\cap_{\mathfrak{n} \in \operatorname{MaxSpec}(B), \mathfrak{q} \subseteq \mathfrak{n}} \mathfrak{n}$ (by the $4^{\text {th }}$-step of the Going-up theorem $\mathfrak{n} \cap A$ is maximal). We have $\mathfrak{q} \subset \mathfrak{b}$ and $\mathfrak{b} \cap A=\cap_{\mathfrak{n} \in \operatorname{MaxSpec}(B), \mathfrak{q} \subset \mathfrak{n}} \mathfrak{n} \cap A=$ $\cap_{\mathfrak{p} \subseteq \mathfrak{m} \in \operatorname{MaxSpec}(A)} \mathfrak{m}=\mathfrak{p}=\mathfrak{q} \cap A$. We adapt the proof of the $5^{\text {th }}$ step of the proof of the Going-up to conclude that $\mathfrak{q}=\mathfrak{b}=\cap_{\mathfrak{n} \in \operatorname{MaxSpec}(B), \mathfrak{q} \subseteq \mathfrak{n}} \mathfrak{n}$. Thus B is Jacobson.

Let us prove this characterization of Jacobson ring: A is Jacobson if and only if for any prime $\mathfrak{p} \subset A$ for which there is a $0 \neq a \in A / \mathfrak{p}$ such that $(A / \mathfrak{p})_{a}$ is a field, then A / \mathfrak{p} is a field: assume A is Jacobson. Then A / \mathfrak{p} is an integral domain which is Jacobson (first remark). If

[^0]$(A / \mathfrak{p})_{a}$ is a field we have $(0)=\operatorname{Spec}\left((A / \mathfrak{p})_{a}\right)=\{\mathfrak{q} \in \operatorname{Spec}(A / \mathfrak{p}), a \notin \mathfrak{q}\}$ so if A / \mathfrak{p} contains a non-zero prime ideal we have $a \in \cap_{(0) \neq \mathfrak{q}} \mathfrak{q}$ but since A / \mathfrak{p} is Jacobson (and an integral domain) $\cap_{(0) \neq \mathfrak{q}} \mathfrak{q}=\mathfrak{N}_{A / \mathfrak{p}}=(0)$ i.e. $a=0$. Contradiction. So $\operatorname{Spec}(A / \mathfrak{p})=(0)$ i.e. A / \mathfrak{p} is a field.
Conversely if $\mathfrak{p} \in \operatorname{Spec}(A)$, denote $\mathfrak{a}=\cap_{\mathfrak{p} \subseteq \mathfrak{m} \in \operatorname{MaxSpec}(A)} \mathfrak{m}$. If $\mathfrak{p} \subsetneq \mathfrak{a}$, pick a $a \in \mathfrak{a} \backslash \mathfrak{p}$; let us consider a prime ideal \mathfrak{q} which is maximal among those containing \mathfrak{p} and not containing a. By definition of $\mathfrak{a}, \mathfrak{q}$ is not a maximal ideal of A but $\left\{a^{n}, n \geq 0\right\}^{-1} \mathfrak{q}$ is a maximal ideal of A_{a}. So $A_{a} /\left\{a^{n}, n \geq 0\right\}^{-1} \mathfrak{q} \simeq(A / \mathfrak{q})_{a}$ is a field. Thus A / \mathfrak{q} is a field i.e. \mathfrak{q} is maximal. Contradiction. So $\mathfrak{p}=\mathfrak{a}$.

Let us prove that if A is Jacobson then any ring which is generated by one element as a A-algebra (i.e. a quotient of $A[x]$) is also Jacobson: let $C=A[x] / \mathfrak{a}$ be such a ring and let $\mathfrak{p} \in V(\mathfrak{a}) \subset \operatorname{Spec}(A[x])$, and consider the quotient homomorphism $f: C \rightarrow C / \mathfrak{p} \simeq A[x] / \mathfrak{p}$. We must show that if $0 \neq a \in A[x] / \mathfrak{p}$ is such that $(A / \mathfrak{p})_{a}$ is a field then (A / \mathfrak{p}) is also a field. Let us denote $B=f(A) \subset A[x] / \mathfrak{p}$. By the first remark B is Jacobson and an integral domain (as subring of an integral domain) so $\cap_{\mathfrak{m} \in \operatorname{MaxSpec}(B)} \mathfrak{m}=(0)$. Look at $B[x] \rightarrow A[x] / \mathfrak{p}(x \mapsto \bar{x})$. If it is an isomorphism, and if $0 \neq a \in A[x] / \mathfrak{p}$ is such that $(A / \mathfrak{p})_{a}$ is a field, then $B[x]_{\bar{a}}$ is a field. But then $Q(B)[x]_{\bar{a}}$ is also a field. But looking at the description of the prime ideals of the principal ideal domain $Q(B)[x]$ we see that it is Jacobson; thus the fact that $Q(B)[x]_{\bar{a}}$ is a field implies that $Q(B)[x]$ is a field. Contradiction. So $B[x] \rightarrow A[x] / \mathfrak{p}$ is not an isomorphism and $A[x] / \mathfrak{p} \simeq B[x] / \mathfrak{q}$ for a non-zero prime ideal $(\mathfrak{q}=\operatorname{ker}(B[x] \rightarrow A[x] / \mathfrak{p})$ and $A[x] / \mathfrak{p}$ is an integral domain). If $0 \neq a \in B[x] / \mathfrak{q}$ is such that $(B[x] / \mathfrak{q})_{a}$ is a field.
If $g \in \mathfrak{q}$ is a non-zero polynomial with leading coefficient $d \in B$, then \bar{x} is integral over B_{d}. So $B[x] / \mathfrak{q}$ is integral over B_{d}. In particular as $a \in B[x] / \mathfrak{q}$, there is a monic polynomial $h=y^{n}+h_{1} y^{n-1}+\cdots+h_{n-1} \in B_{d}[y]$ (with $h(0) \neq 0$ because B is an integral domain) such that $h(a)=0$. So dividing by $h_{n-1} a^{n}$ we find $a^{-n}+\frac{h_{n-2}}{h_{n-1}} a^{-(n-1)}+\cdots+\frac{1}{h_{n-1}}=0$ i.e. a^{-1} is integral over $B_{h_{n-1} d}$. So $(B[x] / \mathfrak{q})_{a}$ is integral over $B_{h_{n-1} d}$. By the $3^{r d}$ step of the proof of the Going-up theorem, $B_{h_{n-1} d}$ is also a field. But since B is Jacobson, (and (0) is prime) B is a field. In particular $B=B_{h n-1 d}$. So $B[x] / \mathfrak{q} \subset(B[x] / \mathfrak{q})_{a}$ (since $B[x] / \mathfrak{q}$ is an integral domain) is integral over the field B. Again by the $3^{r d}$ step of the proof of the Going-up theorem, $B[x] / \mathfrak{q}$ is a field. So $B[x] / \mathfrak{q} \simeq A[x] / \mathfrak{p}$ is Jacobson. In particular $(0)=\cap_{\mathfrak{m} \in \operatorname{MaxSpec}(A[x] / \mathfrak{p})}^{\mathfrak{m}}$ i.e. $\mathfrak{p} / \mathfrak{a}=\cap_{\mathfrak{p} / \mathfrak{a} \subset \mathfrak{m} \in \operatorname{MaxSpec}(C)} \mathfrak{m}$.

For an A-algebra generated by finitely many elements, we proceed by induction.

Exercise 45. (Finite fields, 3 points)
Assume k is a field which is a finitely generated \mathbb{Z}-algebra. If the natural homomorphism is injective $\mathbb{Z} \hookrightarrow k$ then by the universal property of localization with have a field extension $\mathbb{Q} \hookrightarrow k$ and k is a fortiori a \mathbb{Q}-algebra of finite type. By Noether normalization, there are a $\ell \geq 0$ and an injective homomorphism $\mathbb{Q}\left[x_{1}, \ldots x_{\ell}\right] \hookrightarrow k$ such that k is a finite $\mathbb{Q}\left[x_{1}, \ldots, x_{\ell}\right]$. By Corollary $11.11 k$ is integral over $\mathbb{Q}\left[x_{1}, \ldots, x_{\ell}\right]$. By the $3^{r d}$ step of the proof of the Goingup theorem $\mathbb{Q}\left[x_{1}, \ldots, x_{\ell}\right]$ is a field i.e. $\ell=0$. Thus k is a finite field extension of \mathbb{Q} (i.e. a number field).
Let us prove that a number field cannot be a finitely generated \mathbb{Z}-algebra: let $f: \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \rightarrow$ k be a ring homomorphism and let us denote $\alpha_{i}=f\left(x_{i}\right) \in k$. Let $\ell \in \mathbb{Z}_{>0}$ be the product of all the denominators of the minimal polynomials of α_{i} over \mathbb{Q}. Then the minimal polynomials of the α_{i} 's are in $\mathbb{Z}_{\ell}[x]$ i.e. k is integral over \mathbb{Z}_{ℓ}. So by the $3^{r d}$ step of the proof of the Goingup theorem \mathbb{Z}_{ℓ} is a field; which is impossible (any prime not dividing ℓ is not invertible in \mathbb{Z}_{ℓ}).

So the homomorphism $\mathbb{Z} \rightarrow k$ is not injective; thus there is a prime number $p>0$, such that the homomorphism factors through \mathbb{F}_{p}. So k is in particular a \mathbb{F}_{p}-algebra of finite type. By Noether normalization k is a finite module over a polynomial ring over \mathbb{F}_{p}, in particular it is integral over a polynomial ring. Again by the $3^{r d}$ step of the proof of the Going-up theorem, k is a finite field extension of \mathbb{F}_{p} i.e. a finite field.

Exercise 46. (Family of polynomials without common zeros, 3 points)
Using Remark 12.11: since $Z\left(\left(f_{1}, \ldots, f_{k}\right)\right)=\emptyset$ we have $\sqrt{\left(f_{1}, \ldots, f_{k}\right)}=I\left(Z\left(\left(f_{1}, \ldots, f_{k}\right)\right)\right)=$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. So $1 \in \sqrt{\left(f_{1}, \ldots, f_{k}\right)}$ i.e. $1^{n}=1 \in\left(f_{1}, \ldots, f_{k}\right) \otimes \mathbb{C}$.
If $\left(f_{1}, \ldots, f_{k}\right)=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ we are done. So we can assume that $\left(f_{1}, \ldots, f_{k}\right) \subsetneq \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ there is a maximal ideal $\left(f_{1}, \ldots, f_{k}\right) \subset \mathfrak{m}$ containing it. We have an exact sequence:

$$
0 \rightarrow \mathfrak{m} \rightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \rightarrow k \rightarrow 0
$$

where k is the quotient field. The sequence also shows that k is finitely generated \mathbb{Z}-algebra hence, by the previous exercise, k is a finite field, of characteristic, say $p>0$.
Since \mathbb{C} is a flat \mathbb{Z}-algebra (we have seen that \mathbb{Q} is a \mathbb{Z}-algebra and \mathbb{C} is a \mathbb{Q}-vector space (i.e. a free \mathbb{Q}-module) , we have $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=\left(f_{1}, \ldots, f_{k}\right) \otimes \mathbb{C} \subset \mathfrak{m} \otimes \mathbb{C}$. So we get $\left(f_{1}, \ldots, f_{k}\right) \otimes \mathbb{Q}=\mathfrak{m} \otimes \mathbb{Q}$ thus any element of $\mathfrak{m} /\left(f_{1}, \ldots, f_{k}\right)$ is annihilated by an integers.

Now, $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is sent to 0 in k i.e. $p \in \mathfrak{m}$. As $\mathfrak{m} /\left(f_{1}, \ldots, f_{k}\right)$ is torsion, there is a $d \in \mathbb{Z} \backslash\{0\}$, such that $0 \neq d p \in\left(f_{1}, \ldots, f_{k}\right)$; which proves the result.

The result does not hold if \mathbb{C} is replaced by \mathbb{R} : for example $x^{2}+1 \in \mathbb{Z}[x]$ has no real zero but the principal ideal $\left(x^{2}+1\right)$ does not contain a non-zero integer (for degree reason).

Exercise 47. (Noether normalization via linear projections, 4 points)
We notice that when x is fixed $x=a$, the system of equations $y-z^{2}=0 ; a z-y^{2}=0$ transforms into $y-z^{2}=0 ;\left(a-z^{3}\right) z=0$ which admits finitely many solutions. So let us consider the projection on the x-axis.
Let us denote $A=k[x, y, z] / \mathfrak{a}$ and consider the composition $f: k[x] \rightarrow A$ of the inclusion $k[x] \hookrightarrow k[x, y, z]$ and the canonical projection $k[x, y, z] \rightarrow k[x, y, z] / \mathfrak{a}$.
If $P \in \operatorname{ker}(f)$ then $P \in\left(y-z^{2}, x z-y^{2}\right)$ i.e. $P=\left(y-z^{2}\right) p(x, y, z)+\left(x z-y^{2}\right) q(x, y, z)$ for some $p, q \in k[x, y, z]$. But looking at $y=0=z$ we get $P=0$ i.e. f is injective.
We claim that $1, z, z^{2}, z^{3}$ generate A as a $k[x]$-module: because of the surjection $k[x][y, z] \rightarrow A$, y, z generate A as a $k[x]$-algebra. In $A, \bar{y}=\bar{z}^{2}$ thus \bar{z} generates A as a $k[x]$-algebra. Moreover $\bar{z}^{4}=\overline{x z}$ in A; thus any polynomial $p \in k[x, y, z]$ is in the class modulo \mathfrak{a} of a polynomial whose monomials are of the form $x^{k} z^{i}, k \in \mathbb{N}, i \in\{0,1,2,3\}$; which proves the claim.
So A is a finite $k[x]$-algebra and as such it is integral over $k[x]$ (Corollary 11.11). So by the Going-up theorem (Theorem 11.33), $\varphi: \operatorname{Spec}(A)=V(\mathfrak{a}) \rightarrow \operatorname{Spec}(k[x])=\mathbb{A}_{k}^{1}$ is surjective and by Remark 11.35 (i) it is closed (alternatively remark that φ has the going-up property by going-up theorem and since A is Noetherian (as quotient of the Noetherian ring $k[x, y, z]$), Exercise 38 yields that φ is closed).
For $\mathfrak{p} \in \operatorname{Spec}(k[x])$, we have seen in (the solution of) Exercise 37 (ii) that the fiber $\varphi^{-1}(\mathfrak{p})$ of φ over \mathfrak{p} is isomorphic to $\operatorname{Spec}\left(A \otimes_{k[x]} Q(k[x] / \mathfrak{p})\right)$. Since A is a finite $k[x]$-module (i.e. there is a surjective homomorphism of $k[x]$-modules $\left.k[x]^{4} \rightarrow A\right), A \otimes Q(k[x] / \mathfrak{p})$ is a finite $Q(k[x] / \mathfrak{p})$-algebra in particular $A \otimes Q(k[x] / \mathfrak{p})$ is a finite-dimensional $Q(k[x] / \mathfrak{p})$-vector space.

Any prime ideal of $A \otimes Q(k[x] / \mathfrak{p})$ is maximal: a prime ideal $\mathfrak{q} \in \operatorname{Spec}(A \otimes Q(k[x] / \mathfrak{p}))$ is in particular a $Q(k[x] / \mathfrak{p})$-vector subspace of $A \otimes Q(k[x] / \mathfrak{p})$ so the integral domain $B=$ $A \otimes Q(k[x] / \mathfrak{p}) / \mathfrak{q}$ is also a finite-dimensional $Q(k[x] / \mathfrak{p})$-vector space (as quotient of finitedimensional vector space). Now take $x \in B \backslash\{0\}$ and consider the $Q(k[x] / \mathfrak{p})$-linear map $m_{x}: B \rightarrow B, b \mapsto b x$. Since B is an integral domain, m_{x} is injective and since B is finitedimensional, the linear map m_{x} is also surjective. In particular $1 \in \operatorname{im}\left(m_{x}\right)$ i.e. there is a $y \in B$ such that $y x=1$ i.e. x is a unit. So B is a field i.e. \mathfrak{q} is maximal.

As $A \otimes Q(k[x] / \mathfrak{p})$ is a finite-dimensional $Q(k[x] / \mathfrak{p})$-vector space (and ideals of $A \otimes Q(k[x] / \mathfrak{p})$ are in particular $Q(k[x] / \mathfrak{p})$-vector subspaces), $A \otimes Q(k[x] / \mathfrak{p})$ is Noetherian. So as seen in (solution
for Exercise 38) $\operatorname{Spec}(A \otimes Q(k[x] / \mathfrak{p}))$ can be written as a finite union $\operatorname{Spec}(A \otimes Q(k[x] / \mathfrak{p}))=$ $\cup_{i=1}^{n} V\left(\mathfrak{q}_{i}\right)$ where $\mathfrak{q}_{i} \in \operatorname{Spec}(A \otimes Q(k[x] / \mathfrak{p}))$. Since any prime ideal in $A \otimes Q(k[x] / \mathfrak{p})$ is maximal we get $\operatorname{Spec}(A \otimes Q(k[x] / \mathfrak{p}))=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{n}\right\}$ i.e. any fiber of φ is finite.

Exercise 48. (Valuation rings, 3 points)

1. Since A is a subring of a field, it is an integral domain and since $A \subset K$ the universal property of localization gives the inclusions $A \subset Q(A) \subset K$. Now let $a \in K \subset L$; then either $a \in B$, in which case $a \in B \cap K=A$, or $a^{-1} \in B$, in which case $a^{-1} \in B \cap K=A$. Since $Q(A) \subset K$, this proves that the same property holds for $Q(A)$ i.e. that A is a valuation ring. It also proves that $Q(A) \subset K$ is surjective (hence an isomorphism) since if $a \in K \backslash A$ then $a^{-1} \in A$; so $a=\left(a^{-1}\right)^{-1} \in Q(A)$.
2. Assume A is a field and L / K is algebraic. By the first question we get $A=Q(A)=K$. In particular $K \subset B$. Let $b \in B$; as $b^{-1} \in L$ is algebraic over K, take $f(x)=x^{n}+$ $a_{1} x^{n-1}+\cdots+a_{n-1} \in K[x] \backslash\{0\}$ such that $f\left(b^{-1}\right)=0$. Taking the product of the equality $b^{-n}=-\left(a_{1} b^{-(n-1)}+\cdots+a_{n-1}\right) \in L$ by b^{n-1}, we get $b^{-1}=-\left(a_{1}+a_{2} b+\cdots+a_{n-1} b^{n-1}\right)$ i.e. $(K \subset B) b^{-1} \in B$. Therefore B is a field.

[^0]: Solutions to be handed in before Tuesday June 15, 4pm.

