
THE ISOMORPHISM CONJECTURE FOR SOLVABLE GROUPS IN
WALDHAUSEN’S A-THEORY

F. THOMAS FARRELL AND XIAOLEI WU

Abstract. We prove the A-theoretic Isomorphism Conjecture with coefficients and finite

wreath products for solvable groups.

1. introduction

Recently, there has been a growing interest in applying techniques used to prove the
Isomorphism Conjecture in K- and L- theory (see for example [1, 2, 3, 4, 5, 6]) to the
A-theory setting. In particular, Ullman–Winges generalized Farrell-Hsiang method [3, 9]
to the A-theory setting and used it to verify the A-theory Isomorphism Conjecture for vir-
tually poly-Z-groups [14]. Later, together with Enkelmann– Lück–Pieper, they proved if a
group is homotopy transfer reducible, then it satisfies the A-theory Isomorphism Conjec-
ture [8]. In particular, they proved the conjecture for hyperbolic and CAT(0) groups.

Following [14, Conjecture 7.1](see also [8, Conjecture 2.12]), we formulate the Isomor-
phism Conjecture in A-theory as follows. Let G be a discrete group and W be a connected
G-CW-complex with free G-action. LetA−∞(W) be the non-connective delooping of Wald-
hausen’s algebraic K-theory of W over the orbit category. The Isomorphism Conjecture

predicts that the assembly map

(1.1) HG
n (EVCycG;A−∞W )→ HG

n (G/G;A−∞W ) � πnA
−∞(G\W),

which is induced by the projection map EVCycG → G/G from the classifying space for
virtually cyclic subgroups to a point, is an isomorphism for all n ∈ Z. We say the A-theory
isomorphism Conjecture with coefficients holds for G if it holds for any such W. We say
the A-theory Isomorphism Conjecture with coefficients and finite wreath products holds
for G if the conjecture with coefficients holds for any wreath products G o F, where F is a
finite group. Our main theorem can now be stated as follows.

Theorem 1.1. The Isomorphism Conjecture in A-theory with coefficients and finite wreath

products holds for all solvable groups.
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Remark 1.2. As pointed out in [8, Remark 1.4], our result combined with [8, Theorem
1.1 + Corollary 6.6] and arguments in [12, 13] implies that the Isomorphism Conjecture

in A-theory with coefficients and finite wreath products holds for any (not necessarily co-

compact) lattice in a second countable locally compact Hausdorff group with finitely many

path components, the groups GLn(Q) and GLn(F(t)) for F(t) the function field over a finite

field F, and all S -arithmetic groups.

Remark 1.3. Theorem 1.1 combined with [8, Theorem 1.1] and arguments due to Gandini–

Meinert–Rüping in [11] imply that any fundamental groups of graphs of abelian groups

satisfy the Isomorphism Conjecture in A-theory with coefficients and finite wreath prod-

ucts. In particular all Baumslag-Solitar groups satisfy the conjecture.

Remark 1.4. Independently, Kasprowski–Ullmann–Wegner–Winges [7] also obtained a

proof for Theorem 1.1.

Our proof is based on Wegner’s paper [15]. The proof can not be directly taken over due
to the fact that one has to change hyper-elementary subgroups in Farrell–Hsiang method
(for K- and L- theory [3]) to Dress subgroups (for A-theory [14]). The paper is organized
as follows. In Section 2, we generalize Wegner’s Farrell-Hsiang-Jones group to the A-
theory setting and prove it satisfies the A-theory Isomorphism Conjecture. In section 3,
we embed the group Z[w, 1

w ] ow Z* (we only need to study these groups due to Lemma
4.1) into a slightly bigger group and study finite quotients of it. We show that the Dress
subgroups inside these finite quotients have large index. In the last section, we prove our
main theorem based on work of Wegner [15].

In this paper, when we say a group satisfies the full Isomorphism Conjecture in A-
theory we mean it satisfies the Isomorphism Conjecture with coefficients and finite wreath
products in A-theory.

Acknowledgements. The second author is supported by the Max Planck Institute for
Mathematics at Bonn. We want to thank Guoliang Yu for inviting us to visit the Shanghai
Center for Mathematical Sciences, where this project was initiated. The second author also
want to thank Yang Su for providing accommodation support during his visit in Beijing and
Malte Pieper for very helpful discussions on [8, Section 6-7].

2. Dress–Farrell–Hsiang–Jones group

In this section, we generalize Wegner’s Farrell–Hsiang–Jones group to Dress-Farrell–
Hsiang–Jones group and show that it satisfies the Isomorphism Conjecture in A-theory.
Dress–Farrell–Hsiang–Jones group is a combination of the Dress–Farrell–Hsiang group
[14] and homotopy transfer reducible group [8, Defintion 6.2].

*multiplication in Z[w, 1
w ]owZ is given by (x1, y1)(x2, y2) = (x1+wy1 x2, y1+y2), where (xi, yi) ∈ Z[w, 1

w ]owZ.
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2.1. Dress-Farrell-Hsiang group. We follow Ullmann and Winges’ terminology [14],
define Dress group as follows,

Definition 2.1. A finite group D is a Dress group if there are primes p1 and p2 and a

normal series D1 � D2 � D such that D1 is a p1-group, D2/D1 is cyclic and D/D2 is a

p2-group.

Note that the primes p1 and p2 in Definition 2.1 need not be distinct.

Lemma 2.2. In the definition of Dress group, we can always assume the order satisfies

(|D1|, |D2/D1|) = (|D/D2|, |D2/D1|) = 1.

In particular D2 � D1 o Z/|D2/D1|.

Proof We first show we can assume (|D1|, |D2/D1|) = 1. Suppose (|D1|, |D2/D1|) , 1,
then it must be a power of p1 since D1 is a p1-group. Assume (|D1|, |D2/D1|) = pk

1 for
some k ≥ 1 and let the projection from D2 to D2/D1 by π1. Then D′1 = π−1

1 ( |D2/D1 |

pk
1

D2/D1)
is a normal subgroup of D2 such that (|D′1|, |D2/D′1|) = 1, D′1 is a p1-group, D2/D′1 is cyclic.
Since D2/D′1 is cyclic and (|D′1|, |D2/D′1|) = 1, the projection map D2 → D2/D′1 splits and
we have D2 � D′1 o Z/|D2/D′1|.

Now we assume D2 � D1 o Z/|D2/D1| and (|D1|, |D2/D1|) = 1. Note that D1 is a
characteristic subgroup of D2. Hence it is a normal subgroup of D. We have the following
short exact sequence:

1 −−−−−−→ D2/D1 −−−−−−→ D/D1 −−−−−−→ D/D2 −−−−−−→ 1

Now D2/D1 is a cyclic group and D/D2 is a p2-group. If (|D/D2|, |D2/D1|) , 1, then,
(|D/D2|, |D2/D1|) = pl

2 for some l > 0. This means |D2/D1| = pl
2s where (p2, s) = 1.

Now |D2/D1| = Z/(pl
2s) � Z/pl

2 × Z/s. Since Z/pl
2 and Z/s are characteristic subgroup of

Z/(pl
2s), we have a characteristic subgroup of order s in D2/D1 which is normal in D/D2.

Let the corresponding group in D2 be D′2, then we would have (|D/D′2|, |D
′
2/D1|) = 1. The

new D′2 is a subgroup of D2 which also has the property that (D′1,D
′
2/D

′
1) = 1 for the

corresponding D′1 constructed in the first paragraph.
�

Recall the definition of the `1-metric on a simplicial complex. If X is a simplicial
complex and ξ =

∑
x ξx · x, η =

∑
x ηx · x are points in X, this metric is given by d`

1
(ξ, η) =∑

x|ξx − ηx|. All simplicial complexes we consider are equipped with this metric.
We call a generating set S of a group G symmetric if s ∈ S implies s−1 ∈ S . The

following group is defined by Ullmann and Winges in [14, Section 1].

Definition 2.3. Let G be a group and S be a symmetric, finite generating set of G. Let F

be a family of subgroups of G.
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Call (G, S ) a Dress–Farrell–Hsiang group with respect to F if there exists N ∈ N such

that for every ε > 0 there is an epimorphism π : G � F onto a finite group F such that

the following holds: For every Dress subgroup D ⊂ F, there are a D := π−1(D)-simplicial

complex ED of dimension at most N whose isotropy groups lie in F , and a D-equivariant

map φD : G → ED such that d`
1
(φD(g), φD(g′)) ≤ ε whenever g−1g′ ∈ S .

Ullmann and Winges proves the following [14, Theorem 7.4].

Theorem 2.4. Let G be a discrete group. Suppose that there is a symmetric, finite generat-

ing set S ⊂ G and a family of subgroups F of G such that (G, S ) is a Dress–Farrell–Hsiang

group with respect to F . Then G satisfies the Isomorphism Conjecture in A-theory with

coefficients with respect to F .

2.2. Homotopy transfer reducible groups.

Definition 2.5. [8, Definition 6.1] A homotopy coherent G-action of a group G on a topo-

logical space X is a continuous map

Ψ :
∞∐
j=0

((G × [0, 1]) j ×G × X)→ X

with the following properties:

Ψ(γk, tk, . . . , γ1, t1, γ0, x) =



Ψ(. . . , γ j,Ψ(γ j−1, . . . , x)) t j = 0

Ψ(. . . , γ jγ j−1, . . . , x) t j = 1

Ψ(γk, . . . , γ2, t2, γ1, x) γ0 = e

Ψ(γk, . . . , t j+1t j, . . . , γ0, x) γ j = e, 1 ≤ j < k

Ψ(γk−1, tk−1, . . . , t1, γ0, x) γk = e

x γ0 = e, k = 0

Definition 2.6. [8, Definition 6.8] Let (X, dX) be a metric space, Ψ a homotopy coherent

G-action on X, and S ⊂ G a finite subset containing the trivial element. Let k ∈ N and

Λ > 0. Define

dS ,k,Λ((x, g), (y, h)) ∈ [0,∞]

to be the infimum over the numbers

l +
∑

i

Λ · dX(xi, zi),

where the infimum is taken over all l ∈ N, x0, . . . , xl, z0, . . . , zl ∈ X and a1, . . . , al, b1, . . . , bl ∈

S such that

(a) x0 = x and zl = y;

(b) ga−1
1 b1 . . . a−1

l bl = h;
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(c) for each 1 ≤ i ≤ l there are elements r0, . . . , rk, s0, . . . , sk ∈ S such that ai =

rk . . . r1, bi = sk . . . s1 and Ψ(rk, tk, . . . , r0, zi−1) = Ψ(sk, uk, . . . , s0, xi) for some

t1, . . . , tk, u1, . . . , uk ∈ [0, 1].

If no such data exist, take the infimum to be∞.

Definition 2.7. Let G be a discrete group. Let S ⊂ G be a finite, symmetric generating set

of G which contains the trivial element and S n be the ball of radius n around the identity

element under the word metric of G with respect to S . Let F be a family of subgroups of

G.

Then G is homotopy transfer reducible over F if there exists N ∈ N such that for every

n ∈ N there are

(i) a compact, contractible metric space (X, dX) such that for every ε > 0 there is

an ε-controlled domination of X by an at most N-dimensional, finite simplicial

complex.

(ii) a homotopy coherent G-action Ψ on X.

(iii) a G-simplicial complex Σ of dimension at most N whose isotropy is contained in

F .

(iv) a positive real number Λ;

(v) a G-equivariant map φ : X ×G → Σ such that

n · d`
1
(φ(x, g), φ(y, h)) ≤ dS n,n,Λ((x, g), (y, h))

holds for all (x, g), (y, h) ∈ X ×G.

Remark 2.8. Note our definition of homotopy transfer reducible differs slightly from the

one in [8, Definition 6.2], but as in the proof of [8, Theorem 6.19] shows, our definition

implies the definition there.

Theorem 2.9. [8, Theorem 6.14] Let G be a discrete group and let F be a family of sub-

groups of G. If G is homotopy transfer reducible over F , then G satisfies the Isomorphism

Conjecture with coefficients in A-theory with respect to F .

2.3. Category of controlled retractive G-CW-complexes. Let G be a discrete group and
F be a family of subgroups of G. In [14, Corollary 6.11] it was shown that the Isomorphism
Conjecture with coefficients holds for G iff the algebraic K-theory ofRG

f (W, J(G, EF (G)), h)
vanishes for every free G-CW-complex W, so it plays the role of obstruction category as
in the proof of the Isomorphism Conjecture for algebraic K-theory, see for example [5,
Section 3]. Most of the material here are directly borrowed from [8, Section 6.2] which in
turn come from [14].

Definition 2.10. [14, Definition 2.1] Let Z be a G-space which is Hausdorff. A set of

morphism control conditions Z is a collection of G-invariant subsets of Z × Z with the

following properties:
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(C1) Every C ∈ C contains the diagonal ∆(Z) := {(z, z) | z ∈ Z}.

(C2) Every C ∈ C is symmetric.

(C3) For all C,C′ ∈ C there is some C′′ ∈ C such that C ∪C′ ⊂ C′′.

(C4) For all C,C′ ∈ C there is some C′′ ∈ C such that C′ ◦C ⊂ C′′, where the composi-

tion C′ ◦C is defined as

C′ ◦C := {(z′′, z) | ∃z′ : (z′, z) ∈ C, (z′′, z′) ∈ C′}.

A set of object support conditions S is a collection of G-invariant subsets of Z with the

following properties:

(S1) For all S , S ′ ∈ S there is some S ′′ ∈ S such that S ∪ S ′ ⊂ S ′′.

The triple Z = (Z,C,S) is called a coarse structure.

Fix a coarse structure Z. A labeled G-CW-complex relative W [14, Definition 2.3], is
a pair (Y, κ), where Y is a free G-CW-complex relative W together with a G-equivariant
function κ : � Y → Z. Here, �Y denotes the (discrete) set of relative cells of Y .

A Z-controlled map f : (Y1, κ1) → (Y2, κ2) is a G-equivariant, cellular map f : Y1 → Y2

relative W such that for all k ∈ N there is some C ∈ C for which

(κ2, κ1)({(e2, e1) | e1 ∈ � kY1, e2 ∈ �Y2, 〈 f (e1)〉 ∩ e2 , ∅}) ⊆ C

holds, where � kY1 denotes the set of relative k-cells of Y .
A Z-controlled G-CW-complex relative W is a labeled G-CW-complex (Y, κ) relative W,

such that the identity is a Z-controlled map and for all k ∈ N there is some S ∈ S such that

κ(�kY) ⊆ S .

A Z-controlled retractive space relative W is a Z-controlled G-CW-complex (Y, κ) rela-
tive W together with a G-equivariant retraction r : Y → W, i.e., a left inverse to the inclu-
sion W ↪→ Y . The Z-controlled retractive spaces relative W form a category RG(W,Z) in
which morphisms are Z-controlled maps which additionally respect the chosen retractions.

The category of controlled G-CW-complexes (relative W) and controlled maps admits
a notion of controlled homotopies[14, Definition 2.5] via the objects (Y h [0, 1], κ ◦ prY ),
where Y h [0, 1] denotes the reduced product which identifies W × [0, 1] ⊆ Y × [0, 1] to a
single copy of W and prY : �Y h [0, 1]→ �Y is the canonical projection. In particular, we
obtain a notion of controlled homotopy equivalence (or h-equivalence).

A Z-controlled retractive space (Y, κ) is called finite [14, Definition 3.3] if it is finite-
dimensional, the image of Y\W under the retraction meets the orbits of only finitely many
path components of W and for all z ∈ Z there is some open neighborhood U of z such that
κ−1(U) is finite.

A Z-controlled retractive space (Y, κ) is called finitely dominated, if there are a finite
Z-controlled, retractive G-CW-complex D relative to W, a morphism p : D → Y and a
Z–controlled map i : Y → D such that p ◦ i 'Z idY as Z-controlled maps.
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The finite, respectively finitely dominated, Z-controlled retractive spaces form full sub-
categories RG

f (W,Z) ⊂ RG
f d(W,Z) ⊂ RG(W,Z). All three of these categories support a

Waldhausen category structure in which inclusions of G-invariant subcomplexes up to iso-
morphism are the cofibrations and controlled homotopy equivalences are the weak equiva-
lences [14, Corollary 3.22].

Let Z1 = (Z1,C1,S1), Z2 = (Z2,C2,S2) be two coarse structures. A morphism of coarse

structures [14, Definition 3.23] z : Z1 → Z2 is a G-equivariant map of sets z : Z1 → Z2

satisfying the following properties:

(a) For every S 1 ∈ S1, there is some S 2 ∈ S2 such that z(S 1) ⊂ S 2.
(b) For every S ∈ S1 and C1 ∈ C1, there is some C2 ∈ C2 such that (z×z)((S×S )∩C1) ⊂

C2.
(c) For every S ∈ S1 and all subsets A ⊂ S which are locally finite in Z1, the set z(A)

is locally finite in Z2 and for all x ∈ z(A), the set z−1(x) ∩ A is finite.

Morphism of coarse structures induce morphism of corresponding categories of con-
trolled G-CW-complexes (relative to W), see [14, Proposition 3.24] for more details.

Let X be a G-CW-complex and let M be a metric space with free, isometric G-action.
Define Cbdd(M) to be the collection of all subsets C ⊂ M × M which are of the form

C = {(m,m′) ∈ M × M | d(m,m′) ≤ α}

for some α ≥ 0. Define further CGcc(X) to be the collection of all C ⊂ (X × [1,∞[) × (X ×
[1,∞[) which satisfy the following:

(a) For every x ∈ X and every Gx-invariant open neighborhood U of (x,∞) in X ×

[1,∞], there exists a Gx–invariant open neighborhood V ⊂ U of (x,∞) such that
(((X × [1,∞[) \ U) × V) ∩C = ∅.

(b) Let p[1,∞[ : X × [1,∞[→ [1,∞[ be the projection map. Equip [1,∞[ with the Eu-
clidean metric. Then there exists some B ∈ Cbdd([1,∞[) such that C ⊂ p−1

[1,∞[(B).
(c) C is symmetric, G–invariant and contains the diagonal.

Next define C(M, X): Let pM : M×X×[1,∞[→ M and pX×[1,∞[ : M×X×[1,∞[→ X×[1,∞[
denote the projection maps. Then C(M, X) is the collection of all subsets C ⊂ (M × X ×

[1,∞[)2 which are of the form

C = p−1
M (B) ∩ p−1

X×[1,∞[(C
′)

for some B ∈ Cbdd(M) and C′ ∈ CGcc(X).
Finally, define S(M, X) to be the collection of all subsets S ⊂ M × X × [1,∞[ which are

of the form S = K × [1,∞[ for some G-compact subset K ⊂ M × X.
All these data combine to a coarse structure

J(M, X) := (M × X × [1,∞[,C(M, X),S(M, X))
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which serves to define the “obstruction category” RG
f (W, J(G, EF (G)), h) [14, Example 2.2

and Definition 6.1], where EF (G) is the classifying space for G respect to the family of sub-
groups F . We will consider the non-connective K-theory spectrum of RG

f (W, J(G, EF (G)))
with respect to the h-equivalences[14, Section 5].

Proposition 2.11. [14, Corollary 6.11] A group G satisfies the Isomorphism Conjecture

with coefficients in A-theory with respect to F if and only if the algebraic K-theory of

RG
f (W, J(G, EF (G)), h) vanishes for every free G-CW-complex W.

Suppose that (Mn)n is a sequence of metric spaces with a free, isometric G-action. Let
X be a G-CW-complex. Following [14, Section 7], define the coarse structure

J((Mn)n, X) :=
(∐

n

Mn × X × [1,∞[,C((Mn)n, X),S((Mn)n, X)
)

as follows: Members of C((Mn)n, X) are of the form C =
∐

n Cn with Cn ∈ C(Mn, X), and
we additionally require that C satisfies the uniform metric control condition: There is some
α > 0, independent of n, such that for all ((m, x, t), (m′, x′, t′)) ∈ Cn we have d(m,m′) < α.
Members of S((Mn)n, X) are sets of the form S =

∐
n S n with S n ∈ S(Mn, X). The

resulting category RG(W, J((Mn)n, X)) is canonically a subcategory of the product category∏
n R

G(W, J(Mn, X)).
We need also another class of weak equivalences on RG(W, J((Mn)n, E)) to describe

the target of the transfer in the proof of Theorem 2.15. These h f in-equivalences were
introduced in the proof of [14, Theorem 10.1]. Let (Mn)n be a sequence of metric spaces
with free, isometric G-action. Let (Yn)n be an object of RG(W, J((Mn)n, E)). For ν ∈ N, we
denote by (−)n>ν the endofunctor which sends (Yn)n to the sequence (Ỹn)n with Ỹn = ∗ for
n ≤ ν and Ỹn = Yn for n > ν. A morphism ( fn)n : (Yn)n → (Y ′n)n is an h f in-equivalence

if there is some ν ∈ N, such that ( fn)n>ν : (Yn)n>ν → (Y ′n)n>ν is an h-equivalence. To
distinguish them, we will denote the one with h-equivalence by RG(W, J((Mn)n, E), h) and
the new one with h f in-equivalence by RG(W, J((Mn)n, E), h f in).

2.4. Dress–Farrell–Hsiang–Jones group. In this subsection we introduce and study Dress-
Farrell-Hsiang-Jones groups. They arise from a combination of the Farrell-Hsiang method
and transfer reducibility.

Definition 2.12 (DFHJ group). Let G be a finitely generated group and let F be a family

of subgroups. Let S ⊆ G be a finite symmetric subset which generates G and contains the

trivial element e ∈ G. We call G a Dress–Farrell–Hsiang–Jones group with respect to the
family F if there exist a natural number N and surjective homomorphisms αn : G → Fn

(n ∈ N) onto finite groups Fn such that the following condition is satisfied. For any Dress

subgroup D of Fn there exist

• a compact, contractible, controlled N-dominated metric space Xn,D,

• a homotopy coherent G-action Ψn,D on Xn,D,
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• a positive real number Λn,D,

• a simplicial complex En,D of dimension at most N with a simplicial α−1
n (D)-action

whose stabilizers belong to F ,

• and an α−1
n (D)-equivariant map fn,D : G × Xn,D → En,D

such that

n · d1
En,D

(
fn,D(g, x), fn,D(h, y)

)
≤ dΨn,D,S n,n,Λn,D

(
(g, x), (h, y)

)
for all (g, x), (h, y) ∈ G × Xn,D with h−1g ∈ S n, where dΨn,D,S n,n,Λn,D is the metric on G × Xn,D

induced from the homotopy coherent G-action Ψn,D on Xn,D (Definition 2.6).

Example 2.13. (a) Every Dress-Farrell-Hsiang group is a DFHJ group (Choose Xn,H

as a point).

(b) If a group G is homotopy transfer reducible over F then G is a DFHJ group with

respect to F (Choose Fn as the trivial group).

Lemma 2.14. Let G be a DFHJ group with respect to the family FG := {H < G |

H satisfies the full Isomorphism Conjecture in A-theory}. Let F be a finite group. Then

the wreath product G o F is a DFHJ group with respect to the family FGoF := {H < G o F |

H satisfies satisfies the full Isomorphism Conjecture in A-theory }.

Proof The proof follows exactly the same as proof of [15, Lemma 4.3] since Dress group
is also closed under taking subgroups and quotients. �

Theorem 2.15. Let G be a DFHJ group with respect to the family of subgroups F , then G

satisfies the A-theoretic Isomorphism Conjecture with coefficients with respect to the family

F .

Proof The proof follows closely to [15, Proposition 4.9]. We fix a finite symmetric gen-
erating subset S ⊆ G which contains the trivial element e ∈ G. We denote by dG the word
metric with respect to S \ {e}. Since G is a DFHJ group with respect to F , there exist a
natural number N and surjective homomorphisms αn : G → Fn (n ∈ N) with Fn a finite
group such that the following condition is satisfied. For any Dress subgroup D of Fn there
exist

• a compact, contractible, controlled N-dominated metric space Xn,D,
• a homotopy coherent G-action Ψn,D on Xn,D,
• a positive real number Λn,D,
• a simplicial complex En,D of dimension at most N with a simplicial α−1

n (D)-action
whose stabilizers belong to F ,

• and an α−1
n (D)-equivariant map fn,D : G × Xn,D → En,D

such that

n · d1
En,D

(
fn,D(g, x), fn,D(h, y)

)
≤ dΨn,D,S n,n,Λn,D

(
(g, x), (h, y)

)
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for all (g, x), (h, y) ∈ G × Xn,D with h−1g ∈ S n. We denote by Dn the family of Dress
subgroups of Fn and D̄ := α−1

n (D). We set

S n :=
∐

D∈Dn

G/D̄ × G =
∐

D∈Dn

G ×D̄ G

Yn :=
∐

D∈Dn

G/D̄ × G × Xn,D =
∐

D∈Dn

G ×D̄ G × Xn,D

Σn :=
∐

D∈Dn

G ×D̄ En,D ×G

Here for example G ×D̄ G means G × G module out the relation (g, h) = (gr−1, rh), r ∈ D̄

and we can identify G ×D̄ G with G/D̄ × G via sending (g, g′) to (gD̄, gg′) (inverse given
by mapping (gD, g′) to (g, g−1g′)). We will use the quasi-metrics on S n =

∐
D∈Dn

G ×D̄ G

and Yn =
∐

D∈Dn
G ×D̄ G × Xn,D given by

dG
(
(g, h)D, (g′, h′)D′

)
:= dG(gh, g′h′),

dYn

(
(g, h, x)D, (g′, h′, x′)D′

)
:= dΨn,D,S n,n,Λn,D ((gh, x), (g′h′, x′)),

if D = D′, gD̄ = g′D̄′. Otherwise, we set

dS n ((g, h)D, (g′, h′)D′ ) := ∞ and dYn ((g, h, x)D, (g′, h′, x′)D′ ) := ∞.

If we define the quasi-metric on
∐

D∈Dn
G/D by assigning distance ∞ to any points

that are not equal. Then dS n = d∐
D∈Dn G/D + dG and dYn = d∐

D∈Dn G/D + dΨn,D,S n,n,Λn,D . We
define the action of G on S n =

∐
D∈Dn

G ×D̄ G via r(g, h) = (rg, h) and the action on
Yn =

∐
D∈Dn

G ×D̄ G × Xn,D by r(g, h, x) = (rg, h, x) for any r ∈ G.
Similarly, we define the quasi-metric on Σn to be ndl1

G×D̄En,D
+ dG and G acts on Σn =∐

D∈Dn
G ×D̄ En,D ×G by r(g, x, h) = (rg, x, rh). We define the map

fn :=
∐

D∈Dn

G ×D̄ G × Xn,D →
∐

D∈Dn

G ×D̄ En,D ×G : (g, h, x)→ (g, fn,D(h, x), gh)

By Proposition 2.11, it suffices to show the K-theory of the obstruction category

(RG
f (W, J(G, EFG)), h)

vanishes. This is a direct consequence of the following commuting diagram (abbreviate
EF := EFG)
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(RG
f (W, J(G, EF )), h) (RG

f (W, J((S n)n, EF )), h)

(RG
f (W, J((G)n, EF )), h) (RG

f d(W, J((S n)n, EF )), h)

(RG
f d(W, J((G)n, EF )), h) (RG

f d(W, J((S n)n, EF )), h f in)

(RG
f d(W, J((G)n, EF )), h f in) (RG

f d(W, J((Yn)n, EF )), h f in)

(RG
f d(W, J((G)n, EF )), h f in) (RG

f d(W, J((Σn)n, EF )), h f in)

P j

∆

i2

PYn→G

P f
S n→G

PS n→G

PΣn→G

incl1

i1

incl2

= F

tr1

tr2

Here the map incl1, incl2, i1 and i2 are all inclusions of categories. ∆ is the diagonal map.
The maps P∗→G (with or without f decoration) are induced by the obvious projections. The
map P j is defined to be the projection functor which takes the inclusion into the full product
category, projects onto the j-th component, and then then apply the function induced by
the projections

∐
D∈D j

G/D̄ ×G × EF × [0,∞[→ G × EF × [0,∞[.
The theorem now follows once we show the following

(i) In map incl1 and incl2 induces isomorphism after applying K-theory;
(ii) The composition i1 ◦ incl1 ◦ ∆ induces injective map on K-theory;

(iii) The K-theory of (RG
f d(W, J((Σn)n, EF )), h f in) vanishes.

(iv) The map tr1 exists after applying K-theory and the composition P j ◦ tr1 induces
identity in K-theory for any j, in particular tr1 induces injective maps in K-theory.
Moreover, the composition P f

S n→G ◦ tr1 and ∆ induces the same map in K-theory;
(v) The functor F, defined as a restriction of∏

n∈N

fn : (
∏
n∈N

R
G
f d(W, J((Yn)n, EF )), h f in)→ (

∏
n∈N

R
G
f d(W, J((Σn)n, EF )), h f in),

is well defined.
(vi) The map tr2 exists after applying K-theory. Moreover, the composition PYn→G ◦ tr2

and PS n→G ◦ i2 ◦ incl2 induces the same map in K-theory.

We will prove these statements in positive degrees, for non-positive ones, one has to con-
sider further deloopings of the category, but the proof works in the same way, see [14,
section 5] and [8, Section 6.6] for more details. We proceed to prove the positive degree
case as follows
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(i) This is stated in [14, Remark 5.5];
(ii) This is proved in [8, Lemma 6.18] notice that ∆ and incl1 commutes;

(iii) This is proved in [8, Proposition 6.15(iii)], which follows from the “squeezing
Theorem” in A-theory [14, Theorem 10.1];

(iv) The first part is proved in [14, Corollary 9.3]. For the second part, one can argue
the same as in [14, Proposition 9.2(2)] note that the map P f

S n→G only changes the
controlled conditions on the object.

(v) This is [8, Proposition 6.15(ii)];
(vi) The map tr2 can be defined as in [8, Section 7] with some modifications. We

explain now how this should proceed based on the terminology and proof there.
Firstly by [8, Remark 7.3], it suffices to define a transfer functor

trα,d2 : (RG
f (W, J((S n)n, EF ))α,d, h)→ (RG

f d(W, J((Yn)n, EF )), h f in)

such that the corresponding induced diagram is homotopy commutative on K-
theory. Now note that S n =

∐
D∈Dn

G ×D̄ G =
∐

D∈Dn
G/D̄ ×G. For each D ∈ Dn,

we have homotopy coherent G-action Ψn,D on a space Xn,D satisfies conditions of
[8, Definition 6.2] by Remark 2.8. Thus we have a transfer map [8, Lemma 7.12]
trα,d2 |n,D such that PG×Xn,D→G ◦ trα,d2 |n,D and incl2 coincides after applying K-theory
[8, Proposition 7.24]

(RG
f (W, J((gD̄ ×G), EF ))α,d, h)

(RG
f d(W, J((gD̄ ×G), EF )), h) (RG

f d(W, J((gD̄ ×G × Xn,D), EF )), h)
PG×Xn,D→G

incl2
trα,d2 |n,D

Put all these maps together, we get a transfer map (in fact an exact functor by [8,
Proposition 7.25] with a little modification)

trα,D2 : K(RG
f (W, J((

∐
D∈Dn

G/D̄ × G × Xn,D)n, EF )), h)α,D

−→ K(RG
f d(W, J((

∐
D∈Dn

G/D̄ × G)n, EF )), h f in)

The rest of [8, Section 7.10] tells us how to get tr2 from trα,D2 .

3. Dress subgroups

In this section, we embed our group Z[w, 1
w ] ow Z into a slightly bigger group Ow ow Z

and study Dress subgroups in its finite quotients. Part of the ideas in this section are from
[10, Section 4] and [15, Section 5.6].
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3.1. The ring Ow. We review some algebraic number theory background and notions re-
lated to the group Z[w, 1

w ] ow Z for the reader’s convenience, for more details see [15,
Section 5.1].

Let w ∈ Q̄× be a non-zero algebraic number. Let O be the ring of integers in the
albebraic number field Q(w), i.e. O ⊂ Q(w) is the subring consisting of all elements which
are integral. Recall that an algebraic number is integral iff it is a root of a monic polynomial
with rational integer coefficients. Note that O is a Dedekind domain, in particular every
nonzero prime ideal is maximal.

For a prime ideal p ⊂ O we denote by

Op := {
x
y
| x, y ∈ O, y < p ⊂ Q(w)}

the localization of O at p. Let Vp : Q(w)× → Z be the corresponding valuation, i.e.,
xO = pVp(x)Op. We extend the valuation Vp to Q(w) by the convention Vp(0) = ∞. Note
that Op = {x ∈ Q(w) | Vp(x) ≥ 0}.

A fractional ideal is a finitely generated O-submodule a , 0 of Q(w). Every fractional
ideal possesses a unique factorization a =

∏
p p

νp with νp ∈ Z and νp = 0 for almost
all prime ideals p. We define Mα to be the set of prime ideals appeared in the prime
factorization of α. For a = xO with x ∈ Q(w)× we have νp = Vp(x). We conclude that

Mx := MxO = {p ⊂ O prime ideal | Vp(x) , 0}

is a finite set. In particular, Mw is a finite set. We define the ring

Ow = {x ∈ Q(w) | Vp(x) ≥ 0 f or all prime ideals p < Mw}

Note that O ⊂ Ow and w,w−1 ∈ Ow. The group of units in the ring Ow is given by

O×w = {x ∈ Q(w) | Vp(x) = 0 f or all prime ideals p < Mw}

3.2. Order of w in a finite quotient. We review some results in [15, Section 5.6].
Given any ideal I in O such that MI ∩ Mw = ∅, we define a nature number tw(I, s) for

any s ≥ 1 by the following:

tw(I, s)Z = {z ∈ Z | wz ≡ 1 mod I sOw}

In particular, let q be a prime number and q < Mw be a prime ideal in O which contains
q, we have

tw(q, s)Z = {z ∈ Z | wz ≡ 1 mod qsOw}

tw(q, s)Z = {z ∈ Z | wz ≡ 1 mod qsOw}

Note that if qO = q
ν1
1 q

ν2
2 · · · q

νr
r , then Mq = {q1, q2, · · · qr} and tw(q, s) is the least common

multiple of tw(qνi
i , s) = tw(qi, sνi) for i = 1, 2, · · · , r.



14 F. THOMAS FARRELL AND XIAOLEI WU

Lemma 3.1. [15, Lemma 5.29] Let q be a prime number and q < Mw be a prime ideal in

O which contains q, then:

(i) The ring Ow/qOw is a finite field of characteristic q which is isomorphic to O/qO.

(ii) tw(q, 1) and q are coprime. In particular, tw(q, 1) , 0.

(iii) For every s ∈ N we have tw(q, s + 1) = qtw(q, s) or tw(q, s + 1) = tw(q, s).
(iv) Let (a, b) ∈ Ow/q

sOw ow Z/tw(q, s) such that b < tw(q, 1)Z/tw(q, s). Then (a, b) is

conjugate to (0, b).

3.3. Dress subgroups of finite quotients for Ow ow Z. We define our new group Γw as
the semi-product: Γw = Ow ow Z, where the multiplication in Γw is given by

(x1, y1)(x2, y2) = (x1 + wy1 x2, y1 + y2).

for (xi, yi) ∈ Ow ow Z, i = 1, 2. Since Z[w, 1
w ] ⊂ O, Z[w, 1

w ] ow Z is a subgroup of Γw. we
want to study its finite quotient.

Lemma 3.2. Given any integer N > 0, there exists primes q1, q2, q3 > N such that Mw,

Mq1 , Mq2 ,Mq3 are pairwise disjoint and 1 + w < qiOw for any qi ∈ Mqi (i = 1, 2, 3).

Proof Given p ∈ Mw, then O/pO is a finite field. Let M be maximal of the characteristic
of these finite fields. Now choose q1, q2, q3 to be different primes that are bigger than N

and M, they then have the properties in the lemma. Note that there are only finite many
prime ideals q such that 1 + w lies in qOw, thus the last condition can also be reached by
choosing q1, q2, q3 big. �

Remark 3.3. Note that by our choices 1 + w is invertible in Ow/q
s
i for any i and s ≥ 1. In

particular 1 + w is invertible in Ow/(qs
1qs

2qs
3).

Given any N > 0, let q1, q2, q3 be three primes choosing as in Lemma 3.2. Recall
tw(q1q2q3, s) is defined to be the nature number such that

tw(q1q2q3, s)Z = {z ∈ Z | wz ≡ 1 mod qs
1qs

2qs
3Ow}

Given any qi ∈ Mqi with vqi (qi) = νi ≥ 1, we also consider the nature number tw(qν1
1 q

ν2
2 q

ν3
3 , s)

defined by

tw(qν1
1 q

ν2
2 q

ν3
3 , s)Z = {z ∈ Z | wz ≡ 1 mod qν1 s

1 q
ν2 s
2 q

ν3 s
3 Ow}

Note that by Lemma 3.1, Ow/qiOw is a finite field of Characteristic qi, hence Ow/qiOw

has order some power of qi. By the Chinese Reminder Theorem, Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) �

Ow/q
ν1 s
1 ⊕ Ow/q

ν2 s
2 ⊕ Ow/q

ν3 s
3 and Ow/(qs

1qs
2qs

3) � Ow/qs
1 ⊕ Ow/qs

2 ⊕ Ow/qs
3. Hence we

have tw(q1q2q3, s) is the least common multiple of tw(qi, s)(i = 1, 2, 3) and tw(qν1
1 q

ν2
2 q

ν3
3 , s)

is the least common multiple of tw(qi, νis)(i = 1, 2, 3).
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Given n > 0, we define a number γ(s, n) depends on s and n by

(3.1) γ(s, n) =
∏

i=1,2,3

tn+1
w (qi, sνi)

Now we define finite quotients of Ow ow Z via the following maps.

Ow ow Z
π1

−−−−−−→ Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow Z

π2
−−−−−−→ Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow Z/γ(s, n)

Pr
−−−−−−→ Z/γ(s, n)

where π1 is defined by quotienting out the normal subgroup (qs
1q

s
2q

s
3)Ow ow {0}, π2 is

defined by quotienting out the normal subgroup {0} ow γ(s, n)Z and Pr is the projection of
Z/(qn

1qn
2qn

3) ow Z/γ(s, n) to the second factor.
We proceed to study Dress subgroups of Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow Z/γ(s, n).

Lemma 3.4. Given a positive integer n, there exist primes q1, q2, q3 > n and a positive

integer s > n such that for any qi ∈ Mqi (i = 1, 2, 3) one of the following is true for each

Dress subgroup D of Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow Z/γ(s, n):

(i) The index [Z/γ(s, n), Pr(D)] ≥ n;

(ii) D ∩ Qi = {0} for some i = 1, 2 or 3 where Qi denotes the qi-Sylow subgroup of

Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow {0}.

Proof Let q1, q2, q3 be the three primes determined by Lemma 3.2 with N = n. We now
choose s big enough, so that wz − 1 < qs

i for any 1 ≤ z ≤ tw(qi, 1) for i = 1, 2, 3. This
implies tw(qi,s)

tw(qi,1) > 1. Since tw(qi,s)
tw(qi,1) is a power of qi by Lemma 3.1 (iii) and qi > n, we have

tw(qi,s)
tw(qi,1) > n. Applying Lemma 3.1 (iii) again, we have tw(qi,νi s)

tw(qi,1) > n since νi ≥ 1 for i = 1, 2, 3.
In particular qi appears in the prime factorization of tw(qν1

1 q
ν2
2 q

ν3
3 , s).

Now let D be a Dress subgroup with D1 � D2 � D such that D1 is a p1-group, D2/D1 is
cyclic and D/D2 is a p2-group. By Lemma 2.2, we can assume (p1, |D2/D1|) = (p2, |D2/D1|) =

1. Since we know γ(s, n)’s prime decomposition contains all the prime factor qi and qi > n,
without loss of generality, we can assume p1 , q3 and p2 , q3. In fact, we can assume
p1 = q1, p2 = q2 otherwise property (i) in the Lemma holds.

Assume now D2/D1 � C, then D2 � D1 o C, where C is a finite cyclic group. Notice
that

D ∩ Q3 = C ∩ Q3

Now let the generator of C to be (a, b) ∈ Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow Z/γ(s, n). Then

b ∈ (
tn+1
w (q1, ν1s)
tn+1
w (q1, 1)

·
tn+1
w (q2, ν2s)
tn+1
w (q2, 1)

)Z/γ(s, n)

and the order of b divides tn+1
w (q1, 1)tn+1

w (q2, 1)tn+1
w (q3, ν3s). Let the order of b ∈ Z/γ(s, n)

to be k, then D∩Q3 is a cyclic group generated by (a, b)k. If we assume property (i) in the
Lemma does not hold, then
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(3.2) (tn+1
w (q1, 1)tn+1

w (q2, 1)tn+1
w (q3, ν3s)) : k < n

Note that this implies the order of b must divides tw(q3, 1). In fact, if this is not true,
then there exist a prime p such that pl divides tw(q3, 1), but pl does not divide k for some
l ≥ 1. This implies p(n+1)l divides tn+1

w (q3, 1), but pl does not divide k, we have

tn+1
w (q3, 1) : k ≥ pnl > n

which is a contradiction to the inequality 3.2. Since q3 > n, we have tw(q3, ν3s) also divides
k otherwise propery (i) in the lemma holds.

Now we can assume b’s order k = k′tw(q3, ν3s), then we have the following calculation
in our group Ow/(qs

3q
s
2q

s
3) ow Z/γ(s, n):

(a, b)k = ((a, b)tw(q3,ν3 s))k′ = ((1 + w + · · ·wtw(q3,ν3 s)−1)b, b)k′

Now by our choices of qi and Remark 3.3, we have 1+w is invertible inOw/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ),

thus

(a, b)k = ((1 + w)−1(1 − wtw(q3,ν3 s))b, b)k′

Now wtw(q3,ν3 s) ≡ 1 mod qν3 s
3 in Ow, we have (1 + w)−1(1 − wtw(q3,ν3 s))b ∈ qν3 s

3 Ow and
(a, b)k ∩ Q3 = {0}.

�

Similar to Lemma 3.1 (iv), we have the following

Lemma 3.5. Let q1, q2, q3 be primes such that Mw, Mq1 , Mq2 ,Mq3 are pairwise disjoint and

(a, b) ∈ Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow Z/γ(s, n). If b < tw(qi, 1)Z/γ(s, n) for i = 1, 2, 3, then (a, b) is

conjugate to (0, b).

Proof Note first that tw(q, νis) divides γ(s, n). Now if b < tw(qi, 1)Z/γ(s, n), by the proof
of [15, Lemma 5.29(5)], we have wb − 1 is a unit in Ow/q

νi s
i for i = 1, 2, 3. Hence wb −

1 is a unit in Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ). Now set x := (wb − 1)−1a ∈ Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 s
3 ). Then

(x, 0)(a, b)(x, 0)−1 = (0, b). �

We continue to refine Lemma 3.4 to the following using Lemma 3.5.

Proposition 3.6. Given a positive integer n, there exists primes q1, q2, q3 > n and a positive

integer s > n such that for any qi ∈ Mqi one of the following is true for each Dress subgroup

D of Ow/(qs
1q

s
2q

s
3) ow Z/γ(s, n):

(i) The index [Z/γ(s, n), Pr(D)] ≥ n;

(ii) there exists g ∈ Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 )owZ/γ(s, n) such that gDg−1 ⊂ q

νi s
i Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 s
3 )ow

Z/γ(s, n) for some i = 1, 2 or 3.
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Proof By Lemma 3.4, we can choose nice primes q1, q2, q3 and s big such that, if the
index [Z/γ(s, n), Pr(D)] < n then D ∩ Qi ⊂ q

νi s
i Qi for some i = 1, 2 or 3 where Qi denotes

the qi-Sylow subgroup of Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow {0}. We can further assume qi big such that

qi lies in none of the prime ideals which appear in the prime factorization of the fractional
ideal (wl − 1)O with 1 ≤ l ≤ n for i = 1, 2, 3. This guarantees that tw(qi, 1) > n for qi ∈ Mqi .

Now Consider the projection pr restricted to D, then pr(D) is a cyclic subgroup of
Z/γ(s, n) and the kernel K = D ∩ Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow {0}. We have the following short

exact sequence:

(3.3) 1→ K → D→ Pr(D)→ 1.

Choose any (a, b) ∈ D such that b generates Pr(D). Assume the Dress subgroup D does
not satisfy property (i) of our Proposition, then

Claim: The subgroup generated by (a, b) in D is isomorphic to Pr(D) via Pr. In partic-
ular, D can be generated by elements in K and (a, b).

Let the order of b to be k. If property (i) does not hold, then γ(s,n)
k ≤ n. Similar to the

arguments in the proof of Lemma 3.4 (after inequality 3.2), we have tw(qi, νis) divides k

for any i = 1, 2, 3. Since 1 − w is invertible in Ow/q
νi s
i , if we let k = tw(qi, νis)ki, then

(a, b)k = ((a, b)tw(qi,νi s))ki = ((1 − w)−1(1 − wtw(qi,νi s)), tw(qi, νis)b)ki

Now wtw(qi,νi s) = 1 ∈ Ow/q
νi s
i for i = 1, 2, 3. We have

(a, b)k = (0, 0) ∈ Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow Z/γ(s, n).

This proves the claim. Now b < tw(qi, 1)Z/γ(s, n) for any i otherwise the index [Z/γ(s, n), Pr(D)] ≥
n since by our choices tw(q1, 1) > n. This means we can conjugate (a, b) to (0, b) by Lemma
3.5 via g = (wb−1)−1a, 0). Since gKg−1 ∈ Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 s
3 )ow {0}, we have gDg−1 is gener-

ated by elements in Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 )ow {0} and (0, b). Now gDg−1∩Qi = gKg−1∩Qi = {0}

for some i = 1, 2 or 3 where Qi denotes the qi-Sylow subgroup of Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow {0},

hence gDg−1 ∩ Ow/(q
ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow {0} ⊂ q

νi s
i Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 s
3 ) ow {0} and we have now

Property (ii) in the theorem holds.
�

Remark 3.7. We summarize choices we need to make for q1, q2, q3 and s such that Propo-

sition 3.6 holds:

(a) q1, q2, q3 are different primes bigger than n;

(b) Mw, Mq1 , Mq2 and Mq3 are pairwise disjoint;

(c) 1 + w < qiOw for any qi ∈ Mqi (i = 1, 2, 3).
(d) qi lies in none of the prime ideals which appear in the prime factorization of the

fractional ideal (wl − 1)O with 1 ≤ l ≤ n for i = 1, 2, 3;
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(e) Choose s big such that wz − 1 < qs
i for any 1 ≤ z ≤ tw(qi, 1) for i = 1, 2, 3;

Remark 3.8. For any (a, b) ∈ D such that b generates Pr(D), the proof shows the g in (ii)

can be chosen to be (wb − 1)−1a, 0).

We proceed to prove our main theorem in this section. Similar to γ(s, n), we define a
number γ̄(s, n) depends on s and n by

(3.4) γ̄(s, n) =
∏

i=1,2,3

tn+1
w (qi, s)

And we define another finite quotient of Ow ow Z via the following maps.

Ow ow Z
π̄1

−−−−−−→ Ow/(qs
1qs

2qs
3) ow Z

π̄2
−−−−−−→ Ow/(qs

1qs
2qs

3) ow Z/γ̄(s, n)
P̄r

−−−−−−→ Z/γ̄(s, n)

where π̄1 is defined by quotienting out the normal subgroup (qs
1qs

2qs
3)Ow ow {0}, π̄2 is

defined by quotienting out the normal subgroup {0} ow γ̄(s, n)Z and P̄r is the projection of
Z/(qn

1qn
2qn

3) ow Z/γ̄(s, n) to the second factor.
The following theorem is parallel to [15, Corollary 5.31].

Theorem 3.9. Given a positive integer n, there exists primes q1, q2, q3 > n and a pos-

itive integer s > n such that one of the following is true for each Dress subgroup D of

Ow/(qs
1qs

2qs
3) ow Z/γ̄(s, n):

(i) The index [Z/γ̄(s, n), P̄r(D)] ≥ n;

(ii) there exists g ∈ Ow/(qs
1qs

2qs
3) ow Z/γ̄(s, n) such that gDg−1 ⊂ qs

iOw/(qs
1qs

2qs
3) ow

Z/γ̄(s, n) for some i = 1, 2 or 3.

Proof We choose q1, q2, q3 under the assumptions of Remark 3.7 with condition (e)
strengthened to the following: Choose s big such that wz − 1 < qs

i for qi ∈ Mqi and any
1 ≤ z ≤ tw(qi, 1) for i = 1, 2, 3. Then Proposition 3.6 holds for any such q1, q2, q3 and any
qi ∈ Mqi (i = 1, 2, 3). Now let qi’s prime ideal factorization be the following:

qiO = q
νi1
i1 q

νi2
i2 · · · q

νiri
iri

By the Chinese Remainder Theorem and the fact that Mw, Mq1 , Mq2 and Mq3 are pair-
wise disjoint, we have

Ow/(qs
1qs

2qs
3) �

⊕
1≤i≤3

Ow/qs
i �

⊕
1≤i≤3,1≤ j≤ri

Ow/q
νi j

i j

Now let D be a Dress subgroup with D1 � D2 � D such that D1 is a p1-group, D2/D1

is cyclic and D/D2 is a p2-group. We assume property (i) in the theorem does not hold.
Similar to the proof of Lemma 3.4, without loss generality, we can assume p1 = q1, p2 =

q2.
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Now Consider the projection p̄r restricted to D, then p̄r(D) is a cyclic subgroup of
Z/γ̄(s, n) and the kernel K̄ = D ∩ Ow/(qs

1qs
2qs

3) ow {0}. We have the following short exact
sequence:

(3.5) 1→ K̄ → D→ P̄r(D)→ 1.

Now choose (a, b) ∈ D such that b generates P̄r(D). Note that wb − 1 < qiOw for
any qi ∈ Mqi , otherwise b divides t(qi j, 1) and we have property (i) holds. This means
wb − 1 is invertible in Ow/(qs

1qs
2qs

3). We claim now, if we let g = ((wb − 1)−1a, 0), then
gDg−1 ⊂ qs

3Ow/(qs
1qs

2qs
3) ow Z/γ̄(s, n).

In fact, fix any two prime ideals q1 ∈ Mq1 , q2 ∈ Mq2 . For each 1 ≤ j ≤ r3, we define
projections via the following maps

Ow/(qs
1qs

2qs
3) o Z/γ̄(s, n)

ρ1 j
−−−−−−→ Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 j s
3 j ) ow γ̄(s, n)

ρ2 j
−−−−−−→ Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 j s
3 j ) ow Z/γ j(s, n)

P̄r j
−−−−−−→ Z/γ j(s, n)

where γ j(s, n) is the γ(s, n) corresponding to the prime ideals q1, q2 and q3 j defined by
equation 3.1. We set ρ j = ρ2 j ◦ ρ1 j and ρ j(a, b) = (a j, b j) ∈ Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 j s
i j )ow Z/γ j(s, n).

Now a quotient of a Dress group is still a Dress group, thus ρ j(D) is a Dress subgroup of
Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 j s
3 j ) ow Z/γ j(s, n). Consider the projection P̄r j restricted to ρ j(D), then since

we assume property (i) in the theorem does not hold, we have the index [Z/γ j(s, n), ρ j(D)] ≤
n. By the claim in the proof of Proposition 3.6, we have p̄r j(ρ j(D)) is a cyclic subgroup of
Z/γ j(s, n) generated by b j and (a j, b j) generate a cyclic subgroup in ρ j(D) isomorphic to
p̄r j(ρ j(D)) via p̄r j.

Now by Proposition 3.6 and Remark 3.8, we have

((wb j − 1)−1a j, 0)ρ j(D)((wb j − 1)−1a j, 0)−1 ∈ q
ν3 j s
3 Ow/(q

ν1 s
1 q

ν2 s
2 q

ν3 j s
3 j ) ow Z/γ j(s, n)

And since ρ j(((wb − 1)−1a, 0)) = ((wb j − 1)−1a j, 0), we have for any 1 ≤ j ≤ r3

((wb − 1)−1a, 0)D((wb − 1)−1a, 0)−1 ⊂ q
ν3 j s
3 j Ow/(qs

1qs
2qs

3) ow Z/γ̄(s, n)

Therefore,

((wb − 1)−1a, 0)D((wb − 1)−1a, 0)−1 ⊂ qs
3Ow/(qs

1qs
2qs

3) ow Z/γ̄(s, n)

�

Remark 3.10. Since the map π̄ : Ow ow Z→ Ow/(qs
1qs

2qs
3) ow Z/γ̄(s, n) is surjective, our g

can be lifted to an element in Ow ow Z.
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4. Proof of the main theorem

We prove our main theorem in this section.

Lemma 4.1. The full Isomorphism Conjecture in A-theroy holds for solvable groups iff it

holds for Gw = Z[w, 1
w ] ow Z where w is any non-zero algebraic number.

Proof The proof follows exactly the same as [15, Proposition 3.3]. In fact, the proof
there only uses inheritance properties of the Isomorphism Conjecture in K- and L-theory
and the fact that the conjecture holds for hyerbolic and CAT(0) groups. By [8, Theorem
1.1], these inheritance properties and results also hold for the Isomorphism Conjecure in
A-theory. �

Proposition 4.2. Let w ∈ Q̄× be a non-zero algebraic number of infinite order. Then the

group Gw is a DFHJ group with respect to the family of subgroups that satisfy the full

Isomorphism Conjecture in A-theory.

Proof The proof again follows almost exactly the same as in [15, Proposition 5.33].
Notice first that the only difference between the definition of Dress-Farrell-Hsiang-Jones
group (Definition 2.12) and Farrell-Hsiang-Jones group [15, Definition 4.1] is that one
has to replace the hyper-elementary subgroup to Dress-subgroup. This issue is addressed
already in Theorem 3.9. We sketch now how should the proof actually go based on the
proof of [15, Proposition 5.33].

We choose N to be the number appearing in [15, Proposition 5.26]. Given n > 0, let
n̄ = 4nm2 and s > max{1,− log2 B}, where m2 is defined in the beginning of proof of [15,
Proposition 5.33] and B is defined in [15, Proposition 5.26].

Now choose q1, q2, q3 and s as in Remark 3.7 for n = n̄ and define αn as the composition
of the following maps

Z[w,
1
w

] ow Z ↪→ Ow ow Z→ Ow/(qs
1qs

2qs
3) ow Z/γ̄(s, n̄)

in particular Fn = Ow/(qs
1qs

2qs
3) ow Z/γ̄(s, n̄), where γ̄(s, n̄) was defined by Equation 3.4

and quotient map are defined right below that. By Theorem 3.9, we have for every Dress
subgroup D in Fn

• Case (1), there exists g ∈ Ow/(qs
1qs

2qs
3)owZ/γ̄(s, n) such that gDg−1 ⊂ qs

iOw/(qs
1qs

2qs
3)ow

Z/γ̄(s, n) for some i = 1, 2 or 3, note that q−s
i ≤ 2−s ≤ B and g can be lifted to an

element in Ow ow Z (Remark 3.10).
• Case (2), The index [Z/γ̄(s, n), P̄r(D)] ≥ n̄ = 2nm2;

The rest of the proof follows as in [15, Proposition 5.33] without change. In particular,
for case (1), we choose the corrsponding space Xn,D, number Λn,D and simplicial complex
En,D via [15, Proposition 5.26]. For case (2), we choose Xn,D to be a point and En,D to be
the real line with elements lZ as vertices, where l = [Z/γ̄(s, n), P̄r(D)]. �
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Now when w is a non-zero algebraic number of infinite order, by Lemma 2.14, any
finite wreath product of Gw is also a DFHJ group with respect to the family of subgroups
that already satisfy the full Isomorphism Conjecture. By Theorem 2.15 and the transitivity
principle [14, Proposition 11.2], we have Gw satisfies the full Isomorphism Conjecture in
A-theory. On the other hand, if w is a non-zero algebraic number of finite order, then Gw

is virtually abelian and hence satisfies the full Isomorphism Conjecture by [14, Theorem
1.1]. Thus by Lemma 4.1, we have the full Isomorphism Conjecture in A-theory holds for
all solvable groups.
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[6] A. Bartels, W. Lück, H. Reich, H. Rüping. K- and L-theory of group rings over GLn(Z). Publ.

Math. Inst. Hautes Études Sci. 119 (2014), 97-125.

[7] D. Kasprowski, M. Ullmann, C. Wegner, C. Winges, The A-theoretic Farrell–Jones Conjecture

for virtually solvable groups, arXiv:1607.06395

[8] N. E. Enkelmann, W. Lück, M. Pieper, M. Ullmann, C. Winges, On the Farrell–Jones Conjecture

for Waldhausen’s A-theory, arXiv:1607.06395

[9] F. T. Farrell, W. C. Hsiang, The topological-Euclidean space form problem. Invent. Math. 45(2),

181-192 (1978).

[10] F. T. Farrell, X. Wu, Isomorphism Conjecture for Baumslag–Solitar groups, Math. Ann. 359

(2014), no. 3-4, 839-862.
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