Geometrically defined cycles on moduli spaces of curves

Johannes Schmitt

May 2019

Table of Contents

(1) Moduli spaces of curves and their cohomology
(2) Cycles of twisted k-differentials
(3) Admissible cover cycles

Table of Contents

(1) Moduli spaces of curves and their cohomology

(2) Cycles of twisted k-differentials

(3) Admissible cover cycles

The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

$$
\mathcal{M}_{g, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right):\right.
$$

1

The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

$$
\mathcal{M}_{g, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \quad \begin{array}{ll}
\text { algebraic curve* of genus } g
\end{array}\right\}
$$

The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

$$
\mathcal{M}_{g, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \quad \begin{array}{ll}
\text { algebraic curve* of genus } g
\end{array}\right\}
$$

* alternatively:
- Riemann surface
- complex manifold of dimension 1

The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

$$
\mathcal{M}_{g, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \quad \begin{array}{ll}
\text { algebraic curve* of genus } g
\end{array}\right\}
$$

* alternatively:
- Riemann surface
- complex manifold of dimension 1

The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

$$
\mathcal{M}_{g, n}=\left\{\begin{array}{ll}
\left(C, p_{1}, \ldots, p_{n}\right): & \begin{array}{l}
C \text { smooth, compact complex } \\
\text { algebraic curve* of genus } g \\
p_{1}, \ldots, p_{n} \in C \text { distinct points }
\end{array}
\end{array}\right\}
$$

* alternatively:
- Riemann surface
- complex manifold of dimension 1

The moduli space of smooth curves

Definition

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

$$
\mathcal{M}_{g, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \begin{array}{l}
C \text { smooth, compact complex } \\
\\
p_{1}, \ldots, p_{n} \in C \text { distinct points }
\end{array}\right\} / \text { iso }
$$

* alternatively:
- Riemann surface
- complex manifold of dimension 1

The moduli space of smooth curves

$M_{3,2}$

The moduli space of smooth curves

The moduli space of smooth curves

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$,

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$, but not compact.

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$, but not compact.

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$, but not compact.

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$, but not compact.

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$, but not compact.

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$, but not compact.

The moduli space of smooth curves

Fact

$\mathcal{M}_{g, n}$ is smooth, connected space of \mathbb{C}-dimension $3 g-3+n$, but not compact.

The moduli space of stable curves

Definition (Deligne-Mumford 1969)

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).
$\overline{\mathcal{M}}_{g, n}=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \quad\right\} /$ iso

The moduli space of stable curves

Definition (Deligne-Mumford 1969)

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

The moduli space of stable curves

Definition (Deligne-Mumford 1969)

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

The moduli space of stable curves

Definition (Deligne-Mumford 1969)

Let $g, n \geq 0$ be integers (with $2 g-2+n>0$).

The moduli space of stable curves

Facts

(1) $\overline{\mathcal{M}}_{g, n}$ is a smooth, connected, compact space of \mathbb{C}-dimension $3 g-3+n$.
(2) The boundary
$\partial \overline{\mathcal{M}}_{g, n}=\overline{\mathcal{M}}_{g, n} \backslash \mathcal{M}_{g, n}$ is a closed subset of \mathbb{C}-codimension 1 (normal crossing divisor), parametrized by products of smaller-dimensional spaces $\overline{\mathcal{M}}_{g_{i}, n_{i}}$.

Recursive boundary structure

To $\left(C, p_{1}, \ldots, p_{n}\right) \in \overline{\mathcal{M}}_{g, n}$ we can associate a stable graph $\Gamma_{\left(C, p_{1}, \ldots, p_{n}\right)}$

Recursive boundary structure

To $\left(C, p_{1}, \ldots, p_{n}\right) \in \overline{\mathcal{M}}_{g, n}$ we can associate a stable graph $\Gamma_{\left(C, p_{1}, \ldots, p_{n}\right)}$

Conversely, given a stable graph 「 we have a gluing map

$$
\xi_{\Gamma}: \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)}=\overline{\mathcal{M}}_{1,3} \times \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{3,2}
$$

Recursive boundary structure

Recursive boundary structure

Proposition

The map ξ_{Γ} is finite with image equal to

$$
\overline{\left\{\left(C, p_{1}, \ldots, p_{n}\right): \Gamma_{\left(C, p_{1}, \ldots, p_{n}\right)}=\Gamma\right\}} .
$$

The cohomology $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ of $\overline{\mathcal{M}}_{g, n}$

The cohomology $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ of $\overline{\mathcal{M}}_{g, n}$

- $\overline{\mathcal{M}}_{g, n}$ compact space $\Longrightarrow H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ finite-dimensional \mathbb{Q}-algebra

The cohomology $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ of $\overline{\mathcal{M}}_{g, n}$

- $\overline{\mathcal{M}}_{g, n}$ compact space $\Longrightarrow H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ finite-dimensional \mathbb{Q}-algebra
- (Poincaré duality) For all $0 \leq k \leq \operatorname{dim}=2(3 g-3+n)$, the cup product defines a nondegenerate pairing

$$
H^{k}\left(\overline{\mathcal{M}}_{g, n}\right) \otimes H^{\operatorname{dim}-k}\left(\overline{\mathcal{M}}_{g, n}\right) \rightarrow H^{\operatorname{dim}}\left(\overline{\mathcal{M}}_{g, n}\right) \cong \mathbb{Q} .
$$

The cohomology $H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ of $\overline{\mathcal{M}}_{g, n}$

- $\overline{\mathcal{M}}_{g, n}$ compact space $\Longrightarrow H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ finite-dimensional \mathbb{Q}-algebra
- (Poincaré duality) For all $0 \leq k \leq \operatorname{dim}=2(3 g-3+n)$, the cup product defines a nondegenerate pairing

$$
H^{k}\left(\overline{\mathcal{M}}_{g, n}\right) \otimes H^{\operatorname{dim}-k}\left(\overline{\mathcal{M}}_{g, n}\right) \rightarrow H^{\operatorname{dim}}\left(\overline{\mathcal{M}}_{g, n}\right) \cong \mathbb{Q} .
$$

- For $S \subset \overline{\mathcal{M}}_{g, n}$ a closed, algebraic subset of \mathbb{C}-codimension d, there exists a fundamental class

$$
[S] \in H_{\operatorname{dim}-2 d}\left(\overline{\mathcal{M}}_{g, n}\right) \cong \underset{\mathrm{PD}}{\cong} H^{2 d}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

Natural cohomology classes on $\overline{\mathcal{M}}_{g, n}$

Natural cohomology classes on $\overline{\mathcal{M}}_{g, n}$

Definition: ψ-classes

$\mathbb{L}_{i} \rightarrow \overline{\mathcal{M}}_{g, n}$ complex line bundle, $\left.\mathbb{L}_{i}\right|_{\left(C, p_{1}, \ldots, p_{n}\right)}=T_{p_{i}}^{*} C$

$$
\psi_{i}=c_{1}\left(\mathbb{L}_{i}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right) .
$$

Natural cohomology classes on $\overline{\mathcal{M}}_{g, n}$

Definition: ψ-classes

$\mathbb{L}_{i} \rightarrow \overline{\mathcal{M}}_{g, n}$ complex line bundle, $\left.\mathbb{L}_{i}\right|_{\left(C, p_{1}, \ldots, p_{n}\right)}=T_{p_{i}}^{*} C$

$$
\psi_{i}=c_{1}\left(\mathbb{L}_{i}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right) .
$$

Definition: κ-classes

Forgetful morphism

$$
F: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n},\left(C, p_{1}, \ldots, p_{n}, p_{n+1}\right) \mapsto\left(C, p_{1}, \ldots, p_{n}\right)[C \text { smooth }]
$$

$$
\kappa_{a}=F_{*}\left(\left(\psi_{n+1}\right)^{a+1}\right) \in H^{2 a}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

$$
\left(\xi_{\Gamma}\right)_{*}\left(\quad \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)}\right)
$$

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

$$
\left(\xi_{\Gamma}\right)_{*}(\underbrace{\text { product of } \kappa, \psi \text {-classes }}_{\alpha} \text { on } \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)})
$$

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

$$
[\Gamma, \alpha]=\left(\xi_{\Gamma}\right)_{*}(\underbrace{\text { product of } \kappa, \psi \text {-classes }}_{\alpha} \text { on } \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)})
$$

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

$$
[\Gamma, \alpha]=\left(\xi_{\Gamma}\right)_{*}(\underbrace{\text { product of } \kappa, \psi \text {-classes }}_{\alpha} \text { on } \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)})
$$

Example

$$
\left[\begin{array}{llll}
1 & \kappa_{1} & \\
& (1) & \longrightarrow(2) \\
2 & &
\end{array}\right]
$$

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

$$
[\Gamma, \alpha]=\left(\xi_{\Gamma}\right)_{*}(\underbrace{\text { product of } \kappa, \psi \text {-classes }}_{\alpha} \text { on } \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)})
$$

Example

for $\xi_{\Gamma}: \overline{\mathcal{M}}_{1,3} \times \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{3,2}$

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

$$
[\Gamma, \alpha]=\left(\xi_{\Gamma}\right)_{*}(\underbrace{\text { product of } \kappa, \psi \text {-classes }}_{\alpha} \text { on } \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)})
$$

Example

for $\xi_{\Gamma}: \overline{\mathcal{M}}_{1,3} \times \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{3,2}$ and $\alpha=\kappa_{1} \otimes \psi_{h} \in H^{*}\left(\overline{\mathcal{M}}_{1,3} \times \overline{\mathcal{M}}_{2,1}\right)$

The tautological ring

Definition: the tautological ring

The tautological ring $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ is spanned as a \mathbb{Q}-vector subspace by elements

$$
[\Gamma, \alpha]=\left(\xi_{\Gamma}\right)_{*}(\underbrace{\text { product of } \kappa, \psi \text {-classes }}_{\alpha} \text { on } \prod_{v \in V(\Gamma)} \overline{\mathcal{M}}_{g(v), n(v)})
$$

Example

$$
\left[\begin{array}{ccc}
1 & \kappa_{1} \\
& \stackrel{1}{1} \longrightarrow(2) \\
2 &
\end{array}\right]=\left(\xi_{\Gamma}\right)_{*}\left(\kappa_{1} \otimes \psi_{h}\right) \in R H^{*}\left(\overline{\mathcal{M}}_{3,2}\right)
$$

for $\xi_{\Gamma}: \overline{\mathcal{M}}_{1,3} \times \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{3,2}$ and $\alpha=\kappa_{1} \otimes \psi_{h} \in H^{*}\left(\overline{\mathcal{M}}_{1,3} \times \overline{\mathcal{M}}_{2,1}\right)$

Properties of the tautological ring

- explicit, finite list of generators $[\Gamma, \alpha]$ as \mathbb{Q}-vector space
- combinatorial description of cup product $[\Gamma, \alpha] \cdot\left[\Gamma^{\prime}, \alpha^{\prime}\right]$ (Graber-Pandharipande, 2003)
- list of many linear relations between the generators (Faber-Zagier 2000, Pandharipande-Pixton 2010, Pixton 2012, Pandharipande-Pixton-Zvonkine 2013)
- effective description of isomorphism $R H^{\operatorname{dim}}\left(\overline{\mathcal{M}}_{g, n}\right) \cong \mathbb{Q}$ (Witten 1991, Kontsevich 1992)

Geometrically defined cycles

Heuristic

For many algebraic-geometric properties \mathcal{P} of smooth pointed curves $\left(C, p_{1}, \ldots, p_{n}\right)($ e.g. $\mathcal{P}(C)=" C$ is hyperelliptic" $):$

$$
S_{\mathcal{P}}=\left\{\left(C, p_{1}, \ldots, p_{n}\right) \in \mathcal{M}_{g, n}: \mathcal{P}\left(C, p_{1}, \ldots, p_{n}\right) \text { is true }\right\} \underset{\substack{\text { closed } \\ \text { algebraic }}}{\subset} \mathcal{M}_{g, n}
$$

Geometrically defined cycles

Heuristic

For many algebraic-geometric properties \mathcal{P} of smooth pointed curves $\left(C, p_{1}, \ldots, p_{n}\right)($ e.g. $\mathcal{P}(C)=" C$ is hyperelliptic" $):$

$$
S_{\mathcal{P}}=\left\{\left(C, p_{1}, \ldots, p_{n}\right) \in \mathcal{M}_{g, n}: \mathcal{P}\left(C, p_{1}, \ldots, p_{n}\right) \text { is true }\right\} \underset{\substack{\text { closed } \\ \text { algebraic }}}{\subset} \mathcal{M}_{g, n}
$$

Goal

Decide if $\left[\overline{S_{\mathcal{P}}}\right] \in H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ lies in $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$. If so, compute formula in terms of generators.

Table of Contents

(1) Moduli spaces of curves and their cohomology

(2) Cycles of twisted k-differentials

(3) Admissible cover cycles

Meromorphic differential k-forms on smooth curves

Strata of meromorphic k-differentials

Definition

Given $g, n, k \geq 0$ and $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ with $\sum_{i} m_{i}=k(2 g-2)$, let

$$
\mathcal{H}_{g}^{k}(\mu)=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \quad\right\} \subset \mathcal{M}_{g, n}
$$

Strata of meromorphic k-differentials

Definition

Given $g, n, k \geq 0$ and $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ with $\sum_{i} m_{i}=k(2 g-2)$, let

$$
\mathcal{H}_{g}^{k}(\mu)=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \begin{array}{l}
\exists \text { meromorphic } k \text {-differential } \eta \\
\text { on } C \text { with zeros/poles at } \\
p_{i} \in C \text { of orders } m_{i}
\end{array}\right\} \subset \mathcal{M}_{g, n}
$$

Strata of meromorphic k-differentials

Definition

Given $g, n, k \geq 0$ and $\mu=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ with $\sum_{i} m_{i}=k(2 g-2)$, let

$$
\begin{aligned}
& \mathcal{H}_{g}^{k}(\mu)=\left\{\left(C, p_{1}, \ldots, p_{n}\right):\right. \\
&\left.\begin{array}{l}
\exists \text { meromorphic } k \text {-differential } \eta \\
\text { on } C \text { with zeros/poles at } \\
p_{i} \in C \text { of orders } m_{i}
\end{array}\right\} \subset \mathcal{M}_{g, n} \\
&=\left\{\left(C, p_{1}, \ldots, p_{n}\right): \omega_{C}^{\otimes k} \cong \mathcal{O}_{C}\left(\sum_{i} m_{i} p_{i}\right)\right\} \subset \mathcal{M}_{g, n}
\end{aligned}
$$

Compactifying $\mathcal{H}_{g}^{k}(\mu)$: twisted differentials

Compactifying $\mathcal{H}_{g}^{k}(\mu)$: twisted differentials

Definition (Farkas-Pandharipande 2015)

$$
\widetilde{\mathcal{H}}_{g}^{k}(\mu)=\left\{\left(C, p_{1}, \ldots, p_{n}\right):\binom{\text { equality of line bundles on }}{\text { partial normalization of } C}\right\} \subset \overline{\mathcal{M}}_{g, n}
$$

Compactifying $\mathcal{H}_{g}^{k}(\mu)$: twisted differentials

Definition (Farkas-Pandharipande 2015)

$$
\widetilde{\mathcal{H}}_{g}^{k}(\mu)=\left\{\left(C, p_{1}, \ldots, p_{n}\right):\binom{\text { equality of line bundles on }}{\text { partial normalization of } C}\right\} \subset \overline{\mathcal{M}}_{g, n}
$$

Compactifying $\mathcal{H}_{g}^{k}(\mu)$: twisted differentials

Definition (Farkas-Pandharipande 2015)

$$
\widetilde{\mathcal{H}}_{g}^{k}(\mu)=\left\{\left(C, p_{1}, \ldots, p_{n}\right):\binom{\text { equality of line bundles on }}{\text { partial normalization of } C}\right\} \subset \overline{\mathcal{M}}_{g, n}
$$

Dimension of moduli space of twisted k-differentials

Theorem ($k=1$: Farkas-Pandharipande 2015, $k>1$: S. 2016, Bainbridge-Chen-Gendron-Grushevsky-Möller 2016, Mondello)

Dimension of moduli space of twisted k-differentials

Theorem ($k=1$: Farkas-Pandharipande 2015, $k>1$: S. 2016, Bainbridge-Chen-Gendron-Grushevsky-Möller 2016, Mondello)
For $k \geq 1$, all components of $\tilde{\mathcal{H}}_{g}^{k}(\mu)$ are of codimension g in $\overline{\mathcal{M}}_{g, n}$

Dimension of moduli space of twisted k-differentials

Theorem ($k=1$: Farkas-Pandharipande 2015, $k>1$: S. 2016, Bainbridge-Chen-Gendron-Grushevsky-Möller 2016, Mondello)
For $k \geq 1$, all components of $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ are of codimension g in $\overline{\mathcal{M}}_{g, n}$, except if $\mu=k \cdot \mu^{\prime}$ for some $\mu^{\prime} \geq 0$. In this case, the sublocus

$$
\overline{\mathcal{H}}_{g}^{1}\left(\mu^{\prime}\right) \subset \widetilde{\mathcal{H}}_{g}^{k}(\mu)
$$

is a union of components of codimension $g-1$.

Dimension of moduli space of twisted k-differentials

Theorem ($k=1$: Farkas-Pandharipande 2015, $k>1$: S. 2016, Bainbridge-Chen-Gendron-Grushevsky-Möller 2016, Mondello)
For $k \geq 1$, all components of $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ are of codimension g in $\overline{\mathcal{M}}_{g, n}$, except if $\mu=k \cdot \mu^{\prime}$ for some $\mu^{\prime} \geq 0$. In this case, the sublocus

$$
\overline{\mathcal{H}}_{g}^{1}\left(\mu^{\prime}\right) \subset \widetilde{\mathcal{H}}_{g}^{k}(\mu)
$$

is a union of components of codimension $g-1$.

Note

We have $\mathcal{H}_{g}^{1}\left(\mu^{\prime}\right) \subset \mathcal{H}_{g}^{k}(\mu)$ since

$$
\omega_{C} \cong \mathcal{O}_{C}\left(\sum_{i} \frac{m_{i}}{k} p_{i}\right) \Longrightarrow \omega_{C}^{\otimes k} \cong \mathcal{O}_{C}\left(\sum_{i} m_{i} p_{i}\right)
$$

Conjectural relation to Pixton's cycle

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

Let $k \geq 1$ and assume μ is not of the form $\mu=k \mu^{\prime}$ for $\mu^{\prime} \geq 0$, so $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ has pure codimension g.

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1 \mathrm{~S}$.)
Let $k \geq 1$ and assume μ is not of the form $\mu=k \mu^{\prime}$ for $\mu^{\prime} \geq 0$, so $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ has pure codimension g. Then we have

$$
\sum_{\substack{Z \text { comp. } \\ \text { of } \widetilde{\mathcal{H}}_{g}^{k}(\mu)}} \quad[Z]=\quad \in H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right) \text {, }
$$

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1 \mathrm{~S}$.)
Let $k \geq 1$ and assume μ is not of the form $\mu=k \mu^{\prime}$ for $\mu^{\prime} \geq 0$, so $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ has pure codimension g. Then we have

$$
\sum_{\substack{Z \text { comp. } \\ \text { of } \widetilde{\mathcal{H}}_{g}^{k}(\mu)}}\binom{\text { combinatorial }}{\text { factor }}[Z]=\quad \in H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1 \mathrm{~S}$.)
Let $k \geq 1$ and assume μ is not of the form $\mu=k \mu^{\prime}$ for $\mu^{\prime} \geq 0$, so $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ has pure codimension g. Then we have

$$
\sum_{\substack{Z \text { comp. } \\ \text { of } \tilde{\mathcal{H}}_{g}^{k}(\mu)}}\binom{\text { combinatorial }}{\text { factor }}[Z]=2^{-g} P_{g}^{g, k}(\widetilde{\mu}) \in H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

for $\widetilde{\mu}=\left(m_{1}+k, \ldots, m_{n}+k\right)$.

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1 \mathrm{~S}$.)
Let $k \geq 1$ and assume μ is not of the form $\mu=k \mu^{\prime}$ for $\mu^{\prime} \geq 0$, so $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ has pure codimension g. Then we have

$$
\sum_{Z \text { comp. }}\binom{\text { combinatorial }}{\text { factor }}[Z]=2^{-g} P_{g}^{g, k}(\widetilde{\mu}) \in H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

$$
\text { of } \widetilde{\mathcal{H}}_{g}^{k}(\mu)
$$

for $\widetilde{\mu}=\left(m_{1}+k, \ldots, m_{n}+k\right)$.

Note

- Pixton's cycle $P_{g}^{g}, k(\widetilde{\mu})$ is explicit sum of generators of $R H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)$

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1 \mathrm{~S}$.)
Let $k \geq 1$ and assume μ is not of the form $\mu=k \mu^{\prime}$ for $\mu^{\prime} \geq 0$, so $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ has pure codimension g. Then we have

$$
\sum_{\substack{Z \text { comp. } \\ \text { of } \widetilde{\mathcal{H}}_{g}^{k}(\mu)}}\binom{\text { combinatorial }}{\text { factor }}[Z]=2^{-g} P_{g}^{g, k}(\widetilde{\mu}) \in H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

for $\widetilde{\mu}=\left(m_{1}+k, \ldots, m_{n}+k\right)$.

Note

- Pixton's cycle $P_{g}^{g}, k(\widetilde{\mu})$ is explicit sum of generators of $R H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)$
- explicit list of components [Z],

Conjectural relation to Pixton's cycle

Conjecture ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1 \mathrm{~S}$.)
Let $k \geq 1$ and assume μ is not of the form $\mu=k \mu^{\prime}$ for $\mu^{\prime} \geq 0$, so $\tilde{\mathcal{H}}_{g}^{k}(\mu)$ has pure codimension g. Then we have

$$
\sum_{\substack{Z \text { comp. } \\ \text { of } \widetilde{\mathcal{H}}_{g}^{k}(\mu)}}\binom{\text { combinatorial }}{\text { factor }}[Z]=2^{-g} P_{g}^{g, k}(\widetilde{\mu}) \in H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

for $\widetilde{\mu}=\left(m_{1}+k, \ldots, m_{n}+k\right)$.

Note

- Pixton's cycle $P_{g}^{g}, k(\widetilde{\mu})$ is explicit sum of generators of $R H^{2 g}\left(\overline{\mathcal{M}}_{g, n}\right)$
- explicit list of components $[Z]$, each parametrized by products of $\overline{\mathcal{H}}_{g_{j}}^{k_{j}}\left(\mu_{j}\right)$

Applications and Evidence

Application : Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$

The conjecture effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$.

Applications and Evidence

Application : Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$
The conjecture effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$.
Evidence
Conjecture is true for

- $g=0$ trivial $(1=1)$

Applications and Evidence

Application : Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$
The conjecture effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$.

Evidence

Conjecture is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)

Applications and Evidence

Application : Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$
The conjecture effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$.

Evidence

Conjecture is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)
- $g=2$

Applications and Evidence

Application : Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$
The conjecture effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$.

Evidence

Conjecture is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)
- $g=2$

$$
\text { - } k=1 \text { and } \mu=(3,-1),(2,1,-1) \text { (FP-Appendix) }
$$

Applications and Evidence

Application : Recursion for $\left[\overline{\mathcal{H}}_{g}^{\kappa}(\mu)\right]$

The conjecture effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$.

Evidence

Conjecture is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)
- $g=2$

$$
\begin{aligned}
& \text { - } k=1 \text { and } \mu=(3,-1),(2,1,-1) \text { (FP-Appendix) } \\
& \text { - } k=2 \text { and } \mu=(3,1),(2,1,1) \text { (S) }
\end{aligned}
$$

Table of Contents

(1) Moduli spaces of curves and their cohomology

(2) Cycles of twisted k-differentials
(3) Admissible cover cycles

Ramified covers of smooth curves : hyperelliptic case

Ramified covers of smooth curves : hyperelliptic case

Ramified covers of smooth curves : hyperelliptic case

Ramified covers of smooth curves : hyperelliptic case

Ramified covers of smooth curves : hyperelliptic case

Ramified covers of smooth curves : hyperelliptic case

Ramified covers of smooth curves : hyperelliptic case

Ramified covers of smooth curves : hyperelliptic case

Loci of hyperelliptic and bielliptic curves

Definition

Let $g, n, m \geq 0$ be integers with $0 \leq n \leq 2 g+2$. Define
$\operatorname{Hyp}_{g, n, 2 m}=\left\{\left(C,\left(p_{i}\right)_{i=1}^{n},\left(q_{j}, q_{j}^{\prime}\right)_{j=1}^{m}\right), \quad \begin{array}{l}C \text { hyperelliptic } \\ \text { ram. points } p_{i}, \\ \text { conj. pairs } q_{j}, q_{j}^{\prime}\end{array}\right\} \subset \mathcal{M}_{g, n+2 m}$.

Loci of hyperelliptic and bielliptic curves

Definition

Let $g, n, m \geq 0$ be integers with $0 \leq n \leq 2 g+2$. Define

$$
\operatorname{Hyp}_{g, n, 2 m}=\left\{\left(C,\left(p_{i}\right)_{i=1}^{n},\left(q_{j}, q_{j}^{\prime}\right)_{j=1}^{m}\right): \quad \begin{array}{l}
C \text { hyperelliptic } \\
\text { ram. points } p_{i}, \\
\text { conj. pairs } q_{j}, q_{j}^{\prime}
\end{array}\right\} \subset \mathcal{M}_{g, n+2 m}
$$

Definition

Let $g, n, m \geq 0$ be integers with $0 \leq n \leq 2 g+2$. Define

$$
\mathrm{B}_{g, n, 2 m}=\left\{\left(C,\left(p_{i}\right)_{i=1}^{n},\left(q_{j}, q_{j}^{\prime}\right)_{j=1}^{m}\right): \begin{array}{l}
C \text { bielliptic } \\
\text { ram. points } p_{i}, \\
\text { conj. pairs } q_{j}, q_{j}^{\prime}
\end{array}\right\} \subset \mathcal{M}_{g, n+2 m}
$$

Compactification via admissible covers

Compactification via admissible covers

Compactification via admissible covers

Compactification via admissible covers

admissible cover

Compactification via admissible covers

Goal
Study admissible cover cycles like $\left[\overline{\mathrm{Hyp}}_{g, n, 2 m}\right]$ and

$$
\left[\overline{\mathrm{B}}_{g, n, 2 m}\right] \in H^{*}\left(\overline{\mathcal{M}}_{g, n+2 m}\right) .
$$

Admissible cover cycles

Theorem (Faber-Pandharipande 2005)

The fundamental class $\left[\overline{\operatorname{Hyp}}_{g, n, 2 m}\right] \in H^{2 g+2 n+2 m-4}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$ lies in the tautological ring $R H^{2 g+2 n+2 m-4}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$.

Admissible cover cycles

Theorem (Faber-Pandharipande 2005)

The fundamental class $\left[\overline{\mathrm{Hyp}}_{g, n, 2 m}\right] \in H^{2 g+2 n+2 m-4}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$ lies in the tautological ring $R H^{2 g+2 n+2 m-4}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$.

Theorem

The fundamental class $\left[\overline{\mathrm{B}}_{g, n, 2 m}\right] \in H^{2 g+2 n+2 m-2}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$ does not lie in the tautological ring $R H^{2 g+2 n+2 m-2}\left(\overline{\mathcal{M}}_{g, n}\right)$ for

- $(g, n, m)=(2,0,10)$ (Graber-Pandharipande 2003)
- $g \geq 2$ and $g+m \geq 12$ (van Zelm 2016)

Admissible cover cycles

Theorem (Faber-Pandharipande 2005)

The fundamental class $\left[\overline{\operatorname{Hyp}}_{g, n, 2 m}\right] \in H^{2 g+2 n+2 m-4}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$ lies in the tautological ring $R H^{2 g+2 n+2 m-4}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$.

Theorem

The fundamental class $\left[\overline{\mathrm{B}}_{g, n, 2 m}\right] \in H^{2 g+2 n+2 m-2}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$ does not lie in the tautological ring $R H^{2 g+2 n+2 m-2}\left(\overline{\mathcal{M}}_{g, n}\right)$ for

- $(g, n, m)=(2,0,10)$ (Graber-Pandharipande 2003)
- $g \geq 2$ and $g+m \geq 12$ (van Zelm 2016)

Note

For small (g, n, m) the cycle $\left[\overline{\mathrm{B}}_{g, n, 2 m}\right]$ is tautological, since $H^{*}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)=R H^{*}\left(\overline{\mathcal{M}}_{g, n+2 m}\right)$.

Strategy for computation

Strategy for computation

Strategy for computation

Lemma (Arbarello-Cornalba 1998)

For the inclusion $i: \partial \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n}$ the pullback

$$
i^{*}: H^{k}\left(\overline{\mathcal{M}}_{g, n}\right) \rightarrow H^{k}\left(\partial \overline{\mathcal{M}}_{g, n}\right)
$$

is injective for $k \leq d(g, n)$ with

$$
d(g, n)= \begin{cases}n-4 & \text { if } g=0 \\ 2 g-2 & \text { if } n=0 \\ 2 g-3+n & \text { if } g>0 \\ n>0\end{cases}
$$

Computer package admcycles

Computer package admcycles

File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage:

> Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Computer package admcycles

IPython: git/admcycles
File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage:

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles

Computer package admcycles

IPython: git/admcycles
File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage: H3=Hyperell $(3,0,0)$; H3
Graph : [3] [[]] []
Polynomial : 3/4*(kappa_1^1)_0
Graph : $[1,2][[14],[15]][(14,15)]$
Polynomial : (-9/4)*
Graph : $[2][[14,15]][(14,15)]$
Polynomial : (-1/8)*
sage:

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles

Computer package admcycles

IPython: git/admcycles

- (1)

File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage: H3=Hyperell(3,0,0); H3
Graph : [3] [[]] []
Polynomial : 3/4*(kappa_1^1)_0

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles

Computer package admcycles

IPython: git/admcycles
File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage: H3=Hyperell $(3,0,0)$; H3
Graph : [3] [[]] []
Polynomial : 3/4*(kappa_1^1)_0
Graph : $[1,2][[14],[15]][(14,15)]$
Polynomial : (-9/4)*
Graph : $[2][[14,15]][(14,15)]$
Polynomial : (-1/8)*
sage:

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles

Computer package admcycles

IPython: git/admcycles
$\Theta()^{*}$
File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage: H3=Hyperell(3,0,0); H3
Graph : [3] [[]] []
Polynomial : 3/4*(kappa_1^1)_0
Graph : $\quad[1,2][[14],[15]][(14,15)]$
Polynomial : (-9/4)*
Graph : [2] [[14, 15]] [(14, 15)]
Polynomial : ($-1 / 8$)*
sage: $\mathrm{g}=3$; $\mathrm{n}=0$;
sage: (H3*kappaclass(1)^5).evaluate()
3197/8960
sage:

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles

Computer package admcycles

```
                                    IPython: git/admcycles
                O(0)
File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage: H3=Hyperell(3,0,0); н3
Graph : [3] [[]] []
Polynomial : 3/4*(kappa_1^1 )_0
Graph : [1, 2] [[14], [15]] [(14, 15)]
Polynomial : (-9/4)*
Graph : [2] [[14, 15]] [(14, 15)]
Polynomial : (-1/8)*
sage: g=3; n=0;
sage: (H3*kappaclass(1)^5).evaluate()
3197/8960
sage: H3b=9*lambdaclass(1)-(1/2)*irrbdiv()-3*sepbdiv(1,())
sage:
```

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles

Computer package admcycles

```
        IPython: git/admcycles ©@
File Edit View Search Terminal Help
sage: load("admcycles.sage")
sage: H3=Hyperell(3,0,0); н3
Graph : [3] [[]] []
Polynomial : 3/4*(kappa_1^1 )_0
Graph : [1, 2] [[14], [15]] [(14, 15)]
Polynomial : (-9/4)*
Graph : [2] [[14, 15]] [(14, 15)]
Polynomial : (-1/8)*
sage: g=3; n=0;
sage: (H3*kappaclass(1)^5).evaluate()
3197/8960
sage: H3b=9*lambdaclass(1)-(1/2)*irrbdiv()-3*sepbdiv(1,())
sage: (H3-H3b).is_zero()
True
sage:
```

Written in Sage (Python) with Jason van Zelm, Vincent Delecroix; based on earlier implementation by Pixton

Features

- computations with tautological classes (products and intersection numbers)
- verification of tautological relations
- pullbacks and pushforwards of tautological classes under gluing morphism
- identification of admissible cover cycles in terms of tautological cycles

Results

$$
\left[\overline{\mathrm{Hyp}}_{2}\right]=1
$$

Results

$$
\begin{aligned}
& {\left[\overline{\mathrm{Hyp}}_{2}\right]=1} \\
& {\left[\overline{\mathrm{Hyp}}_{3}\right]=\frac{3}{4} \kappa_{1}}
\end{aligned}
$$

(\approx 19th century)
$\left.\begin{array}{c}\text { Harris-Mumford } \\ 1982\end{array}\right)$

Results

$$
\begin{aligned}
& {\left[\overline{\mathrm{Hyp}}_{2}\right]=1} \\
& {\left[\overline{\mathrm{Hyp}}_{3}\right]=\frac{3}{4} k_{1}} \\
& -\frac{9}{4}[\text { (2)——1 }]-\frac{1}{8}\left[\mathrm{C}_{2}\right] \quad \begin{array}{l}
(\approx \text { 19th century) } \\
\binom{\text { Harris-Mumford }}{1982}
\end{array} \\
& {\left[\overline{\mathrm{Hyp}}_{4}\right]=\frac{17}{2} \kappa_{2} \quad-\frac{17}{24} \kappa_{1}^{2} \quad+\frac{7}{12}\left[\begin{array}{ll}
\kappa_{1} \\
(3)-1
\end{array}\right] \quad-\frac{163}{24}[34]} \\
& +\frac{11}{12}\left[\begin{array}{ll}
\kappa_{1} & \text { (2)-(2) }]-\frac{49}{8}[\text { (2) - (2) }]+\frac{31}{24}[\text { (1)-(2)-(1) }]+\frac{11}{12}[\text { (2)-(1)-(1) }]
\end{array}\right. \\
& +\frac{163}{24}\left[\text { (3)- }{ }^{\kappa_{1}}\right]+\frac{1}{12}\left[\begin{array}{r}
\kappa_{1} \\
C_{3}
\end{array}\right] \quad-\frac{5}{8}\left[G_{3}\right] \\
& -\frac{3}{8}[2] \\
& +\frac{1}{12}[\mathrm{C}(2)-11] \\
& \left.\begin{array}{c}
\text { Faber-Pandharipande } \\
2005
\end{array}\right)
\end{aligned}
$$

Results

Results

$\left[\overline{\mathrm{Hyp}}_{6}\right]=$

Results

$$
\left[\overline{\mathrm{Hyp}}_{6}\right]=\binom{\text { sum of }}{376 \text { terms }}
$$

Results

$$
\left[\overline{\mathrm{Hyp}}_{6}\right]=\binom{\text { sum of }}{376 \text { terms }}\binom{\text { van Zelm-S. }}{2018}
$$

Other hyperelliptic and bielliptic cycles

Using admcycles one can compute the following cycles

Hyperelliptic cycles ${\left[\overline{H y p}_{g, n, 2 m} \text {] }\right.}^{2}$

(Vermeire '02) (Cavalieri-Tarasca '17: $\mathrm{n}=1, \ldots, 5$)
(Chen-Tarasca '15)

Bielliptic cycles [$\bar{B}_{g, n, 2 m}$]							
g	1		2				4
n	0	0	1	2	0	1	0
m	2	7^{1}	0	0	0°	0	0

Summary

- $\overline{\mathcal{M}}_{g, n}$ smooth, compact moduli space
- $R H^{*}\left(\overline{\mathcal{M}}_{g, n}\right) \subset H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$ tautological ring, explicit generators $[\Gamma, \alpha]$
- $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ moduli space of twisted k-differentials
- generalizes condition $\omega_{C}^{\otimes k} \cong \mathcal{O}_{C}\left(\sum_{i} m_{i} p_{i}\right)$
- Theorem about dimension of the components of $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$
- Conjecture about formula for weighted fundamental class of $\widetilde{\mathcal{H}}_{g}^{k}(\mu)$ as tautological classes
- $\overline{H y p}_{g, n, 2 m}$, example of admissible cover cycle
- generalizes condition C hyperelliptic with ramification points p_{i}, conjugate pairs q_{j}, q_{j}^{\prime}
- Algorithm for restriction of $\left[\overline{H y p}_{g, n, 2 m}\right]$ to boundary of $\overline{\mathcal{M}}_{g, n}$
- Computation of new examples of formulas for [$\overline{H y p}_{g, n, 2 m}$]

Crucial ingredient: recursive boundary structure of moduli spaces

Thank you for your attention!

