Conjectural relation of twisted differentials to Pixton's cycle

Johannes Schmitt

ETH Zürich
February 8, 2017

Pixton's cycle

Fix a genus $g \geq 0$, a number $n \geq 0$ of markings, an integer $k \geq 0$ and a partition $\widetilde{\mu}=\left(\widetilde{m}_{1}, \ldots, \widetilde{m}_{n}\right)$ of $k(2 g-2+n)$.

Pixton's cycle

Fix a genus $g \geq 0$, a number $n \geq 0$ of markings, an integer $k \geq 0$ and a partition $\widetilde{\mu}=\left(\widetilde{m}_{1}, \ldots, \widetilde{m}_{n}\right)$ of $k(2 g-2+n)$.

Note

We can obtain the partition $\tilde{\mu}$ above from a partition
$\mu=\left(m_{1}, \ldots, m_{n}\right)$ of $k(2 g-2)$ by

$$
\widetilde{\mu}=\left(m_{1}+k, \ldots, m_{n}+k\right)
$$

Pixton's cycle

Fix a genus $g \geq 0$, a number $n \geq 0$ of markings, an integer $k \geq 0$ and a partition $\widetilde{\mu}=\left(\tilde{m}_{1}, \ldots, \widetilde{m}_{n}\right)$ of $k(2 g-2+n)$. Then for every degree $d \geq 0$, Pixton constructs a tautological class

$$
P_{g}^{d, k}(\widetilde{\mu}) \in R^{d}\left(\bar{M}_{g, n}\right) \subset A^{d}\left(\bar{M}_{g, n}\right)
$$

Note

We can obtain the partition $\tilde{\mu}$ above from a partition
$\mu=\left(m_{1}, \ldots, m_{n}\right)$ of $k(2 g-2)$ by

$$
\widetilde{\mu}=\left(m_{1}+k, \ldots, m_{n}+k\right)
$$

Summary : Pixton's cycle

The tautological class $P_{g}^{d, k}(\widetilde{\mu})$ is defined as an explicit sum over dual graphs Γ and additional combinatorial data of terms of the form

$$
\xi_{\Gamma *}\left(\text { polynomial in } \kappa \text { and } \psi \text {-classes on } \prod_{v \in V(\Gamma)} \bar{M}_{g(v), n(v)}\right) .
$$

Conjecture A

Conjecture A ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

For $k \geq 1$ and μ not of the form $\mu=k \mu^{\prime}$ for a nonnegative partition μ^{\prime} of $2 g-2$, we have

Conjecture A

Conjecture A ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

For $k \geq 1$ and μ not of the form $\mu=k \mu^{\prime}$ for a nonnegative partition μ^{\prime} of $2 g-2$, we have

$$
\sum_{\Gamma \text { star graph }} \sum_{l} \quad \frac{1}{|\operatorname{Aut}(\Gamma)|} C_{\Gamma, l}=
$$

where

$$
\begin{aligned}
C_{\Gamma, I}= & \left(\xi_{\Gamma}\right)_{*}\left[\left[\overline{\mathcal{H}}_{g\left(v_{0}\right)}^{k}\left(\mu\left[v_{0}\right],-I\left[v_{0}\right]-k\right)\right] .\right. \\
& \left.\prod_{v \in V_{\text {out }}(\Gamma)}\left[\overline{\mathcal{H}}_{g(v)}^{1}\left(\frac{\mu[v]}{k}, \frac{I[v]-k}{k}\right)\right]\right]
\end{aligned}
$$

Conjecture A

Conjecture A ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

For $k \geq 1$ and μ not of the form $\mu=k \mu^{\prime}$ for a nonnegative partition μ^{\prime} of $2 g-2$, we have

$$
\sum_{\Gamma \text { star graph }} \sum_{l} \frac{\prod_{e \in E(\Gamma)} I(e)}{k^{\left|V_{\text {out }}(\Gamma)\right|}} \frac{1}{|\operatorname{Aut}(\Gamma)|} C_{\Gamma, I}=
$$

where

$$
\begin{aligned}
C_{\Gamma, I}= & \left(\xi_{\Gamma}\right)_{*}\left[\left[\overline{\mathcal{H}}_{g\left(v_{0}\right)}^{k}\left(\mu\left[v_{0}\right],-I\left[v_{0}\right]-k\right)\right] .\right. \\
& \left.\prod_{v \in V_{\text {out }}(\Gamma)}\left[\overline{\mathcal{H}}_{g(v)}^{1}\left(\frac{\mu[v]}{k}, \frac{I[v]-k}{k}\right)\right]\right]
\end{aligned}
$$

Conjecture A

Conjecture A ($k=1$ Janda-Pandharipande-Pixton-Zvonkine [FP-Appendix], $k \geq 1$ S.)

For $k \geq 1$ and μ not of the form $\mu=k \mu^{\prime}$ for a nonnegative partition μ^{\prime} of $2 g-2$, we have

$$
\sum_{\Gamma \text { star graph }} \sum_{l} \frac{\prod_{e \in E(\Gamma)} I(e)}{k^{\left|V_{\text {out }}(\Gamma)\right|}} \frac{1}{|\operatorname{Aut}(\Gamma)|} C_{\Gamma, I}=2^{-g} P_{g}^{g, k}(\widetilde{\mu})
$$

where

$$
\begin{aligned}
C_{\Gamma, I}= & \left(\xi_{\Gamma}\right)_{*}\left[\left[\overline{\mathcal{H}}_{g\left(v_{0}\right)}^{k}\left(\mu\left[v_{0}\right],-I\left[v_{0}\right]-k\right)\right] .\right. \\
& \left.\prod_{v \in V_{\text {out }}(\Gamma)}\left[\overline{\mathcal{H}}_{g(v)}^{1}\left(\frac{\mu[v]}{k}, \frac{I[v]-k}{k}\right)\right]\right]
\end{aligned}
$$

Application: Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$

Theorem (FP-Appendix, S.)

Conjecture A effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$ for

$$
\{
$$

Application: Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$

Theorem (FP-Appendix, S.)

Conjecture A effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$ for

$$
\left\{k \geq 1 \text { and } \mu \neq k \mu^{\prime} \text { with } \mu^{\prime} \geq 0(\operatorname{codim} g)\right.
$$

Application: Recursion for $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$

Theorem (FP-Appendix, S.)

Conjecture A effectively determines the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]$ for

$$
\left\{\begin{array}{l}
k \geq 1 \text { and } \mu \neq k \mu^{\prime} \text { with } \mu^{\prime} \geq 0(\text { codim } g) \\
k=1 \text { and } \mu \geq 0(\operatorname{codim} g-1)
\end{array}\right.
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]$

Example: $\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]$

$$
\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]$

$$
\begin{aligned}
& \left.\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right] \quad{ }_{i}^{2}\right\rangle_{i}^{2} \\
& +\left(\xi_{\Gamma_{2}}\right) *\left[\left[\overline{\mathcal{H}}_{1}^{2}(2,1,1,-4)\right] \cdot\left[\bar{M}_{1,1}\right]\right] \stackrel{2}{2}>=:
\end{aligned}
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]$

$$
\begin{aligned}
& \left.\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right] \quad{ }_{i}^{2}\right\rangle_{i}^{2} \\
& +\left(\xi_{\Gamma_{2}}\right) *\left[\left[\overline{\mathcal{H}}_{1}^{2}(2,1,1,-4)\right] \cdot\left[\bar{M}_{1,1}\right]\right] \underset{i}{2}>=1 \\
& +3\left(\xi_{r_{3}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]\right]
\end{aligned}
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]$

$$
\begin{aligned}
& \left.\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right] \quad{ }_{i}^{2}\right\rangle^{2} \\
& +\left(\xi_{\Gamma_{2}}\right)_{*}\left[\left[\overline{\mathcal{H}}_{1}^{2}(2,1,1,-4)\right] \cdot\left[\bar{M}_{1,1}\right]\right]{ }_{i}^{2}>=\quad= \\
& +3\left(\xi_{r_{3}}\right)_{*} \quad\left[\left[\bar{M}_{0,4]}\right] \cdot\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]\right] \\
& +\frac{1}{2}\left(\xi_{r_{4}}\right)_{*} \quad\left[\left[\bar{M}_{0,5}\right] \cdot\left[\bar{M}_{1,1}\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& +\left(\xi_{\Gamma}\right) * \quad\left[\left[\bar{M}_{0,5}\right] \cdot\left[\bar{M}_{1,2}\right]\right] \\
& +2\left(\xi_{\Gamma_{6}}\right)_{*}\left[\left[\bar{M}_{0,3}\right] \cdot\left[\overline{\mathcal{H}}_{2}^{1}(1,1)\right]\right] \\
& =\frac{1}{4} P_{2}^{2,2}(4,3,3)
\end{aligned}
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]$

Example: $\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]$

Take Conjecture A for $\mu^{+}=(3,-1)$ on $\bar{M}_{2,2}$

Example: $\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]$

Take Conjecture A for $\mu^{+}=(3,-1)$ on $\bar{M}_{2,2}$

$$
\begin{aligned}
& {\left[\overline{\mathcal{H}}_{2}^{1}(3,-1)\right] } \\
+\quad\left(\xi_{\Gamma_{2}}\right)_{*} & {\left[\left[\overline{\mathcal{H}}_{1}^{1}(3,-1,-2)\right] \cdot\left[\bar{M}_{1,1}\right]\right] } \\
+\frac{1}{2} \quad\left(\xi_{\Gamma_{3}}\right)_{*} & {\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,1}\right] \cdot\left[\bar{M}_{1,1}\right]\right] } \\
+\frac{1}{2} \quad\left(\xi_{\Gamma_{4}}\right)_{*} & {\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,2}\right]\right] } \\
+3 \quad\left(\xi_{\Gamma_{5}}\right)_{*} & {\left[\left[\bar{M}_{0,3}\right] \cdot\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]\right] } \\
=\frac{1}{4} & P_{2}^{2,1}(4,0)
\end{aligned}
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]$

Take Conjecture A for $\mu^{+}=(3,-1)$ on $\bar{M}_{2,2}$ and push forward under the forgetful map $\epsilon: \bar{M}_{2,2} \rightarrow \bar{M}_{2,1}$ of the second point

$$
\begin{aligned}
& {\left[\overline{\mathcal{H}}_{2}^{1}(3,-1)\right]} \\
& +\left(\xi_{\Gamma_{2}}\right)_{*}\left[\left[\overline{\mathcal{H}}_{1}^{1}(3,-1,-2)\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& +\frac{1}{2} \quad\left(\xi_{\Gamma_{3}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,1}\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& +\frac{1}{2} \quad\left(\xi_{\Gamma_{4}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,2}\right]\right] \\
& +3 \quad\left(\xi_{r_{5}}\right)_{*} \quad\left[\left[\bar{M}_{0,3}\right] \cdot\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]\right] \\
& =\frac{1}{4} \quad P_{2}^{2,1}(4,0) \\
& { }_{-1}^{3}>^{2} \\
& \begin{array}{r}
3 \\
-1
\end{array} \quad 1 \quad 1
\end{aligned}
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]$

Take Conjecture A for $\mu^{+}=(3,-1)$ on $\bar{M}_{2,2}$ and push forward under the forgetful map $\epsilon: \bar{M}_{2,2} \rightarrow \bar{M}_{2,1}$ of the second point

$$
\begin{array}{cl}
\epsilon_{*} & {\left[\overline{\mathcal{H}}_{2}^{1}(3,-1)\right]} \\
+\epsilon_{*}\left(\xi_{\Gamma_{2}}\right)_{*} & {\left[\left[\overline{\mathcal{H}}_{1}^{1}(3,-1,-2)\right] \cdot\left[\bar{M}_{1,1}\right]\right]}
\end{array}
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]$

Take Conjecture A for $\mu^{+}=(3,-1)$ on $\bar{M}_{2,2}$ and push forward under the forgetful map $\epsilon: \bar{M}_{2,2} \rightarrow \bar{M}_{2,1}$ of the second point

$$
-3>2
$$

$$
\begin{aligned}
& \epsilon_{*}\left(\xi_{r_{2}}\right)_{*}\left[\left[\overline{\mathcal{H}}_{1}^{1}(3,-1,-2)\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& +\frac{1}{2} \epsilon_{*}\left(\xi_{\Gamma_{3}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,1}\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& +\frac{1}{2} \epsilon_{*}\left(\xi_{r_{4}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,2}\right]\right] \\
& +3 \epsilon_{*}\left(\xi_{\Gamma_{5}}\right)_{*} \quad\left[\left[\bar{M}_{0,3]} \cdot\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]\right]\right. \\
& =\frac{1}{4} \epsilon_{*} P_{2}^{2,1}(4,0)
\end{aligned}
$$

Example: $\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]$

Take Conjecture A for $\mu^{+}=(3,-1)$ on $\bar{M}_{2,2}$ and push forward under the forgetful map $\epsilon: \bar{M}_{2,2} \rightarrow \bar{M}_{2,1}$ of the second point

$$
-3>0
$$

$$
\begin{aligned}
& \epsilon_{*}\left(\xi_{\Gamma_{2}}\right)_{*} \quad\left[\left[\overline{\mathcal{H}}_{1}^{1}(3,-1,-2)\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& +\frac{1}{2} \epsilon_{*}\left(\xi_{\Gamma_{3}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,1}\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& +\frac{1}{2} \epsilon_{*}\left(\xi_{\Gamma_{4}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\bar{M}_{1,2}\right]\right] \\
& +3 \quad\left[\overline{\mathcal{H}}_{2}^{1}(2)\right] \\
& =\frac{1}{4} \epsilon_{*} P_{2}^{2,1}(4,0)
\end{aligned}
$$

Evidence for Conjecture A

Conjecture A is true for

Evidence for Conjecture A

Conjecture A is true for

- $g=0$ trivial $(1=1)$

Evidence for Conjecture A

Conjecture A is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)

Evidence for Conjecture A

Conjecture A is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)
- $g=2$
- $k=1$ and $\mu=(3,-1),(2,1,-1)$ (FP-Appendix)

Evidence for Conjecture A

Conjecture A is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)
- $g=2$
- $k=1$ and $\mu=(3,-1),(2,1,-1)$ (FP-Appendix) Note: $\mathcal{H}_{2}^{1}(\mu)=\emptyset$ in both cases

Evidence for Conjecture A

Conjecture A is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)
- $g=2$
- $k=1$ and $\mu=(3,-1),(2,1,-1)$ (FP-Appendix) Note: $\mathcal{H}_{2}^{1}(\mu)=\emptyset$ in both cases
- $k=2$ and $\mu=(3,1),(2,1,1)$ (S)

Evidence for Conjecture A

Conjecture A is true for

- $g=0$ trivial $(1=1)$
- $g=1$ (FP-Appendix)
- $g=2$
- $k=1$ and $\mu=(3,-1),(2,1,-1)$ (FP-Appendix)

Note: $\mathcal{H}_{2}^{1}(\mu)=\emptyset$ in both cases

- $k=2$ and $\mu=(3,1),(2,1,1)$ (S)
- $\mathcal{H}_{2}^{2}(3,1)=\emptyset$
- $\mathcal{H}_{2}^{2}(2,1,1)=\left\{\left(C, q, p_{1}, p_{2}\right): \begin{array}{l}q \text { Weierstrass point, } \\ \text { jugate },\end{array}\right\}$

Example: $\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]$

$$
\begin{aligned}
& {\left[\overline{\mathcal{H}}_{2}^{2}(2,1,1)\right]} \\
& +\left(\xi_{\Gamma_{2}}\right)_{*} \quad\left[\left[\overline{\mathcal{H}}_{1}^{2}(2,1,1,-4)\right] \cdot\left[\bar{M}_{1,1}\right]\right] \\
& \begin{array}{l}
2>2 \\
1> \\
1
\end{array} \\
& +3\left(\xi_{r_{3}}\right)_{*} \quad\left[\left[\bar{M}_{0,4}\right] \cdot\left[\overline{\mathcal{H}}_{2}^{1}(2)\right]\right] \\
& \begin{array}{l}
2 \\
1 \\
1
\end{array}>0 \begin{array}{lll}
0 & 6 & \\
\end{array} \\
& +\frac{1}{2}\left(\xi_{\Gamma_{4}}\right) * \quad\left[\left[\bar{M}_{0,5]} \cdot\left[\bar{M}_{1,1}\right] \cdot\left[\bar{M}_{1,1}\right]\right]\right. \\
& +\left(\xi_{r_{5}}\right)_{*} \quad\left[\left[\bar{M}_{0,5}\right] \cdot\left[\bar{M}_{1,2}\right]\right] \\
& +2\left(\xi_{\Gamma_{6}}\right)_{*}\left[\left[\bar{M}_{0,3}\right] \cdot\left[\overline{\mathcal{H}}_{2}^{1}(1,1)\right]\right] \\
& =\frac{1}{4} P_{2}^{2,2}(4,3,3)
\end{aligned}
$$

Conjecture A^{\prime}

What if $\mu=k \mu^{\prime}$ with $\mu^{\prime} \geq 0$?

$$
\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]=\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right]
$$

Conjecture A^{\prime}

What if $\mu=k \mu^{\prime}$ with $\mu^{\prime} \geq 0$?

$$
\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]=\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\text {vir }}+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right] \in A^{g}\left(\bar{M}_{g, n}\right)
$$

Conjecture A^{\prime}

What if $\mu=k \mu^{\prime}$ with $\mu^{\prime} \geq 0$?

$$
\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]=\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\operatorname{vir}}+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right] \in A^{g}\left(\bar{M}_{g, n}\right)
$$

(1) Formula from Conjecture A for μ, k :

$$
\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\text {vir }}+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right]+\sum_{(\Gamma, l) \text { nontrivial }} \text { Cont }_{g, \mu}^{k}(\Gamma, I)=2^{-g} P_{g}^{g, k}(\widetilde{\mu})
$$

Conjecture A^{\prime}

What if $\mu=k \mu^{\prime}$ with $\mu^{\prime} \geq 0$?

$$
\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]=\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\operatorname{vir}}+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right] \in A^{g}\left(\bar{M}_{g, n}\right)
$$

(1) Formula from Conjecture A for μ, k :

$$
\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\text {vir }}+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right]+\sum_{(\Gamma, l) \text { nontrivial }} \text { Cont }_{g, \mu}^{k}(\Gamma, l)=2^{-g} P_{g}^{g, k}(\widetilde{\mu})
$$

(2) Formula from Conjecture A for $\frac{\mu}{k}, 1$:

$$
\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\text {vir }}+\sum_{\left(\Gamma^{\prime}, l^{\prime}\right) \text { nontrivial }} \operatorname{Cont}_{g, \mu / k}^{1}\left(\Gamma^{\prime}, I^{\prime}\right)=2^{-g} P_{g}^{g, 1}(\widetilde{\mu / k})
$$

Conjecture A^{\prime}

What if $\mu=k \mu^{\prime}$ with $\mu^{\prime} \geq 0$?

$$
\left[\overline{\mathcal{H}}_{g}^{k}(\mu)\right]=\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\operatorname{vir}}+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right] \in A^{g}\left(\bar{M}_{g, n}\right)
$$

(1) Formula from Conjecture A for μ, k :

$$
\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\text {vir }}+\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right]+\sum_{(\Gamma, l) \text { nontrivial }} \text { Cont }_{g, \mu}^{k}(\Gamma, I)=2^{-g} P_{g}^{g, k}(\widetilde{\mu})
$$

(2) Formula from Conjecture A for $\frac{\mu}{k}, 1$:

$$
\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\text {vir }}+\sum_{\left(\Gamma^{\prime}, I^{\prime}\right) \text { nontrivial }} \operatorname{Cont}_{g, \mu / k}^{1}\left(\Gamma^{\prime}, I^{\prime}\right)=2^{-g} P_{g}^{g, 1}(\widetilde{\mu / k})
$$

Idea: Take (2) as a definition of $\left[\overline{\mathcal{H}}_{g}^{1}\left(\frac{\mu}{k}\right)\right]^{\text {vir }}$
\Longrightarrow Conjecture $\mathrm{A}^{\prime}=(1)$ for $k>1, \mu=k \mu^{\prime}$ with $\mu^{\prime} \geq 0$

Evidence for Conjecture A^{\prime}

Evidence for Conjecture A^{\prime}

- $g=0$ no nontrivial examples possible

Evidence for Conjecture A^{\prime}

- $g=0$ no nontrivial examples possible
- $g=1$ implies $\mu=(0, \ldots, 0)$, check on formulas

Evidence for Conjecture A^{\prime}

- $g=0$ no nontrivial examples possible
- $g=1$ implies $\mu=(0, \ldots, 0)$, check on formulas
- $g=2, k=2$ and $\mu=(4),(2,2)$

Evidence for Conjecture A^{\prime}

- $g=0$ no nontrivial examples possible
- $g=1$ implies $\mu=(0, \ldots, 0)$, check on formulas
- $g=2, k=2$ and $\mu=(4),(2,2)$
- $\mathcal{H}_{2}^{2}(4)^{\prime}=\emptyset$

Evidence for Conjecture A^{\prime}

- $g=0$ no nontrivial examples possible
- $g=1$ implies $\mu=(0, \ldots, 0)$, check on formulas
- $g=2, k=2$ and $\mu=(4),(2,2)$
- $\mathcal{H}_{2}^{2}(4)^{\prime}=\emptyset$
- $\mathcal{H}_{2}^{2}(2,2)^{\prime}=\{(C, p, q): p, q$ Weierstrass points $\}$ Class computed by Tarasca in 2015

Evidence for Conjecture A^{\prime}

- $g=0$ no nontrivial examples possible
- $g=1$ implies $\mu=(0, \ldots, 0)$, check on formulas
- $g=2, k=2$ and $\mu=(4),(2,2)$
- $\mathcal{H}_{2}^{2}(4)^{\prime}=\emptyset$
- $\mathcal{H}_{2}^{2}(2,2)^{\prime}=\{(C, p, q): p, q$ Weierstrass points $\}$

Class computed by Tarasca in 2015
Again, Conjecture A^{\prime} gives an effective way to compute the classes $\left[\overline{\mathcal{H}}_{g}^{k}(\mu)^{\prime}\right]$.

Thank you for your attention.

Pixton's cycle

Definition

Let Γ be a stable graph of genus g with n legs. A k-weighting mod r of Γ is a function on the set of half-edges

$$
w: H(\Gamma) \rightarrow\{0,1, \ldots, r-1\}
$$

satisfying

Pixton's cycle

Definition

Let Γ be a stable graph of genus g with n legs. A k-weighting mod r of Γ is a function on the set of half-edges

$$
w: H(\Gamma) \rightarrow\{0,1, \ldots, r-1\}
$$

satisfying
i) for the leg h_{i} corresponding to marking i

$$
w\left(h_{i}\right)=\tilde{m}_{i} \quad \bmod r
$$

Pixton's cycle

Definition

Let Γ be a stable graph of genus g with n legs. A k-weighting mod r of Γ is a function on the set of half-edges

$$
w: H(\Gamma) \rightarrow\{0,1, \ldots, r-1\}
$$

satisfying
i) for the leg h_{i} corresponding to marking i

$$
w\left(h_{i}\right)=\tilde{m}_{i} \quad \bmod r
$$

ii) for all half-edges h, h^{\prime} forming an edge

$$
w(h)+w\left(h^{\prime}\right)=0 \quad \bmod r
$$

Pixton's cycle

Definition

Let Γ be a stable graph of genus g with n legs. A k-weighting mod r of Γ is a function on the set of half-edges

$$
w: H(\Gamma) \rightarrow\{0,1, \ldots, r-1\}
$$

satisfying
i) for the leg h_{i} corresponding to marking i

$$
w\left(h_{i}\right)=\tilde{m}_{i} \quad \bmod r
$$

ii) for all half-edges h, h^{\prime} forming an edge

$$
w(h)+w\left(h^{\prime}\right)=0 \bmod r
$$

ii) for all vertices v of Γ

$$
\sum_{v(h)=v} w(h)=k(2 g(v)-2+n(v)) \quad \bmod r
$$

Pixton's cycle

Definition

For each positive integer r, let $P_{g}^{d, r, k}(\widetilde{\mu})$ be the degree d component of the tautological class

$$
\begin{aligned}
& \sum_{\Gamma, w} \frac{1}{|\operatorname{Aut}(\Gamma)|} \frac{1}{r^{h^{1}(\Gamma)}} \xi_{\Gamma *}\left[\prod_{v \in V(\Gamma)} e^{-k^{2} \kappa_{1}(v)} \prod_{i=1}^{n} e^{\widetilde{m}_{i}^{2} \psi_{h_{i}}}\right. \\
&\left.\prod_{e=\left(h, h^{\prime}\right) \in E(\Gamma)} \frac{1-e^{-w(h) w\left(h^{\prime}\right)\left(\psi_{h}+\psi_{h^{\prime}}\right)}}{\psi_{h}+\psi_{h^{\prime}}}\right]
\end{aligned}
$$

Pixton's cycle

Definition

For each positive integer r, let $P_{g}^{d, r, k}(\widetilde{\mu})$ be the degree d component of the tautological class

$$
\begin{aligned}
& \sum_{\Gamma, w} \frac{1}{|\operatorname{Aut}(\Gamma)|} \frac{1}{r^{h^{1}(\Gamma)}} \xi_{\Gamma *}\left[\prod_{v \in V(\Gamma)} e^{-k^{2} \kappa_{1}(v)} \prod_{i=1}^{n} e^{\widetilde{m}_{i}^{2} \psi_{h_{i}}}\right. \\
&\left.\prod_{e=\left(h, h^{\prime}\right) \in E(\Gamma)} \frac{1-e^{-w(h) w\left(h^{\prime}\right)\left(\psi_{h}+\psi_{h^{\prime}}\right)}}{\psi_{h}+\psi_{h^{\prime}}}\right]
\end{aligned}
$$

Proposition/Definition (Pixton)

$P_{g}^{d, r, k}(\widetilde{\mu}) \in R^{d}\left(\bar{M}_{g, n}\right)$ is polynomial in r for $r \gg 0$. Let $P_{g}^{d, k}(\widetilde{\mu}) \in R^{d}\left(\bar{M}_{g, n}\right)$ be the value of this polynomial at $r=0$.

