SAMPLE PROBLEMS FOR QUIZ 2

Problem 1. Find the Galois group of the splitting field of the polynomial $t^{3}-10$ over the fields $\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{-3}), \mathbb{F}_{13}$.
Problem 2. Let K be the splitting field of $t^{5}-2$ over $\mathbb{Q}, M=\mathbb{Q}(\alpha) \subset$ K where $\alpha=\sqrt[5]{2}$ and $G:=\operatorname{Gal}(K / \mathbb{Q})$. Show that:
(a) K contains a subfield $L=\mathbb{Q}(\zeta)$ where $\zeta^{5}=1, \zeta \neq 1$,
(b) $[L: \mathbb{Q}]=4,[K: L]=5$ and $\operatorname{Gal}(K / L)=\mathbb{Z} / 5 \mathbb{Z}$,
(c) There exists unique $\tau \in \operatorname{Gal}(K / L)$ such that $\tau(\alpha)=\zeta \alpha$ and $\tau^{5}=e$.
(d) There exists $\sigma \in \operatorname{Gal}(K / M)$ such that $\sigma(\zeta)=\zeta^{2}$, and $\sigma^{4}=e$.
(e) $\sigma \tau \sigma^{-1}=\tau^{2}$,
(f) Any element $g \in G$ can be written uniquely in the form $g=$ $\sigma^{a} \tau^{b}, a \in \mathbb{Z} / 4 \mathbb{Z}, b \in \mathbb{Z} / 5 \mathbb{Z}$.

Problem 3. Find the Galois group of the splitting field of the polynomial $t^{4}-x$ over the field $\mathbb{R}(x)$.

Problem 4. Find the Galois group of the splitting field of the polynomials $t^{3}+t+x, t^{3}+x^{2} t+x^{3}$ over the field $\mathbb{C}(x)$.
Problem 5. Show that the extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}$ is normal and find $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) / \mathbb{Q})$.

