SAMPLE PROBLEMS FOR QUIZ 2

Problem 1. Find the Galois group of the splitting field of the polynomial $t^3 - 10$ over the fields \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{-3})$, \mathbb{F}_{13} .

Problem 2. Let K be the splitting field of $t^5 - 2$ over \mathbb{Q} , $M = \mathbb{Q}(\alpha) \subset$ K where $\alpha = \sqrt[5]{2}$ and $G := Gal(K/\mathbb{Q})$. Show that:

- (a) K contains a subfield $L = \mathbb{Q}(\zeta)$ where $\zeta^5 = 1, \zeta \neq 1$,
- (b) $[L:\mathbb{Q}] = 4$, [K:L] = 5 and $Gal(K/L) = \mathbb{Z}/5\mathbb{Z}$,
- (c) There exists unique $\tau \in Gal(K/L)$ such that $\tau(\alpha) = \zeta \alpha$ and $\tau^5 = e.$
- (d) There exists $\sigma \in Gal(K/M)$ such that $\sigma(\zeta) = \zeta^2$, and $\sigma^4 = e$. (e) $\sigma\tau\sigma^{-1} = \tau^2$,
- (f) Any element $g \in G$ can be written uniquely in the form g = $\sigma^a \tau^b, a \in \mathbb{Z}/4\mathbb{Z}, b \in \mathbb{Z}/5\mathbb{Z}.$

Problem 3. Find the Galois group of the splitting field of the polynomial $t^4 - x$ over the field $\mathbb{R}(x)$.

Problem 4. Find the Galois group of the splitting field of the polynomials $t^3 + t + x$, $t^3 + x^2t + x^3$ over the field $\mathbb{C}(x)$.

Problem 5. Show that the extension $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$: \mathbb{Q} is normal and find $Gal(\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})/\mathbb{Q})$.