Theorem 10.1. Let $L \supset F \supset K$ be a finite field extension, $a \in L$. Then

$$
\text { a) } \operatorname{Tr}_{L / K}(a)=\operatorname{Tr}_{F / K}\left(\operatorname{Tr}_{L / F}(a)\right)
$$

and

$$
\text { b) } \left.N_{L / K}(a)=N_{F / K}\left(N_{L / F} a\right)\right)
$$

Proof. Let $\alpha_{i} \in L, 1 \leq i \leq n:=[L: F]$ be a basis of L as an F-vector space and $\beta_{j} \in F, 1 \leq j \leq m:=[F: K]$ be a basis of F as a K-vector space and
$l_{i j}:=\left\{\alpha_{i} \beta_{j}\right\} \subset L, 1 \leq i \leq n, 1 \leq j \leq m$.
As we have seen in the first lecture the set $\left\{l_{i j}\right\} \subset L$ is a basis of L as an K-vector space.

For any $b \in F$ we denote by $M^{b}=\left(m_{i i^{\prime}}^{b}\right), m_{i i^{\prime}}^{b} \in K, 1 \leq j, j^{\prime} \leq m$ the $m \times m$ matrix of the operator of the multiplication by b in F computed in the basis $\beta_{j}, 1 \leq j \leq m$. Analogously for any $a \in L$ we denote by $B^{a}=\left(b_{i i^{\prime}}^{a}\right), b_{i i^{\prime}}^{a} \in F, 1 \leq i, i^{\prime} \leq n$ the $n \times n$ matrix of the operator of the multiplication by a in the F-vector space L computed in the basis $\alpha_{i}, 1 \leq i \leq n$.

Now for any $a \in L$ consider $n \times n$-matrix $C_{a}=\left(c_{i i^{\prime}}\right), 1 \leq i, i^{\prime} \leq n$ whose entries are $m \times m$-matrices $c_{i i^{\prime}}:=M^{b_{i i^{\prime}}}$. We can naturally consider C_{a} as an $m n \times m n$-matrix \tilde{C}_{a} with entries in K.

Lemma 10.1. The matrix \tilde{C}_{a} is equal to the matrix of the operator of the multiplication by a in L computed in the basis $l_{i j}, 1 \leq i \leq n, 1 \leq$ $j \leq m$.

I'll leave the proof of the Lemma as an exercise.
Now it is easy to prove the part a) of the Theorem. By the definition

$$
\begin{gathered}
\operatorname{Tr}_{L / K}(a)=\operatorname{Tr}\left(\tilde{C}_{a}\right)=\sum_{1 \leq i \leq n} \operatorname{Tr}\left(c_{i i}\right) \\
=\sum_{1 \leq i \leq n} \operatorname{Tr}_{F / K}\left(\left(b_{i i}\right)\right)=\operatorname{Tr}_{F / K}\left(\sum_{1 \leq i \leq n}\left(b_{i i}\right)\right)=\operatorname{Tr}_{F / K}\left(\operatorname{Tr}_{L / F}(a)\right)
\end{gathered}
$$

To prove the part b) we have to show that $\operatorname{Det}\left(\tilde{C}_{a}\right)=N_{F / K}\left(\operatorname{Det}\left(C_{a}\right)\right)$ for any $a \in L$. As often happens it is easier to prove a more general result.

For any $n \times n$ matrix $B=\left(b_{i i^{\prime}}\right), b_{i i^{\prime}} \in F, 1 \leq i, i^{\prime} \leq n$ we denote by \tilde{B} the $n \times n$-matrix $\tilde{B}=\left(\tilde{b}_{i i^{\prime}}\right), 1 \leq i, i^{\prime} \leq n$ whose entries are $m \times m$ matricies $M^{b_{i i^{\prime}}}$. We can naturally consider \tilde{B} as an $m n \times m n$-matrix with entries in K.
lemma 10.2. The map $\phi: G L_{m}(F) \rightarrow G L_{m n}(K), B \rightarrow \tilde{B}$ is a group homomorphism.

I'll leave the proof of Lemma 10.2 as a homework.
Proposition 10.1..For any $n \times n$ matrix $B \in G L_{n}(F)$ we have $\operatorname{Det}(\tilde{B})=N_{F / K}(\operatorname{Det}(B))$.

We start the proof with the special case. .
lemma 10.3. Show that the Proposition 10.1 is true
a) if B is an upper [or lower]triangular matrix,
b) if B is a permutation matrix..

I'll leave the proof of Lemma 10.3 as a homework.
Proof of the Proposition 10.1. Consider two maps f_{1}, f_{2} : $G L_{n}(F) \rightarrow K^{*}$ where $f_{1}(B):=N_{L / K}(\operatorname{Det}(B)), f_{2}(A):=\operatorname{Det}(\tilde{B})$. We want to show that $f_{1} \equiv f_{2}$. Since the $\phi: G L_{m}(F) \rightarrow G L_{m n}(K), B \rightarrow \tilde{B}$ and the determinant maps are group homomorphism we see that both f_{1} and f_{2} are group homomorphism. As you know any invertible $n \times n$ matrix can be brought by the row reduction procedure to the reduced echelon form [this is known as the Gauss reduction procedure]. In other words any invertible $n \times n$-matrix B can be written in the form $B=A^{+} s A^{-}$where A^{+}is an upper triangular matrix, A^{-}is an lower triangular matrix and s is a permutation matrix. Since both f_{1} and f_{2} are group homomorphism to prove the equality $f_{1}(B)=f_{2}(B)$ it is sufficient to check that $f_{1}\left(A^{+}\right)=f_{2}\left(A^{+}\right), f_{1}\left(A^{-}\right)=f_{2}\left(A^{-}\right)$and $f_{1}(s)=f_{2}(s)$ where A^{+}is an upper triangular matrix, A^{+}is an lower triangular matrix and s is a permutation matrix. But this is an easy exercise. \square.

Now we can finish the proof of Theorem 10.1. By the definition $N_{N / L}(\alpha)=\operatorname{Det}\left(M^{\prime}\right)$ and therefore $N_{L / K}\left(N_{N / L}(\alpha)\right)=N_{L / K}(\operatorname{Det}(M))$. On the other hand $N_{N / K}(\alpha)=\operatorname{Det}\left(M^{\prime \prime}\right)$ and the equality $N_{N / K}(\alpha)=$ $N_{L / K}\left(N_{N / L}(\alpha)\right)$ follows from Proposition 10.1.

Theorem 10.2. a) Let $L \supset K$ be a finite extension $\alpha \in L, \sigma_{1}, \ldots, \sigma_{n}$ the set of K-homomorphisms from L to \bar{K}. Then
a)

$$
\operatorname{Tr}_{L / K}(\alpha)=\sum_{1 \leq i \leq n} \sigma_{i}(\alpha)
$$

if the extension $L \supset K$ is separable and
$\operatorname{Tr}_{L / K}(\alpha)=0$ otherwise,
b) $N_{L / K}(\alpha)=\prod_{1 \leq i \leq n} \sigma_{i}(\alpha)^{[L: K]_{i}}$.

Proof. I'll give a proof of Theorem 10.2 only for the case when the extension $L \supset K$ is separable. Assume first that $L=K(\alpha)$. Let $p(t)=$ $\operatorname{Irr}(\alpha, K, t)$. Since the extension $L \supset K$ is separable the polynomial $p(t)$ has $[L: K]$ distinct roots in \bar{K} and it follows from Lemma 3.3 that these roots have a form $\alpha_{i}=\sigma_{i}(\alpha), 1 \leq i \leq n$. So in this case Theorem 10.1 follows from Lemma 9.1.

Consider now the case of an arbitrary separable extension $L \supset K$. I'll give only a proof of the part b). The part a) is only easier.

As follows from Theorem 10.1 we have $N_{L / K}(\alpha)=N_{K(\alpha) / K}^{[L: K(\alpha)]}(\alpha)$.
On the other hand let $\tau_{1}, \ldots, \tau_{r}, r=[K(\alpha): K]$ be the set of K homomorphism from $K(\alpha)$ to \bar{K}. As follows from the arguments used in the proof of Lemma 6.5 for any $j, 1 \leq j \leq r$ there exists $[L: K(\alpha)$] K-homomorphism σ from L to \bar{K} such that $\sigma(\beta)=\tau_{j}(\beta), \forall \beta \in K(\alpha)$. Therefore $\prod_{1 \leq i \leq n} \sigma_{i}(\alpha)=\left(\prod_{1 \leq j \leq r} \tau_{j}(\alpha)\right)^{[L: K(\alpha)]}$. Since we already know that

$$
\prod_{1 \leq j \leq r} \tau_{j}(\alpha)=N_{K(\alpha) / K}(\alpha)
$$

we see that $N_{L / K}(\alpha)=\prod_{1 \leq i \leq n} \sigma_{i}(\alpha)$.
Let $L \supset K$ be a finite extension. Consider L as a K-vector space and define a bilinear form

$$
<,>: L \times L \rightarrow K
$$

by $\langle\alpha, \beta\rangle:=\operatorname{Tr}_{L / K}(\alpha \beta)$
Lemma 10.4. If the extension $L \supset K$ is separable then the bilinear form is non-degenerate.

Proof. We first show that the map $\operatorname{Tr}_{L / K}: L \rightarrow K$ is not identically zero. Really as follows from the theorem 10.2 we have

$$
\operatorname{Tr}_{L / K}(\alpha)=\sum_{1 \leq i \leq n} \sigma_{i}(\alpha)
$$

By Lemma of Dedekind we know that the maps $\sigma_{i}: L \rightarrow \bar{K}, 1 \leq i \leq n$ are linearly independent. Therefore we know that there exists $\alpha \in L$ such that $\sum_{1 \leq i \leq n} \sigma_{i}(\alpha) \neq 0$. In other words there exists $\gamma \in L$ such that $\operatorname{Tr}_{L / K}(\gamma) \neq 0$.

By the definition a bilinear form $<,>: L \times L \rightarrow K$ on a finitedimensional K-vector space is non-degenerate if for any $\alpha \in L-\{0\}$ there exists $\beta \in L$ such that $\langle\alpha, \beta>\neq 0$. But we can take $\beta=\gamma / \alpha$.

