Lemma 11.1. [Kummer's theory]. Let K be a field of characteristic zero, n > 1 a number such that K contains all the roots of order n of 1 and $L \supset K$ be a Galois extension with the Galois group Gal(L/K) equal to \mathbb{Z}_n . Then there exists $\alpha \in L$ such that $L = K(\alpha)$ and $\alpha^n \in K$.

Proof. Fix $\zeta \in K$ such that $\zeta^n = 1, \zeta^m \neq 1$ for 1 < m < n and choose a generator σ of the group Gal(L/K). By Dedekind's lemma the K-linear maps $\sigma^i : L \to L, 0 \leq i < n$ are linearly independent. Therefore there exists $x \in L$ such that $\alpha := \sum_{i=0}^{n-1} \zeta^{-i} \sigma^i(x) \neq 0$. Then

$$\sigma(\alpha) = \sum_{i=0}^{n-1} \zeta^{-i} \sigma^{i+1}(x) = \zeta \sum_{i=0}^{n-1} \zeta^{-(i+1)} \sigma^{i+1}(x) = \zeta \alpha$$

Therefore $\sigma(\alpha^n) = \alpha^n$. So $\alpha^n \in K$.

I claim that $K(\alpha) = L$. Since $K(\alpha) \subset L$ it is sufficient to show that $\dim_K(K(\alpha)) \geq n$. But is clear that the elements $\alpha^i \in L, 0 \leq i < n$ are eigenvectors of σ with distinct eigenvalues ζ^i . Therefore elements $\alpha^i \in L, 0 \leq i < n$ are linearly independent over K. So $\dim_K(K(\alpha)) \geq n.\square$

Definition 11.1. Let K be a field and $p(t) \in K[t]$ an irreducible polynomial of positive degree and $L \supset K$ the splitting field of p(t). We say that the group Gal(L/K) is the Galois group of p(t).

b) If $L \subset \overline{K}$ is a finite extension of K we say that L is obtainable from K by adding radicals if there exists a finite extension $F_n \supset L$ and an increasing sequence of fields $K = F_0 \subset F_1 \ldots \subset F_n$ such that for any $i, 0 \leq i < n$ we have $F_{i+1} = F_i(\alpha_i)$ where $\alpha_i^{r_i} \in F_i$ for some $r_i > 0$,

c) if $p(t) \in K[t]$ is an irreducible polynomial of positive degree we say that an equation p(t) = 0 is *solvable in radicals* if the extension L := K[t]/(p(t)) of K is obtainable from K by adding radicals.

Theorem 11.1. Let K be a field of characteristic 0 and $L \supset K$ a normal extension. Then L is obtainable from K by adding radicals iff the Galois group Gal(L/K) is solvable.

Proof. a) Assume that the Galois group Gal(L/K) is solvable. Then there exists a sequence of subgroups $(e) = H_0 \subset H_1 \ldots \subset H_m = G$ such that $H_i \bigtriangleup H_{i+1}$ and the quotient group $H_{i+1}/H_i, 0 \le i < m$ are cyclic.

Define $F_i := L^{H_{n-i}}$. Then we have a sequence of subfields $K = F_0 \subset F_1 \subset \ldots \subset F_n = L$ such that extensions F_{i+1}/F_i are normal and the Galois groups $Gal(F_{i+1}/F_i)$ are cyclic. It is sufficient to show that for any $i, 0 \leq i < m$ one can obtain the field F_{i+1} from F_i by adding radicals.

Assume that $Gal(F_{i+1}/F_i) = \mathbb{Z}_r$. Let M_i be the splitting field of $t^r - 1$ over F_i . It is clear that we can obtain the field M_i from F_i by adding radicals. Let $N_{i+1} = F_{i+1}M_i$.

Then it is easy to see (?) that N_{i+1}/M_i is a Galois extension and $Gal(N_{i+1}/M_i)$ is a subgroup of $Gal(F_{i+1}/F_i) = \mathbb{Z}_r$.

So $Gal(N_{i+1}/M_i) = \mathbb{Z}_{r'}$ where r'|r. Since M_i contains all all the roots of order r' of 1 and $L \supset K$ is a Galois extension with the Galois group Gal(L/K) equal to $\mathbb{Z}_{r'}$ it follows from Lemma 11.1 that one can obtain the field F_{i+1} from M_i by adding radicals. \Box

b) Assume that L is obtainable from K by adding radicals. We want to show that the Galois group Gal(L/K) is solvable. Using the induction it is sufficient to prove the following result which I'll leave for you to prove.

Claim. Let K be a field, L is a splitting field of a polynomial $t^n - a$. Then the Galois group Gal(L/K) is solvable.

Definition 11.2. a) The symmetric groups S_n is the group of permutations of the set (1, ..., n).

b) For any sequence $\overline{i} = (i_1, i_2, ..., i_r)$ of distinct elements of (1, ..., n) we denote by $[i_1, i_2, ..., i_r] \in S_n$ the permutation such that

$$[i_1, i_2, \dots, i_r](i_k) = i_{k+1}, 1 \le k < r, [i_1, i_2, \dots, i_r](i_r) = i_1, [i_1, i_2, \dots, i_r](i) = i, i \notin \overline{i}$$

The element $[i_1, i_2, ..., i_r] \in S_n$ is called the *cycle* corresponding to the sequence $\overline{i} = (i_1, i_2, ..., i_r)$,

c) we call the cycle $s_i := [i, i+1], 1 \le i < n$ an elementary permutation.

Given any $\sigma \in S_n$ and $i \in (1, ..., n)$ we may form an orbit $\overline{i} \subset (1, ..., n)$ of *i* under the action of the cyclic group generated by σ . Then (1, ..., n) may be decomposed in a disjoint union of orbits of the cyclic group

generated by σ . Then σ is equal to the product of commuting cycles corresponding to this decomposition.

Lemma 11.3. a) The elementary permutations $s_i, 1 \leq i < n$ generate S_n ,

b) if n is a prime number, $\sigma \in S_n$ is an n-cycle and $\tau \in S_n$ an elementary permutation then (σ, τ) generate S_n ,

c) two elements of S_n are conjugate iff they are products of cycles of the same length,

d) if n is prime and $\sigma \in S_n$ is an element of order n then σ is an n-cycle.

Proof. a),c) and d) are easy and I'll only outline the proof of b).

By renumbering the elements we can assume that $\tau = (1, 2)$. We can find r, 0 < r < n such that $\sigma^r(1) = 2$. Since n is prime we see that σ^r is also an n-cycle. Therefore by another renumbering the elements we can assume that $\sigma^r = (1, 2, ..., n)$. But then we have $\sigma^{-ir} \circ \tau \circ \sigma^{ir} = s_i, 1 \leq i < n$. So the subgroup of S_n generated by (σ, τ) contains $s_i, 1 \leq i < n$.

Theorem 11.2. The groups S_n are not solvable if n > 4.

Proof. Theorem 11.2 is an immediate corollary of the following result.

Theorem 11.2'. Let $H \subset S_n$, n > 4 be a subgroup containing all 3-cycles and $H' \lhd H$ be a normal subgroup such that the quotient group H/H' is abelian. Then H' also contains all 3-cycles.

Proof of Theorem 11.2'. Let $[rki] \in S_n$ be a 3-cycle. We want to show that $[rki] \in H'$. Choose numbers $j, s \in (1, ..., n)$ distinct from r, k, i and consider $\sigma := [ijk], \tau := [krs]$. By the condition on H we have $\sigma, \tau \in H$. I claim that $\sigma \tau \sigma^{-1} \tau^{-1} \in H'$. Really since the group H/H' is abelian we have $q(\sigma \tau \sigma^{-1} \tau^{-1}) = q(\sigma)q(\tau)q(\sigma)^{-1}q(\tau)^{-1}) =$ $e_{H/H'}$ whre $q : H \to H/H'$ is the natural projection and $e_{H/H'}$ is the unit in H/H'.

On the other hand $\sigma \tau \sigma^{-1} \tau^{-1} = [rki]$. So $[rki] \in H'.\square$

Let $s(t) \in K[t]$ be an irreducible polynomial of degree n. Then the Galois group G of s(t) acts on the set $R \subset \overline{\mathbb{Q}}$ of roots of s(t) in $\overline{\mathbb{Q}}$. In other words we have an imbedding of the group G into the symmetric group S_n . In particular we can talk about the decomposition of $\sigma \in G$ in the product of cycles.

Theorem 11.3. Let $s(t) \in K[t]$ be an irreducible polynomial of a prime degree p. Suppose that there exists $\sigma \in G$ which acts on R as an elementary transposition. Then $G = S_n$.

Proof. Let F := K[t]/(s(t)), L be the normal closure of F over K and G = Gal(L/K). We want to show that $G = S_n$.

Since |G| = [L : K] = [L : F][F : K] we see that p divides |G|. Therefore it follows from the Cauchy's theorem that there exists $\tau \in G$ of order p. Consider the imbedding of the group G into the symmetric group S_p coming from the action on roots of s(t)). Since p is a prime number it follows from Lemma 11.2 d) that $\tau \in S_n$ is an *n*-cycle. Theorem 11.3 follows now from Lemma 11.2 b). \Box

Corollary 1. Let $s(t) \in \mathbb{Q}[t]$ be a polynomial of a prime degree p which have exactly two non-real roots in \mathbb{C} . Then the Galois group of s(t) is equal to S_p .

Proof. We have to show that the image of the Galois group Gal(L/K) in S_p contains an elementary transposition. By the complex conjugation acts on the set of roots of s(t) as an elementary transposition.

Corollary 2. The Galois group of $s(t) = t^5 - 6t + 3$ is equal to S_5 . **Proof.** The Eisenstein's criterion shows the irreducibility of s(t).

Since

p(-3) < 0, p(-1) > 0, p(-1) < 0, p(2) > 0 we see that s(t) has at least 3 real roots. On the other hand p'(t) has only 2 zeros. So it follows from the Rolle's theorem that s(t) has at most 3 real roots. We see that s(t) has exactly three real roots. Therefore s(t) has exactly two complex roots and the result follows from Corollary 1.