
Lemma 11.1. [Kummer’s theory]. Let K be a field of characteristic
zero, n > 1 a number such that K contains all the roots of order n of
1 and L ⊃ K be a Galois extension with the Galois group Gal(L/K)
equal to Zn. Then there exists α ∈ L such that L = K(α) and αn ∈ K.

Proof. Fix ζ ∈ K such that ζn = 1, ζm 6= 1 for 1 < m < n and
choose a generator σ of the group Gal(L/K). By Dedekind’s lemma
the K-linear maps σi : L → L, 0 ≤ i < n are linearly independent.
Therefore there exists x ∈ L such that α :=

∑n−1
i=0 ζ−iσi(x) 6= 0. Then

σ(α) =
n−1∑
i=0

ζ−iσi+1(x) = ζ

n−1∑
i=0

ζ−(i+1)σi+1(x) = ζα

Therefore σ(αn) = αn. So αn ∈ K.
I claim that K(α) = L. Since K(α) ⊂ L it is sufficient to show that

dimK(K(α)) ≥ n. But is is clear that the elements αi ∈ L, 0 ≤ i < n
are eigenvectors of σ with distinct eigenvalues ζ i. Therefore elements
αi ∈ L, 0 ≤ i < n are linearly independent over K. So dimK(K(α)) ≥
n.¤

Definition 11.1. Let K be a field and p(t) ∈ K[t] an irreducible
polynomial of positive degree and L ⊃ K the splitting field of of p(t).
We say that the group Gal(L/K) is the Galois group of p(t).

b) If L ⊂ K̄ is a finite extension of K we say that L is obtainable
from K by adding radicals if there exists a finite extension Fn ⊃ L and
an increasing sequence of fields K = F0 ⊂ F1... ⊂ Fn such that for any
i, 0 ≤ i < n we have Fi+1 = Fi(αi) where αri

i ∈ Fi for some ri > 0,
c) if p(t) ∈ K[t] is an irreducible polynomial of positive degree we

say that an equation p(t) = 0 is solvable in radicals if the extension
L := K[t]/(p(t)) of K is obtainable from K by adding radicals.

Theorem 11.1. Let K be a field of characteristic 0 and L ⊃ K a
normal extension. Then L is obtainable from K by adding radicals iff
the Galois group Gal(L/K) is solvable.

Proof. a) Assume that the Galois group Gal(L/K) is solvable. Then
there exists a sequence of subgroups (e) = H0 ⊂ H1... ⊂ Hm = G such
that Hi M Hi+1 and the quotient group Hi+1/Hi, 0 ≤ i < m are cyclic.

Define Fi := LHn−i . Then we have a sequence of subfields K = F0 ⊂
F1 ⊂ ... ⊂ Fn = L such that extensions Fi+1/Fi are normal and the
Galois groups Gal(Fi+1/Fi) are cyclic. It is sufficient to show that for
any i, 0 ≤ i < m one can obtain the field Fi+1 from Fi by adding
radicals.
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Assume that Gal(Fi+1/Fi) = Zr. Let Mi be the splitting field of
tr − 1 over Fi. It is clear that we can obtain the field Mi from Fi by
adding radicals. Let Ni+1 = Fi+1Mi.

... Ni+1 = MiFi+1

Fi+1

qqqqqqqqqqqqqqq

Z/rZ

Mi = Fi(µr)

Z/r′Z

Fi

ppppppppppppppp

...

Then it is easy to see (?) that Ni+1/Mi is a Galois extension and
Gal(Ni+1/Mi) is a subgroup of Gal(Fi+1/Fi) = Zr.

So Gal(Ni+1/Mi) = Zr′ where r′|r. Since Mi contains all all the
roots of order r′ of 1 and L ⊃ K is a Galois extension with the Galois
group Gal(L/K) equal to Zr′ it follows from Lemma 11.1 that one can
obtain the field Fi+1 from Mi by adding radicals. ¤

b) Assume that L is obtainable from K by adding radicals. We
want to show that the Galois group Gal(L/K) is solvable. Using the
induction it is sufficient to prove the following result which I’ll leave
for you to prove.

Claim. Let K be a field, L is a splitting field of a polynomial tn−a.
Then the Galois group Gal(L/K) is solvable.

Definition 11.2. a) The symmetric groups Sn is the group of per-
mutations of the set (1, ..., n).

b) For any sequence ī = (i1, i2, ..., ir) of distinct elements of (1, ..., n)
we denote by [i1, i2, ..., ir] ∈ Sn the permutation such that

[i1, i2, ..., ir](ik) = ik+1, 1 ≤ k < r, [i1, i2, ..., ir](ir) = i1, [i1, i2, ..., ir](i) = i, i /∈ ī

The element [i1, i2, ..., ir] ∈ Sn is called the cycle corresponding to the
sequence ī = (i1, i2, ..., ir),

c) we call the cycle si := [i, i + 1], 1 ≤ i < n an elementary permuta-
tion.

Given any σ ∈ Sn and i ∈ (1, ..., n) we may form an orbit ī ⊂ (1, ..., n)
of i under the action of the cyclic group generated by σ. Then (1, ..., n)
may be decomposed in a disjoint union of orbits of the cyclic group
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generated by σ. Then σ is equal to the product of commuting cycles
corresponding to this decomposition.

Lemma 11.3. a) The elementary permutations si, 1 ≤ i < n gener-
ate Sn,

b) if n is a prime number, σ ∈ Sn is an n-cycle and τ ∈ Sn an
elementary permutation then (σ, τ) generate Sn,

c) two elements of Sn are conjugate iff they are products of cycles of
the same length,

d) if n is prime and σ ∈ Sn is an element of order n then σ is an
n-cycle.

Proof. a),c) and d) are easy and I’ll only outline the proof of b).

By renumbering the elements we can assume that τ = (1, 2). We
can find r, 0 < r < n such that σr(1) = 2. Since n is prime we
see that σr is also an n-cycle. Therefore by another renumbering the
elements we can assume that σr = (1, 2, ..., n). But then we have
σ−ir ◦ τ ◦σir = si, 1 ≤ i < n. So the subgroup of Sn generated by (σ, τ)
contains si, 1 ≤ i < n.¤

Theorem 11.2. The groups Sn are not solvable if n > 4.

Proof. Theorem 11.2 is an immediate corollary of the following
result.

Theorem 11.2’. Let H ⊂ Sn, n > 4 be a subgroup containing all
3-cycles and H ′ C H be a normal subgroup such that the quotient
group H/H ′ is abelian. Then H ′ also contains all 3-cycles.

Proof of Theorem 11.2’. Let [rki] ∈ Sn be a 3-cycle. We want
to show that [rki] ∈ H ′. Choose numbers j, s ∈ (1, ..., n) distinct from
r, k, i and consider σ := [ijk], τ := [krs]. By the condition on H we
have σ, τ ∈ H. I claim that στσ−1τ−1 ∈ H ′. Really since the group
H/H ′ is abelian we have q(στσ−1τ−1) = q(σ)q(τ)q(σ)−1q(τ)−1) =
eH/H′ whre q : H → H/H ′ is the natural projection and eH/H′ is the
unit in H/H ′.

On the other hand στσ−1τ−1 = [rki]. So [rki] ∈ H ′.¤
Let s(t) ∈ K[t] be an irreducible polynomial of degree n. Then the

Galois group G of s(t) acts on the set R ⊂ Q̄ of roots of s(t) in Q̄. In
other words we have an imbedding of the group G into the symmetric
group Sn. In particular we can talk about the decomposition of σ ∈ G
in the product of cycles.

Theorem 11.3. Let s(t) ∈ K[t] be an irreducible polynomial of a
prime degree p. Suppose that there exists σ ∈ G which acts on R as
an elementary transposition. Then G = Sn.
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Proof. Let F := K[t]/(s(t)), L be the normal closure of F over K
and G = Gal(L/K). We want to show that G = Sn.

Since |G| = [L : K] = [L : F ][F : K] we see that p divides |G|.
Therefore it follows from the Cauchy’s theorem that there exists τ ∈ G
of order p. Consider the imbedding of the group G into the symmetric
group Sp coming from the action on roots of s(t)). Since p is a prime
number it follows from Lemma 11.2 d) that τ ∈ Sn is an n-cycle.
Theorem 11.3 follows now from Lemma 11.2 b).¤

Corollary 1. Let s(t) ∈ Q[t] be a polynomial of a prime degree p
which have exactly two non-real roots in C. Then the Galois group of
s(t) is equal to Sp.

Proof. We have to show that the image of the Galois group Gal(L/K)
in Sp contains an elementary transposition. By the complex conjuga-
tion acts on the set of roots of s(t) as an elementary transposition.

Corollary 2. The Galois group of s(t) = t5 − 6t + 3 is equal to S5.

Proof. The Eisenstein’s criterion shows the irreducibility of s(t).
Since
p(−3) < 0, p(−1) > 0, p(−1) < 0, p(2) > 0 we see that s(t) has at

least 3 real roots. On the other hand p′(t) has only 2 zeros. So it
follows from the Rolle’s theorem that s(t) has at most 3 real roots. We
see that s(t) has exactly three real roots. Therefore s(t) has exactly
two complex roots and the result follows from Corollary 1.


