Lemma 11.1. [Kummer's theory]. Let K be a field of characteristic zero, $n>1$ a number such that K contains all the roots of order n of 1 and $L \supset K$ be a Galois extension with the Galois group $\operatorname{Gal}(L / K)$ equal to \mathbb{Z}_{n}. Then there exists $\alpha \in L$ such that $L=K(\alpha)$ and $\alpha^{n} \in K$.

Proof. Fix $\zeta \in K$ such that $\zeta^{n}=1, \zeta^{m} \neq 1$ for $1<m<n$ and choose a generator σ of the group $\operatorname{Gal}(L / K)$. By Dedekind's lemma the K-linear maps $\sigma^{i}: L \rightarrow L, 0 \leq i<n$ are linearly independent. Therefore there exists $x \in L$ such that $\alpha:=\sum_{i=0}^{n-1} \zeta^{-i} \sigma^{i}(x) \neq 0$. Then

$$
\sigma(\alpha)=\sum_{i=0}^{n-1} \zeta^{-i} \sigma^{i+1}(x)=\zeta \sum_{i=0}^{n-1} \zeta^{-(i+1)} \sigma^{i+1}(x)=\zeta \alpha
$$

Therefore $\sigma\left(\alpha^{n}\right)=\alpha^{n}$. So $\alpha^{n} \in K$.
I claim that $K(\alpha)=L$. Since $K(\alpha) \subset L$ it is sufficient to show that $\operatorname{dim}_{K}(K(\alpha)) \geq n$. But is is clear that the elements $\alpha^{i} \in L, 0 \leq i<n$ are eigenvectors of σ with distinct eigenvalues ζ^{i}. Therefore elements $\alpha^{i} \in L, 0 \leq i<n$ are linearly independent over K. So $\operatorname{dim}_{K}(K(\alpha)) \geq$ n.

Definition 11.1. Let K be a field and $p(t) \in K[t]$ an irreducible polynomial of positive degree and $L \supset K$ the splitting field of of $p(t)$. We say that the group $\operatorname{Gal}(L / K)$ is the Galois group of $p(t)$.
b) If $L \subset \bar{K}$ is a finite extension of K we say that L is obtainable from K by adding radicals if there exists a finite extension $F_{n} \supset L$ and an increasing sequence of fields $K=F_{0} \subset F_{1} \ldots \subset F_{n}$ such that for any $i, 0 \leq i<n$ we have $F_{i+1}=F_{i}\left(\alpha_{i}\right)$ where $\alpha_{i}^{r_{i}} \in F_{i}$ for some $r_{i}>0$,
c) if $p(t) \in K[t]$ is an irreducible polynomial of positive degree we say that an equation $p(t)=0$ is solvable in radicals if the extension $L:=K[t] /(p(t))$ of K is obtainable from K by adding radicals.

Theorem 11.1. Let K be a field of characteristic 0 and $L \supset K$ a normal extension. Then L is obtainable from K by adding radicals iff the Galois group $\operatorname{Gal}(L / K)$ is solvable.

Proof. a) Assume that the Galois group $\operatorname{Gal}(L / K)$ is solvable. Then there exists a sequence of subgroups $(e)=H_{0} \subset H_{1} \ldots \subset H_{m}=G$ such that $H_{i} \triangle H_{i+1}$ and the quotient group $H_{i+1} / H_{i}, 0 \leq i<m$ are cyclic.

Define $F_{i}:=L^{H_{n-i}}$. Then we have a sequence of subfields $K=F_{0} \subset$ $F_{1} \subset \ldots \subset F_{n}=L$ such that extensions F_{i+1} / F_{i} are normal and the Galois groups $\operatorname{Gal}\left(F_{i+1} / F_{i}\right)$ are cyclic. It is sufficient to show that for any $i, 0 \leq i<m$ one can obtain the field F_{i+1} from F_{i} by adding radicals.

Assume that $\operatorname{Gal}\left(F_{i+1} / F_{i}\right)=\mathbb{Z}_{r}$. Let M_{i} be the splitting field of $t^{r}-1$ over F_{i}. It is clear that we can obtain the field M_{i} from F_{i} by adding radicals. Let $N_{i+1}=F_{i+1} M_{i}$.

Then it is easy to see (?) that N_{i+1} / M_{i} is a Galois extension and $\operatorname{Gal}\left(N_{i+1} / M_{i}\right)$ is a subgroup of $\operatorname{Gal}\left(F_{i+1} / F_{i}\right)=\mathbb{Z}_{r}$.

So $\operatorname{Gal}\left(N_{i+1} / M_{i}\right)=\mathbb{Z}_{r^{\prime}}$ where $r^{\prime} \mid r$. Since M_{i} contains all all the roots of order r^{\prime} of 1 and $L \supset K$ is a Galois extension with the Galois group $\operatorname{Gal}(L / K)$ equal to $\mathbb{Z}_{r^{\prime}}$ it follows from Lemma 11.1 that one can obtain the field F_{i+1} from M_{i} by adding radicals.
b) Assume that L is obtainable from K by adding radicals. We want to show that the Galois group $\operatorname{Gal}(L / K)$ is solvable. Using the induction it is sufficient to prove the following result which I'll leave for you to prove.

Claim. Let K be a field, L is a splitting field of a polynomial $t^{n}-a$. Then the Galois group $\operatorname{Gal}(L / K)$ is solvable.

Definition 11.2. a) The symmetric groups S_{n} is the group of permutations of the set $(1, \ldots, n)$.
b) For any sequence $\bar{i}=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ of distinct elements of $(1, \ldots, n)$ we denote by $\left[i_{1}, i_{2}, \ldots, i_{r}\right] \in S_{n}$ the permutation such that

$$
\left[i_{1}, i_{2}, \ldots, i_{r}\right]\left(i_{k}\right)=i_{k+1}, 1 \leq k<r,\left[i_{1}, i_{2}, \ldots, i_{r}\right]\left(i_{r}\right)=i_{1},\left[i_{1}, i_{2}, \ldots, i_{r}\right](i)=i, i \notin \bar{i}
$$

The element $\left[i_{1}, i_{2}, \ldots, i_{r}\right] \in S_{n}$ is called the cycle corresponding to the sequence $\bar{i}=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$,
c) we call the cycle $s_{i}:=[i, i+1], 1 \leq i<n$ an elementary permutation.

Given any $\sigma \in S_{n}$ and $i \in(1, \ldots, n)$ we may form an orbit $\bar{i} \subset(1, \ldots, n)$ of i under the action of the cyclic group generated by σ. Then $(1, \ldots, n)$ may be decomposed in a disjoint union of orbits of the cyclic group
generated by σ. Then σ is equal to the product of commuting cycles corresponding to this decomposition.

Lemma 11.3. a) The elementary permutations $s_{i}, 1 \leq i<n$ generate S_{n},
b) if n is a prime number, $\sigma \in S_{n}$ is an n-cycle and $\tau \in S_{n}$ an elementary permutation then (σ, τ) generate S_{n},
c) two elements of S_{n} are conjugate iff they are products of cycles of the same length,
d) if n is prime and $\sigma \in S_{n}$ is an element of order n then σ is an n-cycle.

Proof. a),c) and d) are easy and I'll only outline the proof of b).
By renumbering the elements we can assume that $\tau=(1,2)$. We can find $r, 0<r<n$ such that $\sigma^{r}(1)=2$. Since n is prime we see that σ^{r} is also an n-cycle. Therefore by another renumbering the elements we can assume that $\sigma^{r}=(1,2, \ldots, n)$. But then we have $\sigma^{-i r} \circ \tau \circ \sigma^{i r}=s_{i}, 1 \leq i<n$. So the subgroup of S_{n} generated by (σ, τ) contains $s_{i}, 1 \leq i<n$. \square

Theorem 11.2. The groups S_{n} are not solvable if $n>4$.
Proof. Theorem 11.2 is an immediate corollary of the following result.

Theorem 11.2'. Let $H \subset S_{n}, n>4$ be a subgroup containing all 3 -cycles and $H^{\prime} \triangleleft H$ be a normal subgroup such that the quotient group H / H^{\prime} is abelian. Then H^{\prime} also contains all 3 -cycles.

Proof of Theorem 11.2'. Let $[r k i] \in S_{n}$ be a 3 -cycle. We want to show that $[r k i] \in H^{\prime}$. Choose numbers $j, s \in(1, \ldots, n)$ distinct from r, k, i and consider $\sigma:=[i j k], \tau:=[k r s]$. By the condition on H we have $\sigma, \tau \in H$. I claim that $\sigma \tau \sigma^{-1} \tau^{-1} \in H^{\prime}$. Really since the group H / H^{\prime} is abelian we have $\left.q\left(\sigma \tau \sigma^{-1} \tau^{-1}\right)=q(\sigma) q(\tau) q(\sigma)^{-1} q(\tau)^{-1}\right)=$ $e_{H / H^{\prime}}$ whre $q: H \rightarrow H / H^{\prime}$ is the natural projection and $e_{H / H^{\prime}}$ is the unit in H / H^{\prime}.

On the other hand $\sigma \tau \sigma^{-1} \tau^{-1}=[r k i]$. So $[r k i] \in H^{\prime} . \square$
Let $s(t) \in K[t]$ be an irreducible polynomial of degree n. Then the Galois group G of $s(t)$ acts on the set $R \subset \overline{\mathbb{Q}}$ of roots of $s(t)$ in $\overline{\mathbb{Q}}$. In other words we have an imbedding of the group G into the symmetric group S_{n}. In particular we can talk about the decomposition of $\sigma \in G$ in the product of cycles.

Theorem 11.3. Let $s(t) \in K[t]$ be an irreducible polynomial of a prime degree p. Suppose that there exists $\sigma \in G$ which acts on R as an elementary transposition. Then $G=S_{n}$.

Proof. Let $F:=K[t] /(s(t)), L$ be the normal closure of F over K and $G=\operatorname{Gal}(L / K)$. We want to show that $G=S_{n}$.

Since $|G|=[L: K]=[L: F][F: K]$ we see that p divides $|G|$. Therefore it follows from the Cauchy's theorem that there exists $\tau \in G$ of order p. Consider the imbedding of the group G into the symmetric group S_{p} coming from the action on roots of $\left.s(t)\right)$. Since p is a prime number it follows from Lemma 11.2 d) that $\tau \in S_{n}$ is an n-cycle. Theorem 11.3 follows now from Lemma 11.2 b)

Corollary 1. Let $s(t) \in \mathbb{Q}[t]$ be a polynomial of a prime degree p which have exactly two non-real roots in \mathbb{C}. Then the Galois group of $s(t)$ is equal to S_{p}.

Proof. We have to show that the image of the Galois group $\operatorname{Gal}(L / K)$ in S_{p} contains an elementary transposition. By the complex conjugation acts on the set of roots of $s(t)$ as an elementary transposition.

Corollary 2. The Galois group of $s(t)=t^{5}-6 t+3$ is equal to S_{5}.
Proof. The Eisenstein's criterion shows the irreducibility of $s(t)$.
Since
$p(-3)<0, p(-1)>0, p(-1)<0, p(2)>0$ we see that $s(t)$ has at least 3 real roots. On the other hand $p^{\prime}(t)$ has only 2 zeros. So it follows from the Rolle's theorem that $s(t)$ has at most 3 real roots. We see that $s(t)$ has exactly three real roots. Therefore $s(t)$ has exactly two complex roots and the result follows from Corollary 1.

