
Lemma 6.1. Let L ⊃ K be a normal extension and F an interme-
diate field K ⊂ F ⊂ L.

a) Let p(t) ∈ K[t] be an irreducible polynomial, α, α′ ∈ L such that
p(α) = p(α′) = 0. Then there exists an automorphism η ∈ Gal(L/K)
such that η(α) = α′,

b) Let L ⊃ K be a normal extension,and ηF : F → L a K-
homomorphism. Then there exists an automorphism η ∈ Gal(L/K)
such that η(β) = ηF (β), ∀β ∈ F ,

c) the extension L : F is normal.

Remark. a) is a special case of b). Really we can take F = K(α)
and define ηF : F → L by ηF (α) = α′.

I’ll prove only the part a) and leave parts b) and c) as a homework.
Proof of a). We can find α2, ..., αn ∈ L such that L = K(α1, α2, ..., αn)

where α1 := α. By Lemma 3.3 there exists a K-homomorphism η1 :
K(α1) → L such that η1(α1) = α′.

Claim. There exists a K-homomorphisms ηi : K(α1, α2, ..., αi) →
L, 1 ≤ i ≤ n such that ηi is an extension of ηi−1, 2 ≤ i ≤ n.

Proof of the Claim. We will prove the existence of a K-homomorphism
η2 : K(α1, α2) → L which extends η1. The general case is easily done
by induction.

Let p(t) := Irr(α2, K, t) ∈ K[t] and
q(t) := Irr(α2, K(α1), t) ∈ K(α1)[t]. By the definition p(α2) = 0

and q(t) is irreducible in K(α1)[t]. Therefore q(t)|p(t). Since p(t) has
a root in L and the field L is normal we see that p(t) decomposes in
L[t] in a product of linear factors. Since q(t)|p(t) we see that q(t) also
decomposes in L[t] in a product of linear factors. So we can find a
α′

2 ∈ L such that q(α′

2) = 0. It follows now from Lemma 3.3 that there
exists an extension η2 : K(α1, α2) → L of η1 : K(α1) → L such that
η2(α2) = α′

2.�

To finish the proof of Lemma 6.1 we have to show that ηn : L → L
is an automorphism. But we know that ηn : L → L is a K-linear
map such that Ker(ηn) = {0}. Since [L : K] < ∞ this implies that
ηn : L → L is an automorphism. �

Lemma 6.2. Let L ⊃ K be a finite normal extension, p= ch (K),
α ∈ L an element such that for any K-homomorphism f : K(α) → L
we have f(α) = α. Then either α ∈ K or p ≥ 0 and there exists n > 0
such that αpn

∈ K.
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Proof. As we know form Lemma 3.3 the set of K-homomorphism
f : K(α) → L can be identified with the set of roots of the polynomial
p(t) := Irr(α, K, t) in L. So we see that all the roots of p(t) in L are
equal to α. Since the field L is normal we know that p(t) decomposes
in a product of linear factors in L[t]. So p(t) = (t−α)m where m =deg(
p(t)).

Consider first the case when ch (K)=0. Then

p(t) = (t − α)m = tm − mαtm−1 + ...

where we omit the lower terms. Since p(t) ∈ K[t] we have mα ∈ K.
By the assumption ch (K)=0 and we can divide by m. So α ∈ K.

Assume now that ch (K)=p> 0. I claim that there exists n ≥ 0 such
that m = pn. Really write m = pnr where r is prime to p. Then we
have

p(t) = ((t − α)pn

)r = (tp
n

− αpn

)r = tp
nr − rαpn

tp
n(r−1)r + ...

where we omit the lower terms.
Since p(t) ∈ K[t] we see that rαpn

∈ K. Since r is prime to the
characteristic p of K we can divide by r. Therefore αpn

∈ K. �

Lemma 6.3. Let F ⊃ K be a extension such that any element
α ∈ F is algebraic over K and every monic polynomial p(t) ∈ K[t]
splits in F [t] into a product of linear factors. Then the field F is
algebraicly closed.

Proof. We want to show that any monic polynomial r(t) =
∑n

i=0 cit
i ∈

F [t], n > 0 has a root in F . Let L = K(c0, ..., cn−1). Since every ele-
ment in F is algebraic over K we see that [L : K] < ∞.

Let αi, 1 ≤ i ≤ n be a basis of L over K. For any i, 1 ≤ i ≤ n we
define pi(t) := Irr(αi, K, t) ∈ K[t] and then define q(t) :=

∏n
i=1 pi(t).

Let βj ∈ F, 1 ≤ j ≤ a be the set of roots of q(t) in F and N =
K(β1, ..., βa) ⊂ F . Since q(t) splits in F [t] into a product of factors of
the type t − βj we see that N is a splitting field of q(t) over K. So [
by Theorem 4.2] N : K is normal.

Let X be the set of all K-homomorphisms f : L → N . The group
Gal(N/K) of the automorphisms of N over K acts on the set X by
f → g(f), g ∈ Gal(N/K) where g(f)(l) := g(f(l)), l ∈ L.

For any f ∈ X we define pf (t) :=
∑n

i=0 f(ci)t
i ∈ N [t] and define

R(t) :=
∏

f∈X

pf(t) ∈ N [t]
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Let us write R(t) =
∑d

i=0 rit
i, ri ∈ N . I claim that for any g(ri) = ri for

any g ∈ Gal(L : K), 1 ≤ i ≤ d. Really when we act by g on R(t) we only
interchange the order of the factors in the product R(t) :=

∏
f∈X pf(t).

As follows from Lemma 6.2 either R(t) ∈ K[t] or ch (K) := p > 0 and

there exists n > 0 such that cpn

i ∈ K, ∀i, 1 ≤ i ≤ d. But in this case

R(t)pn

=
∑d

i=0 rpn

i ti ∈ K[t].
We see that there exists m > 0 such that R(t)m ∈ K[t]. Therefore

the polynomial R(t)m ∈ K[t] splits in F [t] into a product of factors. So
any divisor of the polynomial R(t) also splits in F [t] into a product of
linear factors. Since p(t) = p(t)Id is a divisor of R(t) we see that p(t)
has a root in F.�

Definition 6.1. Let K be a field. An algebraic closure of K is an
extension K̄ ⊃ K which is algebraicly closed and such that any element
α ∈ K̄ is algebraic over K.

Remark. If L ⊃ K is a finite extension that any algebraic closure
L̄ of L is also an algebraic closure K.

Theorem 6.1. Let K be a field. Then
a) there exists an algebraic closure K̄ of K,
b) if K̄ ′ ⊃ K is another algebraic closure of K then there exists a

K-isomorphism η : K̄ → K̄ ′.

Proof. I’ll consider only the case when the field K is countable. In
this case the set of polynomials q(t) ∈ K[t] is also countable. So we can
write a sequence qn(t) ∈ K[t], n > 0 of monic polynomials such that
any monic polynomial appears in this sequence. Now we construct an
sequence of fields Ln, n ≥ 0 and imbeddings Ln →֒ Ln+1 as follows.
Let L0 = K and Ln be a splitting field of the polynomial qn(t) over
Ln−1. We define K̄ := ∪n=0Ln. It is clear that the field K̄ satisfies the
conditions of Lemma 6.3. So K̄ algebraicly closed. Since all the fields
Ln are finite over K any element of K̄ is algebraic over K. So K̄ is an
algebraic closure of K.

Before discussing the uniqueness of an algebraic closure we consider
the following useful result.

Lemma 6.4. Let p(t) ∈ K[t] be an irreducible polynomial, α, α′ ∈
K̄ be roots of p(t). Then there exists an automorphism η ∈ Gal(K̄/K)
such that η(α) = α′.

Proof of Lemma 6.4. Let n ≥ 0 be an index such that α, α′ ∈ Ln.
Since the field Ln is normal over K it follows from Lemma 6.1 a) that
there exists an automorphism ηn : Ln → Ln such that ηn(α) = α′.
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It follows now from Lemma 6.1 b) that there exists an automorphism
ηn+1 : Ln+1 → Ln+1 whose restriction on Ln is equal to ηn. Putting
together all the automorphisms ηm : Lm → Lm, m ≥ n we obtain an
automorphism η ∈ Gal(K̄/K) such that η(α) = α′.�

Now we can prove the second part of the Theorem 6.1. Let K̄ ′ ⊃ K
be another algebraic closure of K. Since the field K̄ ′ is an algebraic
closure of K, it follows from Lemma 3.3 that any K-homomorphism
νi : Li → K̄ ′ can be extended to a homomorphism νi+1 : Li+1 → K̄ ′.
Putting the homomorphism νi : Li → K̄ ′ together we obtain a K-
homomorphism ν : K̄ → K̄ ′.

To show that the K-homomorphism ν : K̄ → K̄ ′ is an isomorphism
it is sufficient to prove that for any α′ ∈ K̄ ′ there exists α ∈ K̄ such
that ν(α) = α′.

By the definition of an algebraic closure any α′ ∈ K̄ ′ is algebraic over
K and we can consider an irreducible polynomial p(t) := Irr(α′, K, t) ∈
K[t]. Since the field K̄ is algebraicly closed there exists α ∈ K̄ such that
p(α) = 0. Choose n ≥ 0 such that α ∈ Ln and define L′

n := ν(Ln) ⊂
K̄ ′. Since the field Ln is normal over K the irreducible polynomial p(t)
can be written as a product

p(t) =
r∏

i=0

(t − αi)
mi , αi ∈ Ln, α1 = α

Therefore

ν(p(t)) =
r∏

i=0

(t − ν(αi))
mi

Since p(t) ∈ K[t] we have ν(p(t)) = p(t) and therefore

p(t) =

r∏

i=0

(t − ν(αi))
mi

Since α′ is a root of p(t) in L′

n we see that α′ = ν(αi) for some i, 1 ≤
i ≤ r.�

Definition 6.2. Let L ⊃ K be a finite extension and K̄ an algebraic
closure of K [which is also an algebraic closure of L, see the Remark
after the definition 6.1].

a) We denote by H(L/K) the set of K-homomorphisms of L to K̄.
b) we denote by [L : K]s the number of elements in the set H(L/K)

and say that [L : K]s is the separable degree of L over K.

Remark. It follows from Theorem 6.1 this set does not depend on
a choice of an algebraic closure K̄ of K.
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Lemma 6.5. Let K ⊂ F ⊂ L be finite field extensions. Then
[L : K]s = [L : F ]s[F : K]s

Proof . For any K-homomorphism g ∈ H(F/K) we denote by
H(L/K)g ⊂ H(L/K) the subset of K- homomorphism f ∈ H(L/K)
such that f(α) = g(α) for all α ∈ F . It is clear that H(L/K)Id =
H(L/F ) and that

H(L/K) = ∪g∈H(F/K)H(L/K)g

Therefore
[L : K]s =

∑

g∈H(F/K)

|(H(L/K)g|

Claim. For any g ∈ H(F/K) we have |(H(L/K)g| = |H(L/K)Id|.

Proof of the Claim. Choose g ∈ H(F/K). As follows from
Lemma 6.4 there exists an isomorphism g̃ : M → M such that g̃(α) =
g(α), ∀α ∈ L. It is clear that

g̃(H(L/K)Id) = (H(L/K)g�

Now we can finish the proof of Lemma 6.5. Since H(L/K)Id = H(L/F )
we have |(H(L/K)Id| = [L : F ]s and it follows from the Claim that
|(H(L/K)g| = [L : F ]s, ∀g ∈ H(F/K). So [L : K]s = [L : F ]s[F :
K]s.�


