Lemma 6.1. Let $L \supset K$ be a normal extension and F an intermediate field $K \subset F \subset L$.
a) Let $p(t) \in K[t]$ be an irreducible polynomial, $\alpha, \alpha^{\prime} \in L$ such that $p(\alpha)=p\left(\alpha^{\prime}\right)=0$. Then there exists an automorphism $\eta \in G a l(L / K)$ such that $\eta(\alpha)=\alpha^{\prime}$,
b) Let $L \supset K$ be a normal extension, and $\eta_{F}: F \rightarrow L$ a K homomorphism. Then there exists an automorphism $\eta \in \operatorname{Gal}(L / K)$ such that $\eta(\beta)=\eta_{F}(\beta), \forall \beta \in F$,
c) the extension $L: F$ is normal.

Remark. a) is a special case of b). Really we can take $F=K(\alpha)$ and define $\eta_{F}: F \rightarrow L$ by $\eta_{F}(\alpha)=\alpha^{\prime}$.

I'll prove only the part a) and leave parts b) and c) as a homework.
Proof of a). We can find $\alpha_{2}, \ldots, \alpha_{n} \in L$ such that $L=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}:=\alpha$. By Lemma 3.3 there exists a K-homomorphism η_{1} : $K\left(\alpha_{1}\right) \rightarrow L$ such that $\eta_{1}\left(\alpha_{1}\right)=\alpha^{\prime}$.

Claim. There exists a K-homomorphisms $\eta_{i}: K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right) \rightarrow$ $L, 1 \leq i \leq n$ such that η_{i} is an extension of $\eta_{i-1}, 2 \leq i \leq n$.

Proof of the Claim. We will prove the existence of a K-homomorphism $\eta_{2}: K\left(\alpha_{1}, \alpha_{2}\right) \rightarrow L$ which extends η_{1}. The general case is easily done by induction.

Let $p(t):=\operatorname{Irr}\left(\alpha_{2}, K, t\right) \in K[t]$ and
$q(t):=\operatorname{Irr}\left(\alpha_{2}, K\left(\alpha_{1}\right), t\right) \in K\left(\alpha_{1}\right)[t]$. By the definition $p\left(\alpha_{2}\right)=0$ and $q(t)$ is irreducible in $K\left(\alpha_{1}\right)[t]$. Therefore $q(t) \mid p(t)$. Since $p(t)$ has a root in L and the field L is normal we see that $p(t)$ decomposes in $L[t]$ in a product of linear factors. Since $q(t) \mid p(t)$ we see that $q(t)$ also decomposes in $L[t]$ in a product of linear factors. So we can find a $\alpha_{2}^{\prime} \in L$ such that $q\left(\alpha_{2}^{\prime}\right)=0$. It follows now from Lemma 3.3 that there exists an extension $\eta_{2}: K\left(\alpha_{1}, \alpha_{2}\right) \rightarrow L$ of $\eta_{1}: K\left(\alpha_{1}\right) \rightarrow L$ such that $\eta_{2}\left(\alpha_{2}\right)=\alpha_{2}^{\prime} . \square$

To finish the proof of Lemma 6.1 we have to show that $\eta_{n}: L \rightarrow L$ is an automorphism. But we know that $\eta_{n}: L \rightarrow L$ is a K-linear map such that $\operatorname{Ker}\left(\eta_{n}\right)=\{0\}$. Since $[L: K]<\infty$ this implies that $\eta_{n}: L \rightarrow L$ is an automorphism.

Lemma 6.2. Let $L \supset K$ be a finite normal extension, $\mathrm{p}=\mathrm{ch}(\mathrm{K})$, $\alpha \in L$ an element such that for any K-homomorphism $f: K(\alpha) \rightarrow L$ we have $f(\alpha)=\alpha$. Then either $\alpha \in K$ or $p \geq 0$ and there exists $n>0$ such that $\alpha^{p^{n}} \in K$.

Proof. As we know form Lemma 3.3 the set of K-homomorphism $f: K(\alpha) \rightarrow L$ can be identified with the set of roots of the polynomial $p(t):=\operatorname{Irr}(\alpha, K, t)$ in L. So we see that all the roots of $p(t)$ in L are equal to α. Since the field L is normal we know that $p(t)$ decomposes in a product of linear factors in $L[t]$. So $p(t)=(t-\alpha)^{m}$ where $m=\operatorname{deg}($ $p(t))$.

Consider first the case when $\operatorname{ch}(\mathrm{K})=0$. Then

$$
p(t)=(t-\alpha)^{m}=t^{m}-m \alpha t^{m-1}+\ldots
$$

where we omit the lower terms. Since $p(t) \in K[t]$ we have $m \alpha \in K$. By the assumption ch $(\mathrm{K})=0$ and we can divide by m. So $\alpha \in K$.

Assume now that ch $(\mathrm{K})=\mathrm{p}>0$. I claim that there exists $n \geq 0$ such that $m=p^{n}$. Really write $m=p^{n} r$ where r is prime to p. Then we have

$$
p(t)=\left((t-\alpha)^{p^{n}}\right)^{r}=\left(t^{p^{n}}-\alpha^{p^{n}}\right)^{r}=t^{p^{n} r}-r \alpha^{p^{n}} t^{p^{n}(r-1) r}+\ldots
$$

where we omit the lower terms.
Since $p(t) \in K[t]$ we see that $r \alpha^{p^{n}} \in K$. Since r is prime to the characteristic p of K we can divide by r. Therefore $\alpha^{p^{n}} \in K$.

Lemma 6.3. Let $F \supset K$ be a extension such that any element $\alpha \in F$ is algebraic over K and every monic polynomial $p(t) \in K[t]$ splits in $F[t]$ into a product of linear factors. Then the field F is algebraicly closed.

Proof. We want to show that any monic polynomial $r(t)=\sum_{i=0}^{n} c_{i} t^{i} \in$ $F[t], n>0$ has a root in F. Let $L=K\left(c_{0}, \ldots, c_{n-1}\right)$. Since every element in F is algebraic over K we see that $[L: K]<\infty$.

Let $\alpha_{i}, 1 \leq i \leq n$ be a basis of L over K. For any $i, 1 \leq i \leq n$ we define $p_{i}(t):=\operatorname{Irr}\left(\alpha_{i}, K, t\right) \in K[t]$ and then define $q(t):=\prod_{i=1}^{n} p_{i}(t)$. Let $\beta_{j} \in F, 1 \leq j \leq a$ be the set of roots of $q(t)$ in F and $N=$ $K\left(\beta_{1}, \ldots, \beta_{a}\right) \subset F$. Since $q(t)$ splits in $F[t]$ into a product of factors of the type $t-\beta_{j}$ we see that N is a splitting field of $q(t)$ over K. So [by Theorem 4.2] $N: K$ is normal.

Let X be the set of all K-homomorphisms $f: L \rightarrow N$. The group $\operatorname{Gal}(N / K)$ of the automorphisms of N over K acts on the set X by $f \rightarrow g(f), g \in \operatorname{Gal}(N / K)$ where $g(f)(l):=g(f(l)), l \in L$.

For any $f \in X$ we define $p_{f}(t):=\sum_{i=0}^{n} f\left(c_{i}\right) t^{i} \in N[t]$ and define

$$
R(t):=\prod_{f \in X} p_{f}(t) \in N[t]
$$

Let us write $R(t)=\sum_{i=0}^{d} r_{i} t^{i}, r_{i} \in N$. I claim that for any $g\left(r_{i}\right)=r_{i}$ for any $g \in \operatorname{Gal}(L: K), 1 \leq i \leq d$. Really when we act by g on $R(t)$ we only interchange the order of the factors in the product $R(t):=\prod_{f \in X} p_{f}(t)$. As follows from Lemma 6.2 either $R(t) \in K[t]$ or ch $(K):=p>0$ and there exists $n>0$ such that $c_{i}^{p^{n}} \in K, \forall i, 1 \leq i \leq d$. But in this case $R(t)^{p^{n}}=\sum_{i=0}^{d} r_{i}^{p^{n}} t^{i} \in K[t]$.

We see that there exists $m>0$ such that $R(t)^{m} \in K[t]$. Therefore the polynomial $R(t)^{m} \in K[t]$ splits in $F[t]$ into a product of factors. So any divisor of the polynomial $R(t)$ also splits in $F[t]$ into a product of linear factors. Since $p(t)=p(t)_{I d}$ is a divisor of $R(t)$ we see that $p(t)$ has a root in F. \square

Definition 6.1. Let K be a field. An algebraic closure of K is an extension $\bar{K} \supset K$ which is algebraicly closed and such that any element $\alpha \in \bar{K}$ is algebraic over K.

Remark. If $L \supset K$ is a finite extension that any algebraic closure \bar{L} of L is also an algebraic closure K.

Theorem 6.1. Let K be a field. Then
a) there exists an algebraic closure \bar{K} of K,
b) if $\bar{K}^{\prime} \supset K$ is another algebraic closure of K then there exists a K-isomorphism $\eta: \bar{K} \rightarrow \bar{K}^{\prime}$.

Proof. I'll consider only the case when the field K is countable. In this case the set of polynomials $q(t) \in K[t]$ is also countable. So we can write a sequence $q_{n}(t) \in K[t], n>0$ of monic polynomials such that any monic polynomial appears in this sequence. Now we construct an sequence of fields $L_{n}, n \geq 0$ and imbeddings $L_{n} \hookrightarrow L_{n+1}$ as follows. Let $L_{0}=K$ and L_{n} be a splitting field of the polynomial $q_{n}(t)$ over L_{n-1}. We define $\bar{K}:=\cup_{n=0} L_{n}$. It is clear that the field \bar{K} satisfies the conditions of Lemma 6.3. So \bar{K} algebraicly closed. Since all the fields L_{n} are finite over K any element of \bar{K} is algebraic over K. So \bar{K} is an algebraic closure of K.

Before discussing the uniqueness of an algebraic closure we consider the following useful result.

Lemma 6.4. Let $p(t) \in K[t]$ be an irreducible polynomial, $\alpha, \alpha^{\prime} \in$ \bar{K} be roots of $p(t)$. Then there exists an automorphism $\eta \in \operatorname{Gal}(\bar{K} / K)$ such that $\eta(\alpha)=\alpha^{\prime}$.

Proof of Lemma 6.4. Let $n \geq 0$ be an index such that $\alpha, \alpha^{\prime} \in L_{n}$. Since the field L_{n} is normal over K it follows from Lemma 6.1 a) that there exists an automorphism $\eta_{n}: L_{n} \rightarrow L_{n}$ such that $\eta_{n}(\alpha)=\alpha^{\prime}$.

It follows now from Lemma 6.1 b) that there exists an automorphism $\eta_{n+1}: L_{n+1} \rightarrow L_{n+1}$ whose restriction on L_{n} is equal to η_{n}. Putting together all the automorphisms $\eta_{m}: L_{m} \rightarrow L_{m}, m \geq n$ we obtain an automorphism $\eta \in \operatorname{Gal}(\bar{K} / K)$ such that $\eta(\alpha)=\alpha^{\prime} . \square$

Now we can prove the second part of the Theorem 6.1. Let $\bar{K}^{\prime} \supset K$ be another algebraic closure of K. Since the field \bar{K}^{\prime} is an algebraic closure of K, it follows from Lemma 3.3 that any K-homomorphism $\nu_{i}: L_{i} \rightarrow \bar{K}^{\prime}$ can be extended to a homomorphism $\nu_{i+1}: L_{i+1} \rightarrow \bar{K}^{\prime}$. Putting the homomorphism $\nu_{i}: L_{i} \rightarrow \bar{K}^{\prime}$ together we obtain a K homomorphism $\nu: \bar{K} \rightarrow \bar{K}^{\prime}$.

To show that the K-homomorphism $\nu: \bar{K} \rightarrow \bar{K}^{\prime}$ is an isomorphism it is sufficient to prove that for any $\alpha^{\prime} \in \bar{K}^{\prime}$ there exists $\alpha \in \bar{K}$ such that $\nu(\alpha)=\alpha^{\prime}$.

By the definition of an algebraic closure any $\alpha^{\prime} \in \bar{K}^{\prime}$ is algebraic over K and we can consider an irreducible polynomial $p(t):=\operatorname{Irr}\left(\alpha^{\prime}, K, t\right) \in$ $K[t]$. Since the field \bar{K} is algebraicly closed there exists $\alpha \in \bar{K}$ such that $p(\alpha)=0$. Choose $n \geq 0$ such that $\alpha \in L_{n}$ and define $L_{n}^{\prime}:=\nu\left(L_{n}\right) \subset$ \bar{K}^{\prime}. Since the field L_{n} is normal over K the irreducible polynomial $p(t)$ can be written as a product

$$
p(t)=\prod_{i=0}^{r}\left(t-\alpha_{i}\right)^{m_{i}}, \alpha_{i} \in L_{n}, \alpha_{1}=\alpha
$$

Therefore

$$
\nu(p(t))=\prod_{i=0}^{r}\left(t-\nu\left(\alpha_{i}\right)\right)^{m_{i}}
$$

Since $p(t) \in K[t]$ we have $\nu(p(t))=p(t)$ and therefore

$$
p(t)=\prod_{i=0}^{r}\left(t-\nu\left(\alpha_{i}\right)\right)^{m_{i}}
$$

Since α^{\prime} is a root of $p(t)$ in L_{n}^{\prime} we see that $\alpha^{\prime}=\nu\left(\alpha_{i}\right)$ for some $i, 1 \leq$ $i \leq r$. \square

Definition 6.2. Let $L \supset K$ be a finite extension and \bar{K} an algebraic closure of K [which is also an algebraic closure of L, see the Remark after the definition 6.1].
a) We denote by $H(L / K)$ the set of K-homomorphisms of L to \bar{K}.
b) we denote by $[L: K]_{s}$ the number of elements in the set $H(L / K)$ and say that $[L: K]_{s}$ is the separable degree of L over K.

Remark. It follows from Theorem 6.1 this set does not depend on a choice of an algebraic closure \bar{K} of K.

Lemma 6.5. Let $K \subset F \subset L$ be finite field extensions. Then $[L: K]_{s}=[L: F]_{s}[F: K]_{s}$

Proof . For any K-homomorphism $g \in H(F / K)$ we denote by $H(L / K)_{g} \subset H(L / K)$ the subset of K - homomorphism $f \in H(L / K)$ such that $f(\alpha)=g(\alpha)$ for all $\alpha \in F$. It is clear that $H(L / K)_{I d}=$ $H(L / F)$ and that

$$
H(L / K)=\cup_{g \in H(F / K)} H(L / K)_{g}
$$

Therefore

$$
[L: K]_{s}=\sum_{g \in H(F / K)} \mid\left(H(L / K)_{g} \mid\right.
$$

Claim. For any $g \in H(F / K)$ we have $\mid\left(H(L / K)_{g}\left|=\left|H(L / K)_{I d}\right|\right.\right.$.
Proof of the Claim. Choose $g \in H(F / K)$. As follows from Lemma 6.4 there exists an isomorphism $\tilde{g}: M \rightarrow M$ such that $\tilde{g}(\alpha)=$ $g(\alpha), \forall \alpha \in L$. It is clear that

$$
\tilde{g}\left(H(L / K)_{I d}\right)=\left(H(L / K)_{g} \square\right.
$$

Now we can finish the proof of Lemma 6.5. Since $H(L / K)_{I d}=H(L / F)$ we have $\mid\left(H(L / K)_{I d} \mid=[L: F]_{s}\right.$ and it follows from the Claim that $\mid\left(H(L / K)_{g} \mid=[L: F]_{s}, \forall g \in H(F / K)\right.$. So $[L: K]_{s}=[L: F]_{s}[F:$ $K]_{s}$. \square

