
Definition 8.1. Let K be a field and K̄ an algebraic closure of
K. As follows from Theorem 6.1 for any other algebraic closure K̄ ′ of
K there exists a K-isomorphism f : K̄ → K̄ ′. Therefore the groups
Gal(K̄/K), Gal(K̄ ′/K) are isomorphic and we denote by GK the Galois
group Gal(K̄/K). This group is finite iff the extension K̄/K is finite.

Lemma 8.1. Let L ⊃ K be a finite extension. Show that
a) there exists a K-monomorphism f : L → K̄,
By the definition the group Gal(K̄/f(L)) is a subroup of GK .
b) the map g → g ◦ f defines a bijection between the quotient

GK/Gal(K̄/f(L)) and the set of K-monomorphisms from L to K̄,
For any σ ∈ Gal(K̄/K) we denote by Ad(σ) : GK → GK be the

automorphism given by Ad(σ)(g) = σgσ−1.
c) Let σ ∈ Gal(K̄/K), f ′ = σ ◦ f : L → K̄. Then
Ad(σ)(Gal(K̄/f(L)) = Gal(K̄/f ′(L)),
d) an extension L ⊃ K is normal iff the subgroup Gal(K̄/f(L) ⊂

Gal(K̄/K) is normal.

I’ll leave the proof of Lemma 8.1 as a homework.

Definition 8.2. We say that a finite extension L ⊃ K is a Galois
extension if |Gal(L/K)| = [L : K].

Lemma 8.2. A finite separable extension L ⊃ K is a Galois ex-
tension iff for any two K-homomorphism f ′, f ′′ : L → K̄ we have
Im(f ′) = Im(f ′′).

Proof . Suppose that L ⊃ K is a Galois extension. We want to
show that for any two K-homomorphism f ′, f ′′ : L → K̄ we have
Im(f ′) = Im(f ′′). Fix a K-homomorphism f : L → K̄ and for any
σ ∈ Gal(L/K) consider the composition f ◦ σ : L → K̄. It is clear
that Im(f ◦ σ) = Im(f),∀σ ∈ Gal(L/K). But the number of dis-
tinct K-homomorphisms from L to K̄ is equal to [L : K]s = [L : K].
Since the extension L ⊃ K is a Galois extension we see that all K-
homomorphisms from L to K̄ have the form f ◦ σ for some σ ∈
Gal(L/K). Therefore Im(f ′) = Im(f ′′) for any two K-homomorphism
f ′, f ′′ : L → K̄.¤

Conversely assume that Im(f ′) = Im(f ′′) for all K-homomorphism
f ′, f ′′ : L → K̄. Let fi, 1 ≤ i ≤ n be the set of all K-homomorphisms
from L to K̄. By the definition n = [L : K]s. Since the exten-
sion L ⊃ K is separable we see that n = [L : K]. Since Im(f1) =
Im(fi),∀i, 1 ≤ i ≤ n we can define σi ∈ Gal(L/K), i, 1 ≤ i ≤ n by
σi(α) := f−1

i (f1(α)), ∀α ∈ L. In this way we obtained n == [L : K]
different elements of Gal(L/K). So |Gal(L/K)| = [L : K].¤
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Let K be a field such that ch(K) 6= 2, a ∈ K. We choose
√

a ∈ K̄
and consider the subfield K(

√
a) ⊂ K̄.

Lemma 8.3. a) the subfield K(
√

a) ⊂ K̄ does not depend on a
choice of

√
a ∈ K̄,

b) K(
√

a) = K iff a is a square in K [ that is there exists b ∈ K
such that a = b2],

c) if K(
√

a) 6= K then [K(
√

a)/K] = 2 and Gal(K(
√

a)/K) = Z/2Z,

Let K be as above a, b ∈ K, L := K(
√

a,
√

b) ⊂ K̄

d) the subfield K(
√

a,
√

b) ⊂ K̄ does not depend on a choice of√
a,
√

b ∈ K̄,
e) [L : K] ≤ 4 and [L : K] = 4 if neither a nor b nor ab is a square

in K,
f) L/K is a Galois extension and in the case when [L : K] = 4 we

have Gal(L/K) = Z/2Z× Z/2Z.

Proof. The parts a)-e) I’ll leave as a homework and will prove the
part f). I’ll consider only the most difficult case when [L : K] = 4. In
this case I’ll give two proofs- a direct one and one which uses Lemma
8.1.

A direct proof. Let F ′ = K(
√

a) ⊂ L, F ′′ = K(
√

b) ⊂ L. Since

L = F ′(
√

b) there exists τ ′ ∈ Gal(L/F ′) ⊂ Gal(L/K) such that

τ ′(
√

b) = −
√

b. Analogously there exists τ ′′ ∈ Gal(L/F ′′) ⊂ Gal(L/K)
such that τ ′(

√
a) = −√a. It is clear now that

τ ′τ ′′(
√

a) = −√a, τ ′τ ′′(
√

b) = −
√

b

and

τ ′′τ ′(
√

a) = −√a, τ ′′τ ′(
√

b) = −
√

b.

So elements τ ′, τ ′′ ∈ Gal(L/K) commute. Since (τ ′)2 = (τ ′′)2 = e
we see that the elements τ ′, τ ′′ ∈ Gal(L/K) generate a subgroup of
Gal(L/K) isomorphic to Z/4Z. Since we know that
|Gal(L/K)| ≤ [L : K] we conclude that Gal(L/K) = Z/4Z.
The second proof. Let G1 := Gal(K̄/F ′), G2 := Gal(K̄/F ′′) ⊂

GK :== Gal(K̄/K). The extensions F ′/K, F ′′/K are Galois exten-
sions and Gal(F ′/K) = Gal(F ′′/K) = Z/2Z. It follos from Lemma
8.1 that G1, G2 ⊂ GK are normal subgroups such that GK/G1 =
GK/G2 = Z/2Z and that : L = F ′F ′′/K is a normal extension and
Gal(L/K) = GK/G1 ∩G2. Now Lemma 8.3 follows immediately from
the following result in the group theory.

Lemma 8.3’. Let G be a group, G1, G2 ⊂ G distinct normal
subgroups such that G/G1 = G/G2 = Z/2Z, G′ := G1 ∩ G2 and



3

fi : G/G′ → G/Gi be group homomorphisms induced by imbed-
dings G′ → G/Gi. Then the group homomorphism G/G′ → G/G1 ×
G/G2, g → (f1(g), f2(g)) is an isomorphism.

I’ll leave the proof of Lemma 8.3’ as a homework.

Let K be as above a ∈ K such that [K(
√

a)/K] = 2, α :=
√

a ∈ K̄
and b = u + αu, v ∈ K ∈ K(α) be such that [L : K] = 2 where

L := K(α)(
√

b).
Lemma 8.4. The extension L/K is normal iff either u2 − av2 is a

square in K or a(u2 − av2) is a square in K.

Proof. As follows from Lemma 8.2 the extension L/K is normal
iff for any two K-homomorphism f ′, f ′′ : L → K̄ we have Im(f ′) =
Im(f ′′). It is clear [ and follows from Lemma 8.3 a) ] that in the
case when f ′(α) = f ′′(α) we have Im(f ′) = Im(f ′′) . So consider the

case when f ′ = Id, f ′′(α) = −α. Let β :=
√

b, γ := f ′′(β). Then
β2 = u + αv, γ2 = u−αv. So we see that the extension L/K is normal
iff the equation t2 = u − αv has a solution ε in the field L. But ε is
a solution of the equation t2 = u − αv iff δ := ε(u + αv) is a solution
of the equation z2 = (u − αv)(u + αv) = u2 − av2 So we see that the
extension L/K is normal iff the equation z2 = u2 − av2 has a solution
in L.

Claim. If the equation z2 = u2 − av2 has a solution δ in L then
δ ∈ K(α).

Proof of the Claim. We show that the assumption that the equa-
tion z2 = u2 − av2 has a solution in L but not in K(α) leads to a
contradiction.

Let c := u2 − av2. Since the equation z2 = c has a solution in L we
have an imbedding of the field K(

√
a,
√

c) in L. If δ does not belong
to K(α) then [L : K(α)] = 2 and therefore [L : K] = 4. Since K ⊂ L
we see that L = K(

√
a,
√

c). Any element ε of the field K(
√

a,
√

c) can
be written in the form

ε = k + lα + mδ + nαδ, k, l, m, n ∈ K

In particular we can write β = k + lα + mδ + nαδ, k, l, m, n ∈ K. Let
τ ∈ Gal(L/K(α) be an automorphism such that τ(β) = −β. Since L =
K(
√

a,
√

c), τ is a non-trivial element of the group Gal(K(
√

a,
√

c)/K(
√

a)).
So τ(δ) = −δ and therefore

τ(β) = k + αl − δm− αδ

Since τ(β) = −β we see that k = l = 0 and β = δ(m + αn).
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We have β2 = u + αv. Therefore δ2(m + αn)2 = u + αv . In other
words c(m+αn)2 = u+αv. Let σ ∈ Gal(K(α)/K be such that σ(α) =
−α. Then σ(c(m+αn)2) = σ(u+αv). That is c(m−αn)2 = (u−αv).
By taking the product we see that c2(m2 − an2)2 = c and therefore
c = (m− αn)−2. So we see that and equation z2 = c has a solution in
K(α). This contradiction proves the Claim.¤

Now we know that the extension L/K is normal iff the equation
z2 = u2 − av2 has a solution in K(α).

It is clear that if either u2 − av2 is a square in K or a(u2 − av2) is a
square in K then the equation z2 = u2 − av2 has a solution ε in K(α).
Assume conversely that the equation z2 = u2 − av2 has a solution
ε ∈ K(α). We can write ε = x + αy, x, y ∈ K. Let σ ∈ Gal(K(α)/K)
be an automorphism such that σ(α) = −α. Then

(σ(ε))2 = σ(ε2) = σ(u2 − av2) = u2 − av2

Therefore either σ(ε) = ε or σ(ε) = −ε. In the first case the equation
z2 = u2−av2 has a solution x ∈ K and in the second case the equation
z2 = a(u2 − av2) has a solution ay ∈ K.¤

Let’s continue the analysis. Consider first the case when the exten-
sion L/K is not normal. Let M = L(

√
u− αv) and D4 be a group

generated by a pair of elements σ, τ and the relations
σ4 = τ 2 = e, τστ−1 = σ3

Lemma 8.5. If the extension L/K is is not normal then the ex-
tension M/K is normal and the group Gal(M/K) is isomorphic to the
group D4.

Proof. To prove that M/K is normal we have to show that |Gal(M/K)| =
[M : K] = 8. Of course it is sufficient to show that |Gal(M/K)| ≥ 8.

Since M = K(α)(
√

u + αv,
√

u− αv) we know from Lemma 8.3
the extension M/K(α) is normal and Gal(M/K(α)) = Z/2Z× Z/2Z.
Let p ∈ Gal(M/K(α)(

√
u + αv), q ∈ Gal(M/K(α)(

√
u− αv) be non-

trivial automorphism. Then p2 = q2 = e, pq = qp and the group
Gal(M/K(α)) is generated by p, q.

Fix β, γ ∈ M such that β2 = u + αv, γ2 = u − αv. It is clear that
there exists g ∈ Gal(M/K) such that g(α) = −α, g(β) = γ. We see
that Gal(M/K) + Gal(M/K(α) and therefore

|Gal(M/K)| = |Gal(M/K(α)||Gal(M/K)/Gal(M/K(α)| ≥ 2|Gal(M/K(α)| = 8

So we see that the extension M/K is normal.

It is clear from the construction that geg−1 = f, gfg−1 = e. Consider
g2 ∈ Gal(M/K(α)). Since g2 commutes with g we see that either g2 =
ef or g2 = e. It is easy to see that in the first case there exists a group
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isomorphism φ : D4 → Gal(M/K) such that φ(σ) = g, φ(τ) = e and in
the second case there exists a groups isomorphism φ : D4 → Gal(M/K)
such that φ(σ) = gef, φ(τ) = e.¤

Consider now the case when the extension L/K is normal. Then the
group Gal(L/K) is a group of order four. Therefore either Gal(L/K) =
Z/4Z or Gal(L/K) = Z/2Z × Z/2Z. It is clear that Gal(L/K) =
Z/2Z × Z/2Z iff for some g ∈ Gal(L/K) − Gal(L/K(α)) we have
g2 = e.

I claim that Gal(L/K) = Z/2Z × Z/2Z if u2 − av2 ∈ K2 and
Gal(L/K) = Z/4Z if a(u2 − av2) ∈ K2. I’ll analyze the first case
and leave for you to analyze the second.

If u2 − av2 = d2, d ∈ K the we can consider an automorphism g ∈
Gal(L/K) such that g(α) = −α, g(β) = d/β. So it is clear that g2 =
e.¤


