Definition 8.1. Let K be a field and \bar{K} an algebraic closure of K. As follows from Theorem 6.1 for any other algebraic closure \bar{K}^{\prime} of K there exists a K-isomorphism $f: \bar{K} \rightarrow \bar{K}^{\prime}$. Therefore the groups $\operatorname{Gal}(\bar{K} / K), \operatorname{Gal}\left(\bar{K}^{\prime} / K\right)$ are isomorphic and we denote by G_{K} the Galois group $\operatorname{Gal}(\bar{K} / K)$. This group is finite iff the extension \bar{K} / K is finite.

Lemma 8.1. Let $L \supset K$ be a finite extension. Show that
a) there exists a K-monomorphism $f: L \rightarrow \bar{K}$,

By the definition the group $\operatorname{Gal}(\bar{K} / f(L))$ is a subroup of G_{K}.
b) the map $g \rightarrow g \circ f$ defines a bijection between the quotient $G_{K} / \operatorname{Gal}(\bar{K} / f(L))$ and the set of K-monomorphisms from L to \bar{K},

For any $\sigma \in \operatorname{Gal}(\bar{K} / K)$ we denote by $\operatorname{Ad}(\sigma): G_{K} \rightarrow G_{K}$ be the automorphism given by $\operatorname{Ad}(\sigma)(g)=\sigma g \sigma^{-1}$.
c) Let $\sigma \in \operatorname{Gal}(\bar{K} / K), f^{\prime}=\sigma \circ f: L \rightarrow \bar{K}$. Then
$\operatorname{Ad}(\sigma)\left(\operatorname{Gal}(\bar{K} / f(L))=\operatorname{Gal}\left(\bar{K} / f^{\prime}(L)\right)\right.$,
d) an extension $L \supset K$ is normal iff the subgroup $\operatorname{Gal}(\bar{K} / f(L) \subset$ $\operatorname{Gal}(\bar{K} / K)$ is normal.

I'll leave the proof of Lemma 8.1 as a homework.
Definition 8.2. We say that a finite extension $L \supset K$ is a Galois extension if $|G a l(L / K)|=[L: K]$.

Lemma 8.2. A finite separable extension $L \supset K$ is a Galois extension iff for any two K-homomorphism $f^{\prime}, f^{\prime \prime}: L \rightarrow \bar{K}$ we have $\operatorname{Im}\left(f^{\prime}\right)=\operatorname{Im}\left(f^{\prime \prime}\right)$.

Proof. Suppose that $L \supset K$ is a Galois extension. We want to show that for any two K-homomorphism $f^{\prime}, f^{\prime \prime}: L \rightarrow \bar{K}$ we have $\operatorname{Im}\left(f^{\prime}\right)=\operatorname{Im}\left(f^{\prime \prime}\right)$. Fix a K-homomorphism $f: L \rightarrow \bar{K}$ and for any $\sigma \in \operatorname{Gal}(L / K)$ consider the composition $f \circ \sigma: L \rightarrow \bar{K}$. It is clear that $\operatorname{Im}(f \circ \sigma)=\operatorname{Im}(f), \forall \sigma \in \operatorname{Gal}(L / K)$. But the number of distinct K-homomorphisms from L to \bar{K} is equal to $[L: K]_{s}=[L: K]$. Since the extension $L \supset K$ is a Galois extension we see that all K homomorphisms from L to \bar{K} have the form $f \circ \sigma$ for some $\sigma \in$ $\operatorname{Gal}(L / K)$. Therefore $\operatorname{Im}\left(f^{\prime}\right)=\operatorname{Im}\left(f^{\prime \prime}\right)$ for any two K-homomorphism $f^{\prime}, f^{\prime \prime}: L \rightarrow \bar{K} . \square$

Conversely assume that $\operatorname{Im}\left(f^{\prime}\right)=\operatorname{Im}\left(f^{\prime \prime}\right)$ for all K-homomorphism $f^{\prime}, f^{\prime \prime}: L \rightarrow \bar{K}$. Let $f_{i}, 1 \leq i \leq n$ be the set of all K-homomorphisms from L to \bar{K}. By the definition $n=[L: K]_{s}$. Since the extension $L \supset K$ is separable we see that $n=[L: K]$. Since $\operatorname{Im}\left(f_{1}\right)=$ $\operatorname{Im}\left(f_{i}\right), \forall i, 1 \leq i \leq n$ we can define $\sigma_{i} \in \operatorname{Gal}(L / K), i, 1 \leq i \leq n$ by $\sigma_{i}(\alpha):=f_{i}^{-1}\left(f_{1}(\alpha)\right), \forall \alpha \in L$. In this way we obtained $n==[L: K]$ different elements of $\operatorname{Gal}(L / K)$. So $|\operatorname{Gal}(L / K)|=[L: K]$.

Let K be a field such that $\operatorname{ch}(K) \neq 2, a \in K$. We choose $\sqrt{a} \in \bar{K}$ and consider the subfield $K(\sqrt{a}) \subset \bar{K}$.

Lemma 8.3. a) the subfield $K(\sqrt{a}) \subset \bar{K}$ does not depend on a choice of $\sqrt{a} \in \bar{K}$,
b) $K(\sqrt{a})=K$ iff a is a square in K [that is there exists $b \in K$ such that $a=b^{2}$],
c) if $K(\sqrt{a}) \neq K$ then $[K(\sqrt{a}) / K]=2$ and $\operatorname{Gal}(K(\sqrt{a}) / K)=\mathbb{Z} / 2 \mathbb{Z}$,

Let K be as above $a, b \in K, L:=K(\sqrt{a}, \sqrt{b}) \subset \bar{K}$
d) the subfield $K(\sqrt{a}, \sqrt{b}) \subset \bar{K}$ does not depend on a choice of $\sqrt{a}, \sqrt{b} \in \bar{K}$,
e) $[L: K] \leq 4$ and $[L: K]=4$ if neither a nor b nor $a b$ is a square in K,
f) L / K is a Galois extension and in the case when $[L: K]=4$ we have $\operatorname{Gal}(L / K)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Proof. The parts a)-e) I'll leave as a homework and will prove the part f). I'll consider only the most difficult case when $[L: K]=4$. In this case I'll give two proofs- a direct one and one which uses Lemma 8.1.

A direct proof. Let $F^{\prime}=K(\sqrt{a}) \subset L, F^{\prime \prime}=K(\sqrt{b}) \subset L$. Since $L=F^{\prime}(\sqrt{b})$ there exists $\tau^{\prime} \in \operatorname{Gal}\left(L / F^{\prime}\right) \subset G a l(L / K)$ such that $\tau^{\prime}(\sqrt{b})=-\sqrt{b}$. Analogously there exists $\tau^{\prime \prime} \in \operatorname{Gal}\left(L / F^{\prime \prime}\right) \subset \operatorname{Gal}(L / K)$ such that $\tau^{\prime}(\sqrt{a})=-\sqrt{a}$. It is clear now that

$$
\tau^{\prime} \tau^{\prime \prime}(\sqrt{a})=-\sqrt{a}, \tau^{\prime} \tau^{\prime \prime}(\sqrt{b})=-\sqrt{b}
$$

and

$$
\tau^{\prime \prime} \tau^{\prime}(\sqrt{a})=-\sqrt{a}, \tau^{\prime \prime} \tau^{\prime}(\sqrt{b})=-\sqrt{b}
$$

So elements $\tau^{\prime}, \tau^{\prime \prime} \in \operatorname{Gal}(L / K)$ commute. Since $\left(\tau^{\prime}\right)^{2}=\left(\tau^{\prime \prime}\right)^{2}=e$ we see that the elements $\tau^{\prime}, \tau^{\prime \prime} \in \operatorname{Gal}(L / K)$ generate a subgroup of $\operatorname{Gal}(L / K)$ isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$. Since we know that
$|\operatorname{Gal}(L / K)| \leq[L: K]$ we conclude that $\operatorname{Gal}(L / K)=\mathbb{Z} / 4 \mathbb{Z}$.
The second proof. Let $G_{1}:=\operatorname{Gal}\left(\bar{K} / F^{\prime}\right), G_{2}:=\operatorname{Gal}\left(\bar{K} / F^{\prime \prime}\right) \subset$ $G_{K}:==\operatorname{Gal}(\bar{K} / K)$. The extensions $F^{\prime} / K, F^{\prime \prime} / K$ are Galois extensions and $\operatorname{Gal}\left(F^{\prime} / K\right)=\operatorname{Gal}\left(F^{\prime \prime} / K\right)=\mathbb{Z} / 2 \mathbb{Z}$. It follos from Lemma 8.1 that $G_{1}, G_{2} \subset G_{K}$ are normal subgroups such that $G_{K} / G_{1}=$ $G_{K} / G_{2}=\mathbb{Z} / 2 \mathbb{Z}$ and that : $L=F^{\prime} F^{\prime \prime} / K$ is a normal extension and $\operatorname{Gal}(L / K)=G_{K} / G_{1} \cap G_{2}$. Now Lemma 8.3 follows immediately from the following result in the group theory.

Lemma 8.3'. Let G be a group, $G_{1}, G_{2} \subset G$ distinct normal subgroups such that $G / G_{1}=G / G_{2}=\mathbb{Z} / 2 \mathbb{Z}, G^{\prime}:=G_{1} \cap G_{2}$ and
$f_{i}: G / G^{\prime} \rightarrow G / G_{i}$ be group homomorphisms induced by imbeddings $G^{\prime} \rightarrow G / G_{i}$. Then the group homomorphism $G / G^{\prime} \rightarrow G / G_{1} \times$ $G / G_{2}, g \rightarrow\left(f_{1}(g), f_{2}(g)\right)$ is an isomorphism.

I'll leave the proof of Lemma 8.3' as a homework.
Let K be as above $a \in K$ such that $[K(\sqrt{a}) / K]=2, \alpha:=\sqrt{a} \in \bar{K}$ and $b=u+\alpha u, v \in K \in K(\alpha)$ be such that $[L: K]=2$ where $L:=K(\alpha)(\sqrt{b})$.

Lemma 8.4. The extension L / K is normal iff either $u^{2}-a v^{2}$ is a square in K or $a\left(u^{2}-a v^{2}\right)$ is a square in K.

Proof. As follows from Lemma 8.2 the extension L / K is normal iff for any two K-homomorphism $f^{\prime}, f^{\prime \prime}: L \rightarrow \bar{K}$ we have $\operatorname{Im}\left(f^{\prime}\right)=$ $\operatorname{Im}\left(f^{\prime \prime}\right)$. It is clear [and follows from Lemma 8.3 a)] that in the case when $f^{\prime}(\alpha)=f^{\prime \prime}(\alpha)$ we have $\operatorname{Im}\left(f^{\prime}\right)=\operatorname{Im}\left(f^{\prime \prime}\right)$. So consider the case when $f^{\prime}=I d, f^{\prime \prime}(\alpha)=-\alpha$. Let $\beta:=\sqrt{b}, \gamma:=f^{\prime \prime}(\beta)$. Then $\beta^{2}=u+\alpha v, \gamma^{2}=u-\alpha v$. So we see that the extension L / K is normal iff the equation $t^{2}=u-\alpha v$ has a solution ϵ in the field L. But ϵ is a solution of the equation $t^{2}=u-\alpha v$ iff $\delta:=\epsilon(u+\alpha v)$ is a solution of the equation $z^{2}=(u-\alpha v)(u+\alpha v)=u^{2}-a v^{2}$ So we see that the extension L / K is normal iff the equation $z^{2}=u^{2}-a v^{2}$ has a solution in L.

Claim. If the equation $z^{2}=u^{2}-a v^{2}$ has a solution δ in L then $\delta \in K(\alpha)$.

Proof of the Claim. We show that the assumption that the equation $z^{2}=u^{2}-a v^{2}$ has a solution in L but not in $K(\alpha)$ leads to a contradiction.

Let $c:=u^{2}-a v^{2}$. Since the equation $z^{2}=c$ has a solution in L we have an imbedding of the field $K(\sqrt{a}, \sqrt{c})$ in L. If δ does not belong to $K(\alpha)$ then $[L: K(\alpha)]=2$ and therefore $[L: K]=4$. Since $K \subset L$ we see that $L=K(\sqrt{a}, \sqrt{c})$. Any element ϵ of the field $K(\sqrt{a}, \sqrt{c})$ can be written in the form

$$
\epsilon=k+l \alpha+m \delta+n \alpha \delta, k, l, m, n \in K
$$

In particular we can write $\beta=k+l \alpha+m \delta+n \alpha \delta, k, l, m, n \in K$. Let $\tau \in \operatorname{Gal}(L / K(\alpha)$ be an automorphism such that $\tau(\beta)=-\beta$. Since $L=$ $K(\sqrt{a}, \sqrt{c}), \tau$ is a non-trivial element of the group $\operatorname{Gal}(K(\sqrt{a}, \sqrt{c}) / K(\sqrt{a}))$. So $\tau(\delta)=-\delta$ and therefore

$$
\tau(\beta)=k+\alpha l-\delta m-\alpha \delta
$$

Since $\tau(\beta)=-\beta$ we see that $k=l=0$ and $\beta=\delta(m+\alpha n)$.

We have $\beta^{2}=u+\alpha v$. Therefore $\delta^{2}(m+\alpha n)^{2}=u+\alpha v$. In other words $c(m+\alpha n)^{2}=u+\alpha v$. Let $\sigma \in \operatorname{Gal}(K(\alpha) / K$ be such that $\sigma(\alpha)=$ $-\alpha$. Then $\sigma\left(c(m+\alpha n)^{2}\right)=\sigma(u+\alpha v)$. That is $c(m-\alpha n)^{2}=(u-\alpha v)$. By taking the product we see that $c^{2}\left(m^{2}-a n^{2}\right)^{2}=c$ and therefore $c=(m-\alpha n)^{-2}$. So we see that and equation $z^{2}=c$ has a solution in $K(\alpha)$. This contradiction proves the Claim.

Now we know that the extension L / K is normal iff the equation $z^{2}=u^{2}-a v^{2}$ has a solution in $K(\alpha)$.

It is clear that if either $u^{2}-a v^{2}$ is a square in K or $a\left(u^{2}-a v^{2}\right)$ is a square in K then the equation $z^{2}=u^{2}-a v^{2}$ has a solution ϵ in $K(\alpha)$. Assume conversely that the equation $z^{2}=u^{2}-a v^{2}$ has a solution $\epsilon \in K(\alpha)$. We can write $\epsilon=x+\alpha y, x, y \in K$. Let $\sigma \in \operatorname{Gal}(K(\alpha) / K)$ be an automorphism such that $\sigma(\alpha)=-\alpha$. Then

$$
(\sigma(\epsilon))^{2}=\sigma\left(\epsilon^{2}\right)=\sigma\left(u^{2}-a v^{2}\right)=u^{2}-a v^{2}
$$

Therefore either $\sigma(\epsilon)=\epsilon$ or $\sigma(\epsilon)=-\epsilon$. In the first case the equation $z^{2}=u^{2}-a v^{2}$ has a solution $x \in K$ and in the second case the equation $z^{2}=a\left(u^{2}-a v^{2}\right)$ has a solution $a y \in K$

Let's continue the analysis. Consider first the case when the extension L / K is not normal. Let $M=L(\sqrt{u-\alpha v})$ and D_{4} be a group generated by a pair of elements σ, τ and the relations

$$
\sigma^{4}=\tau^{2}=e, \tau \sigma \tau^{-1}=\sigma^{3}
$$

Lemma 8.5. If the extension L / K is is not normal then the extension M / K is normal and the group $\operatorname{Gal}(M / K)$ is isomorphic to the group D_{4}.

Proof. To prove that M / K is normal we have to show that $|\operatorname{Gal}(M / K)|=$ $[M: K]=8$. Of course it is sufficient to show that $|\operatorname{Gal}(M / K)| \geq 8$.

Since $M=K(\alpha)(\sqrt{u+\alpha v}, \sqrt{u-\alpha v})$ we know from Lemma 8.3 the extension $M / K(\alpha)$ is normal and $\operatorname{Gal}(M / K(\alpha))=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Let $p \in \operatorname{Gal}(M / K(\alpha)(\sqrt{u+\alpha v}), q \in \operatorname{Gal}(M / K(\alpha)(\sqrt{u-\alpha v})$ be nontrivial automorphism. Then $p^{2}=q^{2}=e, p q=q p$ and the group $\operatorname{Gal}(M / K(\alpha))$ is generated by p, q.

Fix $\beta, \gamma \in M$ such that $\beta^{2}=u+\alpha v, \gamma^{2}=u-\alpha v$. It is clear that there exists $g \in \operatorname{Gal}(M / K)$ such that $g(\alpha)=-\alpha, g(\beta)=\gamma$. We see that $\operatorname{Gal}(M / K) \nsupseteq \operatorname{Gal}(M / K(\alpha)$ and therefore

$$
|\operatorname{Gal}(M / K)|=\mid \operatorname{Gal}(M / K(\alpha)| | \operatorname{Gal}(M / K) / \operatorname{Gal}(M / K(\alpha)|\geq 2| \operatorname{Gal}(M / K(\alpha) \mid=8
$$

So we see that the extension M / K is normal.
It is clear from the construction that $g e g^{-1}=f, g f g^{-1}=e$. Consider $g^{2} \in \operatorname{Gal}(M / K(\alpha))$. Since g^{2} commutes with g we see that either $g^{2}=$ $e f$ or $g^{2}=e$. It is easy to see that in the first case there exists a group
isomorphism $\phi: D_{4} \rightarrow \operatorname{Gal}(M / K)$ such that $\phi(\sigma)=g, \phi(\tau)=e$ and in the second case there exists a groups isomorphism $\phi: D_{4} \rightarrow \operatorname{Gal}(M / K)$ such that $\phi(\sigma)=g e f, \phi(\tau)=e$.

Consider now the case when the extension L / K is normal. Then the group $\operatorname{Gal}(L / K)$ is a group of order four. Therefore either $\operatorname{Gal}(L / K)=$ $\mathbb{Z} / 4 \mathbb{Z}$ or $\operatorname{Gal}(L / K)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. It is clear that $\operatorname{Gal}(L / K)=$ $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ iff for some $g \in \operatorname{Gal}(L / K)-\operatorname{Gal}(L / K(\alpha))$ we have $g^{2}=e$.

I claim that $\operatorname{Gal}(L / K)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ if $u^{2}-a v^{2} \in K^{2}$ and $\operatorname{Gal}(L / K)=\mathbb{Z} / 4 \mathbb{Z}$ if $a\left(u^{2}-a v^{2}\right) \in K^{2}$. I'll analyze the first case and leave for you to analyze the second.

If $u^{2}-a v^{2}=d^{2}, d \in K$ the we can consider an automorphism $g \in$ $\operatorname{Gal}(L / K)$ such that $g(\alpha)=-\alpha, g(\beta)=d / \beta$. So it is clear that $g^{2}=$ e. \square

