The trace and the norm.

We start with a reminder of some results from the Linear algebra. Let K be a field. For any $n>0$ we denote by $G L_{n}(K)$ the group of invertible $n \times n$ matrices and by $M_{n}(K)$ the ring of $n \times n$ matrices. In particular $G L_{1}(K)$ is equal to the multiplicative group $K^{*}:=K-\{0\}$.

Claim 9.1. a) There exists a group homomorphism Det : $G L_{n}(K) \rightarrow$ K^{*} such that in the case when $A \in G L_{n}(K)$ is an upper or lower diagonal matrix $\operatorname{Det}(A)$ is equal to the product of diagonal elements of A,

Let V be a finite-dimensional K-vector space and $A: V \rightarrow V$ a linear operator. Given a basis $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ in V we denote by $A_{\mathcal{B}}$ the $n \times n$ matrix $A_{\mathcal{B}}:=\left(t_{i j}\right), 1 \leq i, j \leq n$ such that

$$
A\left(e_{j}\right)=\sum_{1 \leq i \leq n} t_{i j} e_{i}
$$

b) The determinant $\operatorname{Det}\left(A_{\mathcal{B}}\right)$ does not depend on a choice of a basis \mathcal{B}. We denote it by $\operatorname{Det}(A)$,
c) The trace $\operatorname{Tr}\left(A_{\mathcal{B}}\right)$ does not depend on a choice of a basis \mathcal{B}. We denote it by $\operatorname{Tr}(A)$,
d) for any pair $A, B: V \rightarrow V$ of linear operators we have

$$
\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B), \operatorname{Det}(A B)=\operatorname{Det}(A) \operatorname{Tr}(B)
$$

Definition 9.1. Let $L \supset K$ be a finite extension. We can consider L as a finite-dimensional K-vector space.
a) To any $\alpha \in L$ we associate a K-linear operator $A_{\alpha}: L \rightarrow L$ given by

$$
A_{\alpha}(\beta):=\alpha \beta, \beta \in L
$$

b) we define a map $N_{L / K}: L \rightarrow K$ by $N_{L / K}(\alpha):=\operatorname{Det}\left(A_{\alpha}\right)$,
c) we define a map $\operatorname{Tr}_{L / K}: L \rightarrow K$ by $\operatorname{Tr}_{L / K}(\alpha):=\operatorname{Tr}\left(A_{\alpha}\right)$.

Remark a) Since the trace map is linear we have $\operatorname{Tr}_{L / K}(\alpha+\beta)=$ $\operatorname{Tr}_{L / K}(\alpha)+\operatorname{Tr}_{L / K}(\beta)$,
b) Since the determinant map is a group homomorphism we have $N_{L / K}(\alpha \beta)=N_{L / K}(\alpha) N_{L / K}(\beta)$,
c) it follows from the definition that for any $\alpha \in K$ we have $\operatorname{Tr}(\alpha)=$ $[L: K] \alpha, N_{L / K}(\alpha)=\alpha^{[L: K]}$.

Lemma 9.1. Let $L \supset K$ be a finite extension, $\alpha \in L$ be such that $L=K(\alpha)$ and $p(t)=\operatorname{Irr}(\alpha, K, t)$. Consider a decomposition

$$
p(t)=\prod_{i=1}^{s}\left(t-\alpha_{i}\right)^{m_{i}}, \alpha_{j} \in \bar{K}
$$

of $p(t)$ in the product of linear factors. Then
a) $T r_{L / K}(\alpha)=\sum_{1 \leq i \leq s} m_{j} \alpha_{j}$,
b) $N_{L / K}(\alpha)=\prod_{1 \leq j \leq s} \alpha_{j}^{m_{j}}$.

Proof. Let us choose a basis $\mathcal{B}=\left\{e_{i}\right\}, 0 \leq i<n$ in $L=K(\alpha)$ where $e_{i}:=\alpha^{i}, 0 \leq i<n$. Then $A_{\alpha}^{L}\left(e_{i}\right)=e_{i+1}$ if, $0 \leq i<n-1$ and $A_{\alpha}^{L}\left(e_{n-1}\right)=\alpha^{n}=-\sum_{i=0}^{n-1} c_{i} \alpha^{i}$. So we have $\operatorname{Det}\left(A_{\alpha}^{L}\right)=(-1)^{n} c_{0}$ and $\operatorname{Tr}\left(A_{\alpha}^{L}\right)=-c_{n-1}$. But it is clear from the formula

$$
p(t)=\prod_{i=1}^{s}\left(t-\alpha_{i}\right)^{m_{i}}, \alpha_{j} \in \bar{K}
$$

that

$$
\begin{aligned}
& (-1)^{n} c_{0}=(-1)^{n} \prod_{1 \leq j \leq s} \alpha_{j}^{m_{j}} \text { and } \\
& -c_{n-1}=-\sum_{1 \leq i \leq s} m_{j} \alpha_{j} . \square
\end{aligned}
$$

Theorem 9.1. Let K be a field, p an odd prime number, $a \in K-K^{p}$. Then for any $n>0$ the polynomial $t^{p^{n}}-a \in K[t]$ is irreducible.

In the proof of the theorem we will use the following easy result. Please prove it yourself.

Lemma 9.2. Let K be a field, $p(t) \in K[t]$ a polynomial of positive degree, $\bar{K} \supset K$ be an algebraic closure of $K, \alpha \in \bar{K}$ an element such that $p(\alpha)=0$. The polynomial $p(t) \in K[t]$ is irreducible iff $[K(\alpha)$: $K]=\operatorname{deg}(p(t))$.

Proof of Theorem 9.1. In the case when $\operatorname{ch}(K)=p, n=1$ the result follows from Lemma 3.5. The result for $\operatorname{ch}(K)=p, n>1$ can be proven by exactly the same arguments. So we can assume that $\operatorname{ch}(K) \neq p$. We first consider the case when $n=1$.

Let $\bar{K} \supset K$ be an algebraic closure of $K, \alpha \in \bar{K}$ an element such that $\alpha^{p}=a$. It is sufficient to show that $[K(\alpha): K]=\operatorname{deg}\left(t^{p}-a\right)$. We show that the assumption $[K(\alpha): K]<p$ leads to a contradiction.

So suppose that $d:=[K(\alpha): K]<p$. Let $b:=N_{K(\alpha) / K}(\alpha) \in K$. Since $\alpha^{p}=a$ we have $b^{p}=N_{K(\alpha) / K}(a)=a^{d}$. Since d, p are relatively prime there exists $m, n \in \mathbb{Z}$ such that $m d+n p=1$. Then we have

$$
a=a^{m d+n p}=\left(a^{d}\right)^{m}\left(a^{n}\right)^{p}=\left(b^{m}\right)\left(a^{n}\right)^{p} \in K^{p}
$$

This contradicts the assumption that $a \in K-K^{p}$.
Now we prove the theorem by induction in n. Suppose it is known for polynomials of the form $t^{p^{n-1}}-b$ for all the fields $L, b \in L-L^{p}$.

As before let $\bar{K} \supset K$ be an algebraic closure of $K, \alpha \in \bar{K}$ an element such that $\alpha^{p}=a$. We know that $[K(\alpha): K]=p$. As follows from Lemma 9.1 we have $N_{K(\alpha) / K}(\alpha)=(-1)^{p-1} a=a$

I claim that there is no $\beta \in K(\alpha)$ such that $\alpha=\beta^{p}$. Really if $\alpha=\beta^{p}$ then $N_{K(\alpha) / K}(\alpha)=c^{p}, c \in K$ where $c:=N_{K(\alpha) / K}(\beta)$. So $a=c^{p}$. But we assumed that $a \in K-K^{p}$.

Now we can finish the proof of the Theorem 9.1. Let $\gamma \in \bar{K}$ be a solution of the equation $\gamma^{p^{n-1}}=\alpha$. Since α is not a p-th power in $K(\alpha)$ we know [by the inductive assumption] that $[K(\gamma): K(\alpha)]=p^{n-1}$. Therefore $[K(\gamma): K]=p^{n}$. \square

Remark. One can show that a polynomial $t^{2^{n}}-a \in K[t], n>1$ is irreducible iff $a \notin K^{2}$ and $a \notin-4 K^{4}$.

The condition $a \notin-4 K^{4}$ is necessary. Really for any $a=-4 b^{4}, b \in$ K we have $t^{4}-a=t^{4}+4 b^{4}=\left(t^{2}+2 b t+2 b^{2}\right)\left(t^{2}-2 b t+2 b^{2}\right)$

Corollary. Let K be a field, n an odd number, $a \in K$ such that $a \notin K^{r}$ for any divisor r of $n, r>1$. Then $t^{n}-a$ is irreducible in $K[t]$.

Proof. Let's write n as a product of powers of prime numbers $n=$ $\prod_{i=1}^{s} p_{i}^{r_{i}}$. Choose $\beta \in \bar{K}$ such that $\beta^{n}=a$. We have to show that $[K(\beta): K]=n$.

We define $\alpha_{i} \in \bar{K}$ by $\alpha_{i}:=\beta^{n / p_{i}^{r_{i}}}$. It is clear that $\alpha_{i}^{r_{i}}=a$. Therefore it follows from Theorem 9.1 that $\left[K\left(\alpha_{i}\right): K\right]=p_{i}^{r_{i}}$. Since $K\left(\alpha_{i}\right) \subset K(\beta), 1 \leq i \leq s$ we see that $K(\beta)$ contains the composite field $K\left(\alpha_{1}\right) K\left(\alpha_{2}\right) \ldots K\left(\alpha_{s}\right)$. Since the degrees $\left[K\left(\alpha_{i}\right): K\right]$ are relatively prime we see that

$$
\left[K\left(\alpha_{1}\right) K\left(\alpha_{2}\right) \ldots K\left(\alpha_{s}\right): K\right]=\prod_{i=1}^{s}\left[K\left(\alpha_{i}\right): K\right]=n
$$

Lemma 9.2 Let K be a field, $\operatorname{ch}(K) \neq 2$ and $a \in K-K^{2}$ such that $a \in L^{2}$ for non-trivial finite extension $L \supset K$. Then for any finite normal extension $M \supset K$ the group $\operatorname{Gal}(M / K)$ is cyclic of order 2^{r}.

Example. $K=\mathbb{R}$.
Proof. If $M \neq K$ that by the assumption we can find $\alpha \in M$ such that $a=\alpha^{2}$. Let $G:=\operatorname{Gal}(M / K), G^{\prime}:=\operatorname{Gal}(M / K(\alpha))$. Then $G / G^{\prime}=\operatorname{Gal}(/ K(\alpha) / K)=\mathbb{Z} / 2 \mathbb{Z}$.

I claim that any element $g \in G-G^{\prime}$ generates G. Really choose $g \in G-G^{\prime}$ and denote by $H \subset G$ the subgroup generated by g. We want to show that $H=G$. By the Main theorem of Galois it is sufficient to check that $M^{H}=K$. Since $g(\alpha)=-\alpha$ we see that $\alpha \notin M^{H}$. But
then it follows from our assumption that $M^{H}=K$. So we see that the group $\operatorname{Gal}(M / K)$ is cyclic.

It is easy to see that for any cyclic group G of order $n \neq 2^{r}$ one can find $g \in G-G^{\prime}$ which does not generate G where $G^{\prime} \subset G$ is the unique subgroup of G of index 2 .

