
The trace and the norm.

We start with a reminder of some results from the Linear algebra.
Let K be a field. For any n > 0 we denote by GLn(K) the group of
invertible n× n matrices and by Mn(K) the ring of n× n matrices. In
particular GL1(K) is equal to the multiplicative group K∗ := K−{0}.

Claim 9.1. a) There exists a group homomorphism Det : GLn(K) →
K∗ such that in the case when A ∈ GLn(K) is an upper or lower di-
agonal matrix Det(A) is equal to the product of diagonal elements of
A,

Let V be a finite-dimensional K-vector space and A : V → V a
linear operator. Given a basis B = {e1, ..., en} in V we denote by AB
the n× n matrix AB := (tij), 1 ≤ i, j ≤ n such that

A(ej) =
∑

1≤i≤n

tijei

b) The determinant Det(AB) does not depend on a choice of a basis
B. We denote it by Det(A),

c) The trace Tr(AB) does not depend on a choice of a basis B. We
denote it by Tr(A),

d) for any pair A,B : V → V of linear operators we have

Tr(A + B) = Tr(A) + Tr(B), Det(AB) = Det(A)Tr(B)

Definition 9.1. Let L ⊃ K be a finite extension. We can consider
L as a finite-dimensional K-vector space.

a) To any α ∈ L we associate a K-linear operator Aα : L → L given
by

Aα(β) := αβ, β ∈ L

b) we define a map NL/K : L → K by NL/K(α) := Det(Aα),
c) we define a map TrL/K : L → K by TrL/K(α) := Tr(Aα) .

Remark a) Since the trace map is linear we have TrL/K(α + β) =
TrL/K(α) + TrL/K(β),

b) Since the determinant map is a group homomorphism we have
NL/K(αβ) = NL/K(α)NL/K(β),

c) it follows from the definition that for any α ∈ K we have Tr(α) =
[L : K]α,NL/K(α) = α[L:K].

Lemma 9.1. Let L ⊃ K be a finite extension, α ∈ L be such that
L = K(α) and p(t) = Irr(α,K, t). Consider a decomposition

p(t) =
s∏

i=1

(t− αi)
mi , αj ∈ K̄
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of p(t) in the product of linear factors. Then
a) TrL/K(α) =

∑
1≤i≤s mjαj,

b) NL/K(α) =
∏

1≤j≤s α
mj

j .

Proof. Let us choose a basis B = {ei}, 0 ≤ i < n in L = K(α)
where ei := αi, 0 ≤ i < n . Then AL

α(ei) = ei+1 if , 0 ≤ i < n − 1 and
AL

α(en−1) = αn = −∑n−1
i=0 ciα

i. So we have Det(AL
α) = (−1)nc0 and

Tr(AL
α) = −cn−1. But it is clear from the formula

p(t) =
s∏

i=1

(t− αi)
mi , αj ∈ K̄

that
(−1)nc0 = (−1)n

∏
1≤j≤s α

mj

j and

−cn−1 = −∑
1≤i≤s mjαj.¤

Theorem 9.1. Let K be a field, p an odd prime number, a ∈ K−Kp.
Then for any n > 0 the polynomial tp

n − a ∈ K[t] is irreducible.

In the proof of the theorem we will use the following easy result.
Please prove it yourself.

Lemma 9.2. Let K be a field, p(t) ∈ K[t] a polynomial of positive
degree, K̄ ⊃ K be an algebraic closure of K, α ∈ K̄ an element such
that p(α) = 0. The polynomial p(t) ∈ K[t] is irreducible iff [K(α) :
K]=deg(p(t)).

Proof of Theorem 9.1. In the case when ch(K) = p, n = 1 the
result follows from Lemma 3.5. The result for ch(K) = p, n > 1 can
be proven by exactly the same arguments. So we can assume that
ch(K) 6= p. We first consider the case when n = 1.

Let K̄ ⊃ K be an algebraic closure of K, α ∈ K̄ an element such
that αp = a. It is sufficient to show that [K(α) : K] = deg(tp− a). We
show that the assumption [K(α) : K] < p leads to a contradiction.

So suppose that d := [K(α) : K] < p. Let b := NK(α)/K(α) ∈ K.
Since αp = a we have bp = NK(α)/K(a) = ad. Since d, p are relatively
prime there exists m, n ∈ Z such that md + np = 1. Then we have

a = amd+np = (ad)
m

(an)p = (bm)(an)p ∈ Kp

This contradicts the assumption that a ∈ K −Kp.

Now we prove the theorem by induction in n. Suppose it is known
for polynomials of the form tp

n−1 − b for all the fields L, b ∈ L− Lp.
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As before let K̄ ⊃ K be an algebraic closure of K,α ∈ K̄ an element
such that αp = a. We know that [K(α) : K] = p. As follows from
Lemma 9.1 we have NK(α)/K(α) = (−1)p−1a = a

I claim that there is no β ∈ K(α) such that α = βp. Really if α = βp

then NK(α)/K(α) = cp, c ∈ K where c := NK(α)/K(β). So a = cp. But
we assumed that a ∈ K −Kp.

Now we can finish the proof of the Theorem 9.1. Let γ ∈ K̄ be a
solution of the equation γpn−1

= α. Since α is not a p-th power in K(α)
we know [ by the inductive assumption] that [K(γ) : K(α)] = pn−1.
Therefore [K(γ) : K] = pn.¤

Remark. One can show that a polynomial t2
n − a ∈ K[t], n > 1 is

irreducible iff a /∈ K2 and a /∈ −4K4.
The condition a /∈ −4K4 is necessary. Really for any a = −4b4, b ∈

K we have t4 − a = t4 + 4b4 = (t2 + 2bt + 2b2)(t2 − 2bt + 2b2)

Corollary. Let K be a field, n an odd number, a ∈ K such that
a /∈ Kr for any divisor r of n, r > 1. Then tn− a is irreducible in K[t].

Proof. Let’s write n as a product of powers of prime numbers n =∏s
i=1 pri

i . Choose β ∈ K̄ such that βn = a. We have to show that
[K(β) : K] = n.

We define αi ∈ K̄ by αi := βn/p
ri
i . It is clear that αri

i = a.
Therefore it follows from Theorem 9.1 that [K(αi) : K] = pri

i . Since
K(αi) ⊂ K(β), 1 ≤ i ≤ s we see that K(β) contains the composite
field K(α1)K(α2)...K(αs). Since the degrees [K(αi) : K] are relatively
prime we see that

[K(α1)K(α2)...K(αs) : K] =
s∏

i=1

[K(αi) : K] = n. ¤

Lemma 9.2 Let K be a field, ch(K) 6= 2 and a ∈ K − K2 such
that a ∈ L2 for non-trivial finite extension L ⊃ K. Then for any finite
normal extension M ⊃ K the group Gal(M/K) is cyclic of order 2r.

Example. K = R.

Proof. If M 6= K that by the assumption we can find α ∈ M
such that a = α2. Let G := Gal(M/K), G′ := Gal(M/K(α)). Then
G/G′ = Gal(/K(α)/K) = Z/2Z.

I claim that any element g ∈ G − G′ generates G. Really choose
g ∈ G − G′ and denote by H ⊂ G the subgroup generated by g. We
want to show that H = G. By the Main theorem of Galois it is sufficient
to check that MH = K. Since g(α) = −α we see that α /∈ MH . But
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then it follows from our assumption that MH = K. So we see that the
group Gal(M/K) is cyclic.

It is easy to see that for any cyclic group G of order n 6= 2r one can
find g ∈ G−G′ which does not generate G where G′ ⊂ G is the unique
subgroup of G of index 2.¤


