HOMEWORK \#2 IN ALGEBRAIC STRUCTURES 2

Problem 2.1. a) Show that for any field K that either ch $K=0$ or it is a prime number,
b) let K be a field of characteristic 2 . Show that for any $a, b \in K$ we have $(a+b)^{2}=a^{2}+b^{2}$,
c) let K be a field of characteristic $p>0$. Show that for any $a, b \in K$ we have $(a+b)^{p}=a^{p}+b^{p}$.

Problem 2.2. Let L be an extension of K and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a set of elements in L. Define inductively a sequence of subfields $F_{i} \subset L, 0 \leq$ $i \leq n$ by

$$
F_{0}=K, F_{i}=F_{i-1}\left(\alpha_{i}\right)
$$

Show that $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)=F_{n}$.
To formulate the next problem we will use the notations from the Definition 2.3. Let A be an integral commutative ring.

Problem 2.3. Show that
a) if $(a, s) \equiv\left(a^{\prime}, s^{\prime}\right),(b, u) \equiv\left(b^{\prime}, u^{\prime}\right)$ then $(a, s)(b, u) \equiv\left(a^{\prime}, s^{\prime}\right)\left(b^{\prime}, u^{\prime}\right)$ and $(a, s)+(b, u) \equiv\left(a^{\prime}, s^{\prime}\right)+\left(b^{\prime}, u^{\prime}\right)$,
as follows from a) we have well defined operations $(\alpha, \beta) \rightarrow \alpha \beta$ and $(\alpha, \beta) \rightarrow \alpha+\beta, \alpha, \beta \in K(A)$ on $K(A)$. We define elements $0,1 \in$ as the equivalence classes of pairs $(0,1)$ and $(1,1)$ correspondingly.
b) show that the set $K(A)$ with the operations $(\alpha, \beta) \rightarrow \alpha \beta$ and $(\alpha, \beta) \rightarrow \alpha+\beta, \alpha, \beta \in K(A)$ is a field and the map $a \rightarrow(a, 1)$ defines a monomorphism from A to $K(A)$. We will always consider A as a subring of $K(A)$.

Let K is a field. Define inductively a sequence of fields $L_{i}, 0 \leq i$ by $L_{0}:=K, L_{i}:=L_{i-1}\left(t_{i}\right)$ (that is, L_{i} is the field of rational functions in one variable over $\left.L_{i-1}\right)$. By the construction, the ring $K\left[t_{1}, \ldots, t_{n}\right]$ is a subring of L_{n}.
c) construct an isomorphism of the fields L_{n} and $K\left(t_{1}, \ldots, t_{n}\right)$ which induces the identity map on $K\left[t_{1}, \ldots, t_{n}\right]$ which we consider as a subring of both fields L_{n} and $K\left(t_{1}, \ldots, t_{n}\right)$.

Problem 2.4. a)Find the greatest common divisor of $q(t)=t^{7}-$ $t^{4}+t^{3}-1$ and $r(t)=t^{3}-1$
b) show that the polynomial $p(t)=t^{2}+1$ over the field F_{19} is irreducible and show that the quotient ring $F_{19}[t] /\left(t^{2}+1\right)$ is a field with 361 elements,
c) show that the polynomial $p(t)=t^{3}+t+4$ over the field F_{11} is irreducible and show that the quotient ring $F_{11}[t] /\left(t^{3}+t+4\right)$ is a field with 11^{3} elements.

Problem 2.5. Show that for any irreducible monic polynomial $p(t) \in K[t]$ of degree n there exists an extension $L \supset K$ such that $[L: K] \leq n!$ and $p(t)$ can be written in the ring $L[t]$ as a product of linear factors (i.e. polynomials of degree 1).

