HOMEWORK \#6 IN ALGEBRAIC STRUCTURES 2

We assume in this homework that char $K \neq 2,3$.
Problem 6.1. Let $L: K$ be a quadratic extension (that is, $[L: K]=2$). Show that it is a normal extension.

Problem 6.2. Let $L: K$ be a cubic extension (that is, $[L: K]=3$). Let $\alpha \in L \backslash K$ and let $p(t):=\operatorname{Irr}(\alpha, K, t)$ be the minimal polynomial of α.

Show that:
(a) $L=K(\alpha)$,
(b) There exists a monic quadratic polynomial $q(t) \in L[t]$ such that $p(t)=(t-\alpha) q(t)$,
(c) The extension $L: K$ is normal if and only if the polynomial $q(t)$ has a root $\beta \in L$,
(d) If the extension $L: K$ is normal then $\operatorname{Gal}(L / K)$ is the group of cyclic permutations of the set $\{\alpha, \beta, \gamma\}$ where γ is the second root of $q(t)$,
(e) If the extension $L: K$ is not normal then $M:=L[t] /(q(t))$ is the normal closure and $\operatorname{Gal}(M / K)$ is the group S_{3} of all permutations of $\{\alpha, \beta, \gamma\}$ where β, γ are roots of $q(t)$ in M.

Problem 6.3.

(a) Show that there exists a polynomial $\Delta\left(c_{0}, c_{1}\right) \in \mathbb{Z}\left[c_{0}, c_{1}\right]$ with integer coefficients such that for any field K and any polynomial $p(t)=$ $t^{2}+c_{1} t+c_{0} \in K[t]$, we have

$$
\Delta\left(c_{0}, c_{1}\right)=\left(\alpha_{1}-\alpha_{2}\right)^{2}
$$

where $\alpha_{1}, \alpha_{2} \in \bar{K}$ are the roots of $p(t)$ (that is, $p(t)=\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)$ in an algebraic closure).

Hint. Use the equalities $c_{1}=-\left(\alpha_{1}+\alpha_{2}\right), c_{0}=\alpha_{1} \alpha_{2}$.
(b) Let $\Delta\left(c_{0}, c_{1}\right):=-\left(4 c_{1}^{3}+27 c_{0}^{2}\right)$. Show that for any polynomial $p(t)=$ $t^{3}+c_{1} t+c_{0} \in K[t]$ we have

$$
\Delta\left(c_{0}, c_{1}\right)=\prod_{1 \leq i<j \leq 3}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

where $\alpha_{i} \in \bar{K}, 1 \leq i \leq 3$ are roots of $p(t)$.
(c) Show that there exists a polynomial $\Delta\left(c_{0}, c_{1}, c_{2}\right) \in \mathbb{Z}\left[c_{0}, c_{1}, c_{2}\right]$ with integer coefficients such that for any field K and a polynomial $p(t)=$ $t^{3}+c_{2} t^{2}+c_{1} t+c_{0} \in K[t]$, we have

$$
\Delta\left(c_{0}, c_{1}, c_{2}\right)=\prod_{1 \leq i<j \leq 3}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

where $\alpha_{i} \in \bar{K}, 1 \leq i \leq 3$ are roots of $p(t)$.
Hint. Show the existence of $a \in K$ such that the polynomial $q(u):=p(t+a)$ has a form $q(u)=u^{3}+d_{1} u+d_{0}$ for $d_{1}, d_{0} \in K$.
(d) Let $L \supset K, \alpha \in L, p(t)=t^{3}+c_{2} t^{2}+c_{1} t+c_{0} \in K[t]$ be as in Problem 6.2. Show that if the extension $L: K$ is normal then there exists $\delta \in K$ such that $\Delta\left(c_{0}, c_{1}, c_{2}\right)=\delta^{2}$,
(e) Prove that the converse is also true; that is, if there exists $\delta \in K$ such that $\Delta\left(c_{0}, c_{1}, c_{2}\right)=\delta^{2}$ then the extension $L: K$ is normal.

Hint. Use the results of problem 6.2.
(f) ${ }^{\star}$ Assume that there exists $\zeta \in K$ such that $\zeta^{3}=1, \zeta \neq 1$. Let $p(t)=$ $t^{3}+c_{1} t+c_{0} \in K[t]$ be an irreducible polynomial and $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \bar{K}$ its roots. Let $z:=\alpha_{1}+\zeta \alpha_{2} \zeta^{2} \alpha_{3}$. Show that

$$
\left(z^{3}+\frac{27}{2} c_{0}\right)^{2}=-\frac{27}{4} \Delta\left(c_{0}, c_{1}, 0\right)
$$

(g) Find formulas for the solution of cubic equations (over fields K such that char $K \neq 2,3)$.

